Finite solvable groups whose character graphs are trees ${ }^{* \pi}$

Yi-Tao Wu ${ }^{\text {a }}$, Pu Zhang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China
Received 22 February 2006
Available online 20 October 2006
Communicated by Gernot Stroth
Dedicated to Professor Ke-Qin Feng on the occasion of his 65th birthday

Abstract

The aim of this paper is to classify all the finite solvable groups G whose character graphs $\Gamma(G)$ have no triangles: they are exactly the finite groups with at most two non-linear irreducible characters, and the symmetric group S_{4}. © 2006 Elsevier Inc. All rights reserved.

Keywords: Finite groups; Character graph

1. Introduction and preliminaries

1.1. Throughout, all groups are finite, and all characters are over an algebraically closed field of characteristic zero. Notation is standard and taken from [I]. In particular, denote by G^{\prime} the commutator subgroup of group $G \operatorname{Irr}(G)$ the set of irreducible characters of $G, N L(G)$ the set of non-linear irreducible characters of G, and $c . d .(G)$ the set of degrees of the irreducible characters of G.

[^0]The character graph $\Gamma(G)$ is introduced by Manz, Staszewski, and Willems in [MSW]. By definition the set of the vertices of $\Gamma(G)$ is $N L(G)$, and two vertices χ and ψ are connected by an edge provided that $\chi(1)$ and $\psi(1)$ have a common prime divisor. So, G is abelian if and only if $\Gamma(G)$ has no vertices. It is proved in [MSW] that the number of the connected components of $\Gamma(G)$ is at most 3; and if G is solvable then it is at most 2 . Our aim is to prove

Theorem 1.1. Let G be a non-abelian solvable group. Then $\Gamma(G)$ has no triangles if and only if either $|N L(G)| \leqslant 2$, or, G is isomorphic to the symmetric group S_{4}.

It turns out that for a solvable group, the property that $\Gamma(G)$ has no triangles is equivalent to that $\Gamma(G)$ has no cycles, i.e. $\Gamma(G)$ is a tree. Note that Theorem 1.1 is not true for non-solvable groups. For example, the alternative group A_{5} has 4 non-linear irreducible characters of degrees $4,5,3,3$, respectively.

The similar work has been done in [FZ] for the conjugacy graph $\Delta(G)$, introduced by Bertram, Herzog, and Mann in [BHM]. For more information on various related graphs attached to a group we refer to a survey article [L2] and [CHM,L1,LZ,MQS,MSW,MW,MWW,ZJ].
1.2. The groups with $|N L(G)|=1$ have been classified by Seitz [S] as follows.

Lemma 1.2. [S] A group G has exactly one non-linear irreducible character if and only if G is isomorphic to one of the following:
(i) An extra-special 2-group (i.e. $|G|=2^{k}$ with k odd, and the center $Z(G)=G^{\prime}$ is of order 2). In this case, c.d. $(G)=\left\{1, \sqrt{\left.\frac{|G|}{2} \right\rvert\,}\right\}$.
(ii) A Frobenius group with the Frobenius kernel $N \cong \mathbb{Z}_{p}^{n}$, and a cyclic Frobenius complement H of order $p^{n}-1$, where $p^{n} \neq 2$. In this case, c.d. $(G)=\left\{1, p^{n}-1\right\}$.

The groups with $|N L(G)|=2$ have been classified by Pálfy [P] (see also G.X. Zhang [ZG]). We only need and record the following weaker description of this classification. This can be also directly proved by only using Lemma 12.3 in [I] and Lemma 1.2 above.

