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1. INTRODUCTION 

We extend Ito’s lemma ([5] or [8], f or example) to a Hilbert space context 
in this paper. Our proof is analogous to that given by Gikhman and 
Skorokhod ([S]) for the real random variable case. Thus, the crucial points in 
our treatment involve the proper formulation and juxtaposition of concepts 
such as Wiener process and stochastic differential in a Hilbert space context. 
For this, we rely on a modification of the ideas in [I] and [4]. 

We let (J?, 9, CL) be a probability space with 9 as Bore1 field and p as 
measure throughout the paper. We assume that the reader is somewhat 
familiar with the theory of Banach space valued random variables (see, for 
example, [7]); however, for convenience, we include a brief appendix con- 
taining the definitions and results used in the paper. 

We introduce the basic notions of a Hilbert space valued Wiener process 
and the corresponding stochastic integral in Section 2. Then, we state and 
prove the extension of Ito’s lemma in Section 3. In essence, we show that if 
H, K, and G are Hilbert spaces and if u(t) is a K-valued stochastic process 
with stochastic differential du = q(t) dt + D(t) dw where w(t) is an H-valued 
Wiener process, q(t) is a K-valued stochastic process, and G(t) is a suitable 
9(H, K)l valued stochastic process, then the stochastic differential of the 
G-valued stochastic process z(t) = gft, u(t)), where g is a sufficiently smooth 
nonrandom map of T x K into G (T = [T, , T2] a real interval), can be 
written down in terms of the derivatives of g. 
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2. WIENER PROCESSES AND STOCHASTIC INTEGRALS 

We define Hilbert space valued Wiener processes and develop the con- 
comitant stochastic integral in this section. 

DEFINITION 2.1. Let w(t) be an H-valued random process on T. Then 
w(t) is called a Wiener process if 

(i) E{w(t) - w(s)} = 0 for all S, t in T; 

(ii) w(t) is continuous in t ~.p.l.;~ 

(iii) E{[w(t) - w(s)] 0 [w(t) - w(s)]}3 = (t - S) W for all S, t in T where 
W is a compact, positive, bounded, trace class operator mapping H into 
itself; 

(iv) E{lj w(t) - w(~)j]a} < co for all S, t in T, and, 

(v) w(t2) - w(tr) and w(s2) - w(sr) are independent for all sr , s2 , t, , t, 
in T such that sr < s2 < t, < t, . 

We note that the operator W has countably many eigenvalues (A,}, that 
hi 2 0 for all i, and that tr( W) = CT=, Ai . If {ei} is an orthonormal set of 
eigenvectors of Wand if {ei , fa) is an orthonormal basis for H, then Wei = Xiei 
and Wfm = 0. 

We also observe that several alternative versions of Definition 2.1 can be 
obtained by replacing (v) by either of the weaker conditions 

(v)’ (w(t,) - w(tl), h,) and (w(s2) - w(sr), h,) are independent for all 
sr , s2 , t, , t, in T such that sr < s2 < t, < t, and all h, , h, in H, or, 

(v)” (w(tJ - w(tl), ei) and (w(s2) - w(sr), ei) are independent for all 
sr , sa , t, , t, in T such that s1 < s2 < t, < t, . 

These alternative versions of the definition produce deintical results 

(see PI>* 
If w(t) is an H-valued Wiener process, then it can be shown that there are 

complex-valued stochastic processes {pi(t)) on T such that 

w(t) = f Pi(t) ei 
i=O 

(2.2) 

almost everywhere in (t, w), where {e,> is an orthonormal set of eigenvectors 
of W. Moreover, Re{/3,(t)} and Im{&(t)) are real Wiener processes. Thus, 
there is no essential difference between Wiener processes in separable and 

2 w.p.1. is shorthand for with probability one. 
a If h, and ha are elements of H, then h1 0 h2 is the element of 2’(H, H) given by 

(4 O Wh = h<h, h,) (cf. [41). 
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nonseparable Hilbert spaces and so, we shall assume from now on that H 
is separable. 

PROPOSITION 2.3. If w(t) is an H-valued Wiener process, then 

E{(w(t) - W(S), w(t) - w(s))} = tr(W) 1 t - s 1 

and 

EU w(t) - w(~)lR G W@W I t - s I . 

A proof of this simple proposition is given in [2]. 

PROPOSITION 2.4. If w(t) is an H-valued Wiener process, then there is a 
family (St , t E T} of a-algebras such that 

(i) 9SC&C9 for s <t; 

(ii) w(t) is measurable relative to St fm all t in T, 

(iii) w(t) - w(s) is independent of e for s < t; 

(iv) [w(t) - w(s)] 0 [w(t) - w(s)] is independent of z for s < t. 

Proof. Take, for example, 9t to be the u-algebra generated by the sets 
w(s)-1 (O), s E T, s < t, 0 a Bore1 set in H. Properties (i), (ii), and (iii) are 
obvious. As for property (iv), this is an immediate consequence of (iii) and 
the fact that the mapping # of H @ H into .9(H, H) given by 

#(h, 3 h2) = 4 0 h is continuous (see [4], Propositions 2.2 and 2.4). 

COROLLARY 2.5. If h, and h, are elements of H, then 

(bw - w(s)1 o lMt> - 441 4 , h2) 
is independent of 9$ for s < t. 

If w(t) is a Wiener process, then, for convenience, we fix a family {St} 
satisfying the conditions of Proposition 2.4 and associate it with w(t). We 
then have 

DEFINITION 2.6. Let K be a Hilbert space. Then M(H, K) = (@(*, .) : 
Q, is an Z(H, Q-valued stochastic process on T x @ such that @(t) is 
measurable relative to St for all t in T}, A&H, K) = {a(*, .) E A(H, K) : 
Q, is a t-step function on T}, and 

A$H,K)= I@(., .) EA(H, K): s 
T 

E{Il@(t)1/2)dt < 001 . 

* This means that @ is measurable with respect to the pair (t, w). Although this is 
somewhat more restrictive than usual ([3]), it is adequate for our purposes. 
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If Q, is an element of &(H, K), then the K-valued stochastic integral, 
ST @(t, w) dw, can be defined in an analogous way to that used in 
the scalar case by Skorokhod ([8]). More precisely, if @ is an element of 
J&V& K) n 4(H, K), then ST W, w) d w is given by a finite sum of the form 

c % ? w) (W(G+d - w(4)). It is easily checked that E{jT@(t, w) dw) = 0 
and we shall soon show that 

E INS 
2 

@(t, w) dw 
T  II I = WV f 41 @WI”> dt (2.7) 

T  

for @ in &,(H, K) n dI(H, K). Now if CD is any element of ./$(H, K), then 
there is a sequence {Dn} of elements of MO(H, K) n y/i;(H, K) such that 
Qm -+ @ almost everywhere on T x Q and 

lim 
s n-a0 T 

E{ll @ - Qn II”} dt = 0. (2.8) 

Moreover, { fT Qn(t, w) dw} h as a unique limit in L,(O, K). This limit is the 
stochastic integral, ST @(t, W) dw. 

PROPOSITION 2.9. If@ is an element of J&(H, K), then E{ JT@(t, w) dw} =0 
and 

E 
Ill! 

@(t, w) dw 1121 G WV 1 E{ll @Wll”> dt. (2.10) 
T  T  

Proof. A simple limiting argument shows that E{JT@(t, w) dw} = 0. So 
let us turn our attention to (2.10). 

Let {@J be an approximating sequence of t-step functions used to define 
ST @ dw. Then 

Suppose, for the moment, that (2.7) holds for elements of 

4(H, K) n 4(H, K). 
Then 

(2.11) 
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by virtue of Schwartz’s inequality and (2.8). However, (2.8) also implies that 

and so, (2.10) follows. 
Thus, all that remains is to verify (2.7) for Q, in &,(H, K) n J?&(H, K). 