Lemma 1.3. ([P], also [ZG]) Let G be a group with exactly two non-linear irreducible characters. Then G is isomorphic to one of the following:
(i) An extra-special 3-group. In this case c.d. $(G)=\left\{1, \sqrt{\frac{\left|G^{\prime}\right|}{3}}\right\}$.
(ii) A 2-group with c.d. $(G)=\left\{1, \frac{\sqrt{|G|}}{2}\right\}$.
(iii) A Frobenius group with the Frobenius kernel \mathbb{Z}_{3}^{2} and a Frobenius complement Q_{8} (the quaternion group of order 8). In this case c.d. $(G)=\{1,2,8\}$.
(iv) A Frobenius group with the Frobenius kernel $K \cong \mathbb{Z}_{p}^{n}$, and an abelian Frobenius complement H of order $\frac{p^{n}-1}{2} \neq 1$, where p is an odd prime. In this case c.d. $(G)=\left\{1, \frac{p^{n}-1}{2}\right\}$.
(v) There is a normal subgroup L of order 2 such that G / L is a Frobenius group with the Frobenius kernel $K \cong \mathbb{Z}_{p}^{n}$, and a cyclic Frobenius complement H of order $p^{n}-1 \neq 1$, where p is a prime. In this case, c.d. $(G)=\left\{1, p^{n}-1\right\}$.

In particular, $\Gamma(G)$ is connected in all the cases.

Lemma 1.4. $[\mathrm{BCH}]$ Let G be a non-abelian group. Then all the degrees of non-linear irreducible characters of G are pairwise distinct if and only if G is isomorphic to one of the following:
(i) The groups in Lemma 1.2.
(ii) The group in Lemma 1.3(iii).

In particular, $|N L(G)| \leqslant 2$ and $\Gamma(G)$ is connected in all the cases.
Corollary 1.5. Let G be a non-abelian solvable group such that $\Gamma(G)$ is not connected. Then there exist two distinct non-linear irreducible characters having the same degrees.

Corollary 1.6. Let G be a non-abelian group. Then $\Gamma(G)$ has no edges if and only if $N L(G)=1$.
Proof. If $\Gamma(G)$ has no edges and $N L(G) \geqslant 2$, then by Lemma 1.4 we have $c . d .(G)=\{1,2,8\}$, and hence $\Gamma(G)$ has an edge. A contradiction.

2. Proof of Theorem 1.1

The proof given here uses Lemma 1.4, and hence the classification of finite simple groups (see $[\mathrm{BCH}]$). We emphasize that there is a proof independent of the classification, but it is much longer.
2.1. We first give some facts which are used for "going-down" induction.

Lemma 2.1. Let G be a non-abelian solvable group. Then either all the non-linear irreducible characters of G have the same degree, or, there exists an abelian normal subgroup $N \neq\{1\}$ of G such that G / N is non-abelian.

Proof. Since G is solvable and non-abelian, it follows that there exists an abelian normal subgroup $N_{1} \neq\{1\}$. If G / N_{1} is non-abelian, then we are done. So assume that G / N_{1} is abelian. Then $G^{\prime} \leqslant N_{1}$, and G^{\prime} is also abelian.

If G^{\prime} is not a minimal normal subgroup of G, then we have an abelian normal subgroup N of G with $\{1\} \neq N \nsupseteq G^{\prime}$. Then we are done since G / N is non-abelian.

If G^{\prime} is the unique minimal normal subgroup of G, then by Lemma 12.3 in [I], all the nonlinear irreducible characters of G have the same degree.

The remainder case is that there is $N \triangleleft G$ such that both G^{\prime} and N are minimal normal subgroup of G with $G^{\prime} \neq N$. Then G / N is non-abelian. Note that a minimal normal subgroup of a solvable group is abelian. This completes the proof.

Lemma 2.2. Let G be an non-abelian group, and $N \neq\{1\}$ be a normal subgroup of G. Then $|N L(G)|>|N L(G / N)|$.

Proof. Otherwise, we have the contradiction

$$
|G / N|>|G / N|-|L(G / N)|=|G|-|L(G)|=|G| \frac{\left|G^{\prime}\right|-1}{\left|G^{\prime}\right|} \geqslant \frac{|G|}{2}
$$

where $L(G):=\operatorname{Irr}\left(G / G^{\prime}\right)$ is the set of the linear characters of G.

Lemma 2.3. Let p be a prime, i, j two positive integers. Then
(i) If $\left(p^{n}-1\right) \mid\left(p^{2 i}+p^{2 j}\right)$ and $p^{n}-1 \neq 1$, then $p=3$ and $n=1$.
(ii) If p is odd and $\frac{p^{n}-1}{2} \neq 1$, then $\frac{p^{n}-1}{2} \nmid p^{2 i}$.
(iii) If p is odd, $\frac{p^{n}-1}{2} \neq 1$, and $\left.\frac{p^{n}-1}{2} \right\rvert\,\left(p^{2 i}+p^{2 j}\right)$, then $p=5$ and $n=1$.