For such a @, 

s 

n-1 

@ dw = C Wj , w) Mti+d - w(tj)), 
T  1 

(2.12) 

where (tl ,..., a> is a finite partition of T. Let 

cPj = @pi , w), AWj = w(tj+J - w(tJ 

and 

Then 

Atj = tj+l - tj . 

But E((Qj Awj , QK Aw,)) = 0 ifj f k. For, ifj > K, then 

E(($ Awi , QK Awk)} = E{(G$ Awj , Drc Aw,) [ Ttj}} = 0 

since the conditional expectation E((Qj AWj , Ip, Aw,) 1 Ftj} vanishes by 
virtue of the measurability of @$ and Qp, Aw, relative to Ftj and the independ- 
ence of Awi of stj . It follows that 

= T E{II @j AW, 1121 = 7 E{ii @i ii”> E{ii A% II”>- (2.14) 

(Note that 11 @j 1) and 11 Awi jj are independent since @$ is measurable relative 
to stj .) But, E(/l Awj II”> = tr(I4’) Atj and so, 

T WI % II”> Elll Awi II”> = tW)z -WI % II”> 4 = WV ST WI @II”> dt. 
j 

Thus, the proposition is established. 
We now prove a useful convergence lemma. 

LEMMA 2.15. Let (Cp,) be a sequence of elements of dl(H, K). Suppose that 
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(i) there is a @ in A$(H, K) such that @m -+ @ almost everywhere on T x Sz; 
and, (ii) there is an a(t) in L,(T) such that 11 Gn(t)ll < ar(t) w.p.1. for all n. Then 

lim 
s n+ao T c&(t) dw = 

I 
Q(t) dw (2.16) 

T 

in L&2, K). 

Proof. Since 

the lemma is an immediate consequence of the Lebesgue dominated con- 
vergence theorem. 

DEFINITION 2.17. Let u(t), t E T, be the K-valued stochastic process 
given by 

u(t) - u(T,) = ,h q(s, w) ds + 1: @(s, w) dw (2.18) 

where w(t) is an H-valued Wiener process, CD is an element of JQH, K), and 
q(s, CO) is a K-valued stochastic process with ST 11 q(s, w)]] ds < co w.p.1. 
which is measurable relative to 9t for all t in T. Then u is said to have the 
stochastic differential qdt + Q, dw and we write du = q dt + @ dw. 

We observe that if u has a stochastic differential, then the real stochastic 
process /I u(t)11 may b e viewed as a separable real process since u(t) is continu- 
ous in t w.p.1. (this is proved in [2]) and since u(t) is only determined w.p.1. 
(See [3] for a discussion of the separability of real processes.) This observation 
will be useful in the sequel and enables us to avoid the question of generalizing 
the notion of separability for a random process to the Hilbert space context. 

3. ITO’S LEMMA 

We are now prepared to state and prove Ito’s lemma in a Hilbert space 
context. Since the proof is essentially along the same lines as that given by 
Gikhman and Skorokhod ([5]) for the finite dimensional case, we omit many 
of the details. We begin with the following lemma which is an important 
tool in the proof of the main theorem. 

LEMMA 3.1. Let H, K and G be Hilbert spaces and let w(t) be an H-valued 
Wiener process. Suppose that (i) @(t, u is an SY(K, dp(K, G))-valued stochastic ) 
process which is measurable relative to pt for all t in T; (ii) E{lj @(t)l12) < CCI 
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for all t in T; (iii) SD,, is an LZ’(H, K)-valued random variable which is measurable 
relative to Sri; (iv) Jw @o II”} < a; and, (v) w(t) is real, i.e., w(t) = w(t) 
on T x G’. Then 

E{O[@, Aw, 00 Aw] 1 9J = (t - s) @[Do &iei , @o &$ei] w.p.1. (3.2) 
i=O 

and 

fM almost all s, t with s < t where 0 = @(s, w), Aw = w(t) - w(s), and the 
(ei} form an orthonormal basis of H consisting of ea@nvectors of W and with the 
hi as corresponding etgenvalues. 

Proof. Clearly, (3.3) follows from (3.2). 
Now, recall that w(t) = x7=, &(t) ei and set ArS, = pi(t) - pi(s) and 

Aw, = wn(t) - w,(s) f or s < t where eu,(t) = Cko &(t) ei . We note that 
since w(t) is real, Api = K& , and so, it follows from Schwartz’s inequality 
that 

for all i andj. Since 11 8 I/ /j Q. )I2 is measurable relative to q and I Api A& I is 
independent of %s (as w(t) - w(s) is), we have 

E{I ABi A/?$ I II @ II II @o II”> d (t - S> V”UdW @ 1121)1’2 Wll @o l14F2 (3.5) 

SO that E{I Api A& / /I 0 1) // @s II”} is finite. Since jj @[@aei , @eejjlj < 11 8 (j 11 Go ]I2 
and since O[@oei , Qoej] is measurable relative to E , we have 

w.p.1. for all 1~. But E{A& A& 1 e} = E{A#$ A&} since A/J A& is independent 
of & . In view of property (iii) of definition 2.1, E{A& A&) = (t - S) Ai8i.j 
and so, 

E{@[‘J+, Aw,, , Bo AWN]} = (t - s) i @[Q. d&e< , @O V%ei]. (3.7) 
I=0 

The result then follows by a simple application of [7], Theorem 2.5. 
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As a suggestive shorthand, we write t?(S) [@,~,J in place of 

f @[Q. fiiei , Q. d&i] 
i=O 

where 

THEOREM 3.8 (Ito’s Lemma). Let H, K end G be Hilbert spaces and let 
w(t) be an H-valued Wiener process. Suppose that g(t, c) is a continuous map of 
T x K into G and that u(t) is a K-valued stochastic process with stochastic 
da&ential du = q dt + CD dw such that 

(i) g,(t, c) is continuous on T x K; 

(ii) g(t, *) is twice dzzerentiable on K for each fixed t in T; 

(iii) g,(t, c) andg,,(t, c) are continuous in (t, c) on T x K; 

(iv) q(t) is a K-valued process which is measurable relative to Ft , t E T, 
and integrable on T w.p.1. (i.e., Jr/l q(s)]1 ds < 00 w.p.1.); 

(v) @ is an element of .A$(H, K) with fTE{j/ @ II”} dt < co; and, 

(vi) w(t) is real. 

Then x(t) = g(t, u(t)) has the G-valued stochastic differential 

dz = Cg& u(t)) + g& u(t)) WI + ii %&s 40)) P(t) Ll> dt 

+ gck u(t)) [WI dw. (3.9) 

Proof (cf. [5]). Let us suppose for the moment that the theorem holds if 
q and @ are t-step functions. Then the general case will follow by a straight- 
forward limiting argument. In other words, we consider sequences {q,Jt)}, 
{an(t)} of t-step functions such that 

;+% s TIl a(t) - qn(t)ll dt = 0 w.p.1. 

and 

EC! s E{ll CD - cDn I]“} dt = 0 w.p.1. 
T  

where the q,(t) satisfy (iv) and the an(t) satisfy (v). Letting u,(t) be the K- 
valued process with stochastic differential du, = qn dt + cD~ dw, we can 
show just as in [5] that un(t) converges uniformly to u(t) on T w.p.l., i.e., 
that lim,,, SUP&II s(t) - u(t)]\} = 0 w.p.1. It follows that there is a sub- 
sequence {u,&t)} of {uJt)> such that 