Proof. Assume $j \geqslant i$. Then

$$
\begin{aligned}
\left(p^{n}-1, p^{2 i}+p^{2 j}\right) & =\left(p^{n}-1,1+p^{2 j-2 i}\right)=\left(p^{n}-1, p^{n}+p^{2 j-2 i}\right) \\
& = \begin{cases}\left(p^{n}-1,1+p^{2 j-2 i-n}\right), & \text { if } 2 j-2 i>n \\
\left(p^{n}-1,1+p^{n-2 j+2 i}\right), & \text { if } n \geqslant 2 j-2 i .\end{cases}
\end{aligned}
$$

If $2 j-2 i-n \geqslant n$, then by repeating this process, we finally get $\left(p^{n}-1, p^{2 i}+p^{2 j}\right)=\left(p^{n}-1\right.$, $p^{m}+1$) for some $0 \leqslant m<n$.

Now $\left(p^{n}-1\right) \mid\left(p^{2 i}+p^{2 j}\right)$ implies that $\left(p^{n}-1\right) \mid\left(p^{m}+1\right)$. By calculation together with $p^{n}-1 \neq 1$ we get the assertion. (ii) is a special case of (i).

For (iii), $\left.\frac{p^{n}-1}{2} \right\rvert\,\left(p^{2 i}+p^{2 j}\right)$ implies that $\left.\frac{p^{n}-1}{2} \right\rvert\,\left(p^{m}+1\right)$. By calculation together with $\frac{p^{n}-1}{2} \neq 1$ we get the assertion.
2.2. For the readability of the proof of Lemma 2.6, we first treat two special cases.

Lemma 2.4. Let G be a non-abelian solvable group such that $\Gamma(G)$ is connected. Then $\Gamma(G)$ has no triangles if and only if $|N L(G)|=1$ or 2 .

Proof. If $\Gamma(G)$ has no triangles and $|N L(G)| \geqslant 3$, then by Lemma 1.4 there exist two non-linear irreducible characters of G having the same degree. Now by the connectivity of $\Gamma(G)$ we see that it has a triangle.

Lemma 2.5. Let G be a non-abelian solvable group such that $\Gamma(G)$ is not connected. Assume that there exists an abelian normal subgroup $N \neq\{1\}$ with $|N L(G / N)|=1$. If $\Gamma(G)$ has no triangles, then $G \cong S_{4}$.

Proof. Since $\Gamma(G)$ is not connected, it follows from Lemma 1.3 that $|N L(G)| \geqslant 3$. Note that G / N cannot be a 2-group: otherwise, by Ito's theorem (see e.g. Theorem 6.15 in [I]) 2 divides the degrees of any non-linear irreducible characters of G, and then $\Gamma(G)$ has a triangle. So, by Lemma 1.2 G / N has to be isomorphic to a Frobenius group with the Frobenius kernel $K \cong Z_{p}^{n}$ and a cyclic Frobenius complement H of order $p^{n}-1$, and $p^{n} \neq 2$. By Ito's theorem we have $\psi(1)\left||G / N|=p^{n}\left(p^{n}-1\right)\right.$ for $\psi \in \operatorname{Irr}(G)$. For the later convenience, we divide the proof into several steps.

Step 1. character of a linear non-principle character of the Frobenius kernel is an irreducible character of a Frobenius group. See e.g. Proposition 14.4 in [CR], the unique non-linear irreducible character φ of G / N is of degree $|H|=p^{n}-1$.

Step 2. We claim that there exists a $\psi \in \operatorname{Irr}(G)$ such that $p \mid \psi(1)$: otherwise, any degree of nonlinear irreducible character of G can divide $p^{n}-1$. Since $|N L(G)| \geqslant 3$, it follows from Step 1 that $\Gamma(G)$ is connected.