A4 U&N - g(4 u(t)), g& 4&N -g&, w, 

& un,(t)) - gdt, u(t)), and g&9 %,W +gcc(t, u(t)>, 
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all uniformly on T w.p.1. For simplicity, we write wi(t) = I,, r<(t) = qnS(t) 
and ‘y(t) = an.(t). Then, simple inequality computations show that I 

lim 
i-m 

j: gc(s, 4s)) CyiWl ds = fI As, 44) W)l ds (3.10) 

lim 
i-hm 

jh &cc(s, UN) Pi(s) 5wl ds = jlI ~kcc(s> 44)) [@5(s) 5wl ds 

all w.p.1. Thus, to show that z(t) = g(t, u(t)) has the required stochastic 
differential, it will be enough to prove that 

ii& j;lgc(s, ds)) F’iMl dw = jI,g& +I) [Q(s)1 dw 

where the convergence is in probability. 
Now let xfN)(.) be the real random variable given by 

(3.11) 

if IIu(s)ll<N for T,<s<t 
otherwise. 

(3.12) 

Then, for sufficiently large i, 

g&7 44 P(s) X’N’(s)l and &(S> W) Pi(S) X’N’(41 

will be elements of J&‘~(H, G). It then follows from the inequality (2.10) that 

lim 
i&m 

j: gch W) P’ds) x’W1 dw = jzI g&, W [W ~‘~‘(s)l dw (3.13) 

for all finite N (where the convergence is in probability). But 

t CL {ids> ds)) F’i(41 - g&> W) [WI> dw 
=1 

- jc MS> W) V’44 x’V)l - As, 44) L@(s) x’“Wl> dw 11 # 0 

for i = 1, 2,... 
I 

,< PL(W : stq$ II u(t, w>ll > N).5 

3 Note that this probability exists since /I u(t)11 may be viewed as a separable real 
process. 
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Since CL{W : suptdI 44 w>ll > W g oes to zero as 1V approaches infinity, 
(3.11) is established. 

Now it remains to prove the theorem for case of t-step functions q and CD. 
To do this, it will be enough to prove the theorem for the special case where q 
and @ are constant, i.e., are independent of t. 

So let us assume that q and @ are constant. Let t be a fixed (but arbitrary) 
element of (T1 , T,1 and let to , t, ,..., t, be elements of T with 

Tl = t, < t, < t, < +.. < t, = t < T2 . 

We set At, = tk+l - t, , uk = u(tk), g, = g(tk , u,), Au, = u~+~ - uk , and 
Ag, = g,+r - g, for k = 0, l,..., n - 1. Then 

z(t) - 4T,) = At, u(t)) - g(T, 9 u(T1)) 

n-1 

= ;ounk+l - g(tlc 3 uk+l)) + Mtk a tLk+l) - gk>> (3.14) 

n-1 

= go 'gk. 
b 

In view of the differentiability assumptions, 

4, = g&k , uk+~) At, + g&k s uk) Wkl + t g&k t uk) IAuk > AUkI + ‘i’k -t Sk 

(3.15) 
where 

Just as in [5], ~~~~ (11 yk // + I/ &I\) + 0 w.p.1. as maxk At, -+ 0. It follows 
that 

n-1 

z(t) - 4Td = c {g&k P Uk> At, + &(tk > uk> [Auk] 
0 

+ 3 g&c Y  urc) [‘kc , A%]> + 0, 9 
(3.16) 

where jJ 0, /) -+ 0 w.p.1. as maxR At, + 0. Substituting Au, = qdt, + @Aw, 
in (3.16), we obtain the relation 

z(t) - 4 Tl) = 4 t- 4 + Z:, + J-G + & + 0, (3.17) 

40913 I/2-14 
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where 

n-1 

(3.18) 

& = c &k 7 uk) [@I Awl, 
k=O 

(3.19) 

la-1 

z; = c + i&k 3 uk) [@ Awk 9 @ Aw,l 
k=O 

(3.20) 

n-1 

‘% = c igdtk 9 uk) [% d (Atk)2 
k=O 

(3.21) 

n-1 

(3.22) 

In view of the continuity assumptions and the boundedness of u(t) on T, 
we immediately deduce that, as maxk At, goes to 0, 

4 - . i 1 (gt(t, u(t)) + g& u(t)> [ql) dt w.p.1. 
1 

z4 + 0 w.p.1. 

zs + 0 w.p.1. 