Step 3. Since G / N is a Frobenius group with the Frobenius kernel K, it follows that there is a normal subgroup M of G such that $M / N \cong K$. Thus $|M / N|=p^{n},|G / M|=p^{n}-1$. Such an M cannot be abelian (otherwise we have $\chi(1)\left||G / M|=p^{n}-1\right.$ for every $\chi \in \operatorname{Irr}(G)$, which contradicts the claim in Step 2).

For $\psi \in \operatorname{Irr}(G)$ with $p|\psi(1), \psi|_{M}$ has no linear summands (otherwise, by Corollary 11.29 in [I] $\psi(1)$ divides $\left.|G / M|=p^{n}-1\right)$. While for $\chi \in \operatorname{Irr}(G)$ with $p \nmid \chi(1)$, by Clifford's theorem $\left.\chi\right|_{M}$ is a sum of linear characters, since $\phi(1)\left||M / N|=p^{n}\right.$ for every $\phi \in \operatorname{Irr}(M)$.

Step 4. Consider the irreducible decomposition $\chi_{\text {reg }, G}=\Sigma_{1}+\Sigma_{2}$ of the regular character of G, where Σ_{1} is the sum of $\operatorname{deg}(\chi) \chi$'s, with χ running over all the irreducible characters of G whose degrees cannot be divided by p, and Σ_{2} is the sum of $\operatorname{deg}(\psi) \psi$'s, with ψ running over all the irreducible characters of G whose degrees can be divided by p. Also, we have

$$
\left.\chi_{r e g, G}\right|_{M}=|G / M| \chi_{r e g, M}=|G / M|\left(\Sigma_{3}+\Sigma_{4}\right)=\left(p^{n}-1\right)\left(\Sigma_{3}+\Sigma_{4}\right),
$$

where Σ_{3} is the sum of all the linear characters of M, and Σ_{4} is the sum of $\operatorname{deg}(\phi) \phi$'s, with ϕ running over all the non-linear irreducible characters ϕ of M. By Step 3 we have

$$
\begin{equation*}
\left.\Sigma_{2}\right|_{M}=\left(p^{n}-1\right) \Sigma_{4} \quad \text { and } \quad\left(p^{n}-1\right) \mid \Sigma_{2}(1) . \tag{2.1}
\end{equation*}
$$

Step 5. Let $\left\{\psi_{1}, \ldots, \psi_{t}\right\}$ be the set of the irreducible characters of G whose degrees can be divided by p, and $N L(G)=\left\{\varphi, \psi_{1}, \ldots, \psi_{t}, \ldots, \psi_{m}\right\}$, where $\varphi(1)=p^{n}-1, \psi_{i}(1)=p^{a_{i}} \alpha_{i}, 1 \leqslant$ $a_{i} \leqslant n, 1 \leqslant i \leqslant t$; and $\psi_{i}(1)=\alpha_{i}, t+1 \leqslant i \leqslant m$; and $\alpha_{i} \mid\left(p^{n}-1\right)$ for $1 \leqslant i \leqslant m$. Since $\Gamma(G)$ has no triangles, it follows that $t \leqslant 2$, and $\left(\alpha_{i}, \alpha_{j}\right)=1$ for $i \neq j$.

Note that $t \neq 1$: otherwise $\left(p^{n}-1\right) \mid p^{2 a_{1}} \alpha_{1}^{2}$ by (2.1) and hence $\left(p^{n}-1\right) \mid \alpha_{1}^{2}$. Since $p^{n} \neq 2$, it follows that $\alpha_{1} \neq 1$, and hence $\Gamma(G)$ is connected.

Thus $t=2$, and then by (2.1) we have $\left(p^{n}-1\right) \mid\left(p^{2 a_{1}} \alpha_{1}^{2}+p^{2 a_{2}} \alpha_{2}^{2}\right)$. Since $\alpha_{i} \mid\left(p^{n}-1\right)$, it follows that α_{1} divides $\left(p^{2 a_{1}} \alpha_{1}^{2}+p^{2 a_{2}} \alpha_{2}^{2}\right)$, and hence divides $p^{2 a_{2}} \alpha_{2}^{2}$. It follows from $\left(\alpha_{i}, p\right)=$ $1=\left(\alpha_{1}, \alpha_{2}\right)$ that α_{1} divides α_{2} and hence $\alpha_{1}=1$. Similarly we have $\alpha_{2}=1$. By Lemma 2.3(i) we have $n=1, p=3$, and $a_{1}=a_{2}=1$.

Now G has two irreducible characters of degree 3, c.d. $(G)=\{1,2,3\},|G / M|=2$, $|M / N|=3$, c.d. $(M)=\{1,3\}$, and $|N L(M)|=1$ (by (2.1)). By Lemma 1.2(ii) we know that M is isomorphic to the alternative group A_{4}, and then $|G|=24$. Note that the number of the Sylow 3-subgroups is 4 (otherwise, the Sylow 3-subgroup is an abelian normal subgroup of G, and then by Ito's theorem all the degrees of the irreducible characters of G divides $\frac{24}{3}=8$). By using G 's conjugate action on the set of the Sylow 3-subgroups of G, one easily gets $G \cong S_{4}$.
2.3. The following is the main lemma in this section. It claims that S_{4} is the unique solvable group with the property that the character graph is not connected and has no triangles.

Lemma 2.6. Let G be a non-abelian solvable group such that $\Gamma(G)$ is not connected. Then $\Gamma(G)$ has no triangles if and only if G is isomorphic to S_{4}.

Proof. We only need to prove the necessity. Assume that G is a counter-example of minimal order, that is, $|G|$ is minimal with respect to the property that G is non-abelian solvable with $\Gamma(G)$ not connected, and that $\Gamma(G)$ has no triangles and $G \nsupseteq S_{4}$. Since $\Gamma(G)$ is not connected, it follows that we can apply Lemma 2.1 to get an abelian normal subgroup $N \neq\{1\}$ of G with G / N non-abelian. Since $\Gamma(G / N)$ has no triangles, it follows from the choice of the minimality of $|G|$ that either $G / N \cong S_{4}$, or $\Gamma(G / N)$ is connected.

Case 1. $G / N \cong S_{4}$.
By lifting from $\operatorname{Irr}\left(S_{4}\right)$ one has $\chi_{1}, \chi_{2}, \chi_{3} \in \operatorname{Irr}(G)$ with $\chi_{1}(1)=2, \chi_{2}(1)=3=\chi_{3}(1)$. Then $|N L(G)|=4$ and $\chi_{4}(1)=2,4$, or 8 (in fact, by Lemma $2.2 N L(G)>3$; if $N L(G) \geqslant 5$, then $\Gamma(G)$ has a triangle, since $\chi(1)$ divides $|G / N|=24$ for each $\chi \in \operatorname{Irr}(G)$). By calculations such a group G does not exist. For example, if $\chi_{4}(1)=8$, then $|G|=|L(G)|+2^{2}+3^{2}+3^{2}+8^{2}=$ $|L(G)|+86$. That is, $\left(\left|G^{\prime}\right|-1\right)|L(G)|=86=2 \times 43$, and all the cases contradict $24||G|$.

Case 2. $\Gamma(G / N)$ is connected.
Since $\Gamma(G / N)$ is connected and has no triangles, it follows from Lemma 2.4 that $|N L(G / N)|=1$ or 2 . But by Lemma $2.5|N L(G / N)| \neq 1$. So $|N L(G / N)|=2$. By Lemma 1.3 we discuss as follows.

Subcase 1. If G / N is a 2 -group or a 3-group, then $\Gamma(G)$ has a triangle by Ito's theorem. A contradiction.

Subcase 2. Let G / N be a group in Lemma 1.3(iii), with $N L(G / N)=\left\{\varphi_{1}, \varphi_{2}\right\}, \varphi_{1}(1)=8$, $\varphi_{2}(1)=2$. Then any degree of the irreducible characters of G other than φ_{1} and φ_{2} divides 9 . By Corollary 1.5 there exist two distinct non-linear irreducible characters of G having the same degrees, and hence $|N L(G)|=4$ (otherwise $\Gamma(G)$ has a triangle). So, the possibilities of the vector $(\chi(1))_{\chi \in N L(G)}$ are $(2,8,3,3)$ and $(2,8,9,9)$. By calculations such a group G does not exist. For example, if it is $(2,8,9,9)$, then $|G|=|L(G)|+2^{2}+8^{2}+9^{2}+9^{2}=|L(G)|+230$. That is, $\left(\left|G^{\prime}\right|-1\right)|L(G)|=230=2 \times 5 \times 23$, and all the cases contradict $72||G|$.