(3.23) 

(3.24) 

(3.25) 

In other words, the limiting sums converge to the usual Bochner integral. 
We now claim that 

i 
t 

z; - gc(t, u(t)) [CD] dw in probability (3.26) 
Tl 

and 
t 

Es-+& 
s 

G((g,,(t, u(t))) [@&,,I dt in probability (3.27) 
Tl 

as maxk At, -+ 0. Let xcN)(*) be the real random variable given by (3.12). Then 

j E(lIg,(t, u(t)> [@iP(t)ll12} dt < 
T  

sup {llg,(t, 4t))l12> S,E{ll @ II”> dt -c ~0 
Ilu(t)llG’J 

for all N by virtue of assumptions (iii) and (iv). Since u(t) is bounded w.p.l., 
it follows that JTE{l\gc(t, u(t)) [@][j”> dt < co and hence, that g,(t, u(t)) [@I 
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is in 4(K G) = g&, $4) PI is measurable relative to & for all t in T. Thus, 

J;J& w [@I d w exists. Consider the sequence {g,“[@]} where 

gc”(4 u(t)) PI = & 9 4 PI 

for t in [tj , ti+J, j = O,..., n - 1. Theng,“[@] is an element of Ar(H, G) for 
every n. Moreover, since g, is continuous, I/ gc”[@]lj < M w.p.1. for all n and 
some constant M. Thus, Lemma 2.15 applies and (3.26) is established. 

Finally, we prove that (3.27) holds. Let xL~) be given by 

Xp’ = I 1 if 11 ui 11 < N for i < k o 
otherwise. 

(3.28) 

Then 

Since gcc(tk , uk) XY is measurable relative to Ft, , we deduce from (3.3) that 

Setting 

and 
Pk = &dtk 3 uk) [@ dwk > @ nwkl 

vk = Pk - At, &&k 7 uk)) [@&01, 

we have E{v,xjcN)} = 0 for all N. Moreover, by virtue of (3.2), 

and so, 

(3.29) 

E{vkXiN) I 6,) = o (3.30) 

for all N. [Note that gcc(tk , uk) [OAw, , OAw,] is measurable relative to 
9$, and that 

G tr(V WI@ II”> ,, ;gN II g& Wll < a for all N.1 u . 

It is clear that both E{il pk&“) II”} and E{ll v,x\j’ 112} are finite for all N and k. 

409/31/2-I4* 
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Thus, ifj > K, we have (by Proposition A.9 and (3.30)) 

E{(v$@, v,#) j 2Q = 0 3 3 

since vtixjeN) is measurable relative to Sti . It follows that 

E((q#“, v,#))} = 0 

if j # k and hence that 

(3.31) 

(3.32) 

A simple computation using the independence of jj @ 1) and jl Aw, I/ leads to 
the estimate 

C W v,xkN) II”> G 12 sup {II gccW~))ll > JW @ Ii”> WV c P8- (3.33) 
llu(tKN 

We immediately conclude that Ci:i v~x~~~--+O in probability as maxk dt,--+O. 
Since 

Ill 
n-1 

p c (Vk - VkXLN)) # 0 G tL{sup II alI > w 
0 II I 

we also see that Cz:i ok + 0 in probability as maxk At, + 0. But 

n-1 

1 Ah &oc@k , uk)) [@&al 
k=O 

is an approximating sum for the integral J$lc(g&t, u(t)) [SD&,] dt. Thus, 

(3.27) and with it, the theorem, are established. 

COROLLARY 3.34. Suppose that, in addition to the hypotheses of the theorem, 
H = K and G = (5: (or R). Then dz can be written in jkrn 

dz = {gtk u(t)) + h(t), V&t, u(t)>> + 4 W@(t) w@*(t) @cc&, WI> dt 
(3.35) 

+ C@*(t) Vc&, u(t)>, dw) 

where V,g and @Cd are the gradient and Hessian, respectively, of g with respect 
to c. 
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APPENDIX. INFINITE DIMENSIONAL RANDOM VARIABLES 

We collect some of the standard definitions and results of the theory of 
Banach space valued random variables in this appendix as a convenience for 
the reader. The treatment is along the lines of that given by Scalora [7]. 

Let (Sz, 9, p) be a probability space with 9 as Bore1 field and p as measure. 
We assume that p is complete. Also, let X be a Banach space. We then have 

DEFINITION A. 1. A strongly measurable mapping x(e) of 52 into X is 
called a random variable. 

A random variable x(e) is integrable on Sz if, and only if, there is a sequence 
{xn(.)} of finitely valued random variables such that (i) x,(.) converges to 
x(.) almost everywhere, and (ii) limm,n*m Js, j( x,(w) - x,(w)/1 dp = 0. 

DEFINITION A.2. If x(e) is integrable on Q, then the expectation of x, 
,?Z{x}, is the element of X given by 

DEFINITION A.4. Let 9 be a Bore1 field with p C 9 and let x(o) be 
integrable on Sz. The conditional expectation of x relative to p, E{x )9}, 
is a random variable such that 

for all F in 9. 
We note that E(x ) g} is unique w.p.l., is integrable on Q, and is measurable 

relative to 9. 

DEFINITION A.6. Let T = [Tl , T,] be a finite interval. A mapping 
x(t, w) of T x 52 into X is called a stochastic process on T if x(*, *) is measur- 
able in the pair (t, W) (using Lebesgue measure on T). 

Definition A.6 is more restrictive than the usual one (cf. Doob [3]) but is 
adequate for our purposes. Also, we usually write x(t) in place of x(t, w) 
when discussing stochastic processes. 

DEFINITION A.7. Two measurable sets Fl and F, in B are independent if 

44 n F,) = ,@‘d G’d. If 4.1 is a random variable mapping Q into X and 
y(a) is a random variable mapping Q into Y, then x(e) and y(o) are independent 
if the sets {w : x(w) E A} and {w : y(w) E B} are independent for all Bore1 sets 
A of X and all Bore1 sets B of Y. Finally, a random variable x(o) is inde- 
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pendent of the Bore1 field F CP if the sets F and {w : x(w) E A) are inde- 
pendent for all F in S and all Bore1 sets A of X. 

The following propositions contain various results needed in the paper. 
These propositions are easy extensions of similar results for the ordinary case 
and are proven in detail in [2]. 

PROPOSITION A.8. I f  x( .) and y( .) are independent X and Y valued random 
variables, respectively, and if f and g are nonrandom Baire functions mapping X 
and Y, respectively, into the complex numbers 6, then f  (x(.)) and g(y(*)) are 
independent random variables. 

PROPOSITION A.9. Let 3 be a Bore1 field with 3 CB. Let f,  x and 0 be 
random variables on Q to 6, X and 9(X, Y), respectively. Then 

(9 ifE~Il4ll < co, then E{E{x j 9]} = E(x); 

(ii) if E(jj x II} < cc and x is measurable relative to 9, then E{x ( S} = x 
w.p.1.; 

(iii> if -WI x III < ~0, EiI f  I II x II> < co, and x is measurable relative to P-, 
then E{ fx / S> = E{ f  / S> x w.p.1.; and 

(iv) if E{ji x iI> < co, E{(l x )I (/ @ [I} < CO and @ is measurable relative to 9, 
then E{@x 191 = @E{x I 9} w.p.1. 
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