Subcase 3. Let G / N be a group in Lemma 1.3(iv), i.e., G / N is a Frobenius group with the Frobenius kernel $K \cong \mathbb{Z}_{p}^{n}$ and an abelian Frobenius complement H, and $|H|=\frac{|K|-1}{2}$. Note that $|G / N|=p^{n} \frac{p^{n}-1}{2}$, and the two irreducible characters of G / N are of degree $\frac{p^{n}-1}{2}$.

By Ito's theorem we have either $p \mid \psi(1)$ or $\psi(1) \left\lvert\, \frac{p^{n}-1}{2}\right.$, for each $\psi \in N L(G)$. Let t be the number of ψ 's in $N L(G)$ with $p \mid \psi(1)$. Since $\Gamma(G)$ has no triangles, it follows that $t=1$ or 2, and hence

$$
N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \quad \text { or } \quad N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\},
$$

with

$$
\psi_{1}(1)=\psi_{2}(1)=\frac{p^{n}-1}{2}, \quad \psi_{3}(1)=p^{i}, \quad \psi_{4}(1)=p^{j}, \quad 1 \leqslant i, j \leqslant n
$$

With the same notation and the same argument as in Step 4 in the proof of Lemma 2.5 (in particular, M is the normal subgroup of G such that $M / N=K$, and hence $|M / N|=p^{n}$ and $|G / M|=\frac{p^{n}-1}{2}$), we get

$$
\left.\Sigma_{2}\right|_{M}=\frac{p^{n}-1}{2} \Sigma_{4} \quad \text { and } \left.\quad \frac{p^{n}-1}{2} \right\rvert\, \Sigma_{2}(1)
$$

So we have

$$
\left.\frac{p^{n}-1}{2} \right\rvert\, p^{2 i} \quad \text { or } \left.\quad \frac{p^{n}-1}{2} \right\rvert\,\left(p^{2 i}+p^{2 j}\right)
$$

Since $\frac{p^{n}-1}{2} \neq 1$, it follows from Lemma 2.3 (ii) and (iii) that the first situation is impossible, and in the second situation we have $p=5, n=1, i=j=1$. So we get $N L(M)=1$, c.d. $(M)=\{1,5\}$, which contradicts Lemma 1.2(ii).

Subcase 4. Let G / N be a group in Lemma 1.3(v), i.e., G / N has a normal subgroup L / N of order 2 such that G / L is a Frobenius group with the Frobenius kernel $K \cong \mathbb{Z}_{p}^{n}$, and a cyclic Frobenius complement H of order $p^{n}-1$, where p is a prime and $p^{n} \neq 2$; and in this case, $|G / N|=2 p^{n}\left(p^{n}-1\right)$, and the two non-linear irreducible characters of G / N are of degree $p^{n}-1$. As in Subcase 3 we have a normal subgroup M of G such that $M / L \cong K$, and hence $|M / N|=2 p^{n}$ and $|G / M|=p^{n}-1$. Now we divide it into two situations.
(i) The situation of $p=2$.

By Ito's theorem we have either $2 \mid \psi(1)$, or $\psi(1) \mid\left(2^{n}-1\right)$, for each $\psi \in N L(G)$. Let t be the number of ψ 's in $N L(G)$ with $2 \mid \psi(1)$. Since $\Gamma(G)$ has no triangles and is disconnected, it follows that $t=1$, or 2 , and hence

$$
N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \quad \text { or } \quad N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}
$$

with

$$
\psi_{1}(1)=\psi_{2}(1)=2^{n}-1, \quad \psi_{3}(1)=2^{i}, \quad \psi_{4}(1)=2^{j}, \quad 1 \leqslant i, j \leqslant n+1
$$

With the same notation and the same argument as in Step 4 in the proof of Lemma 2.5 (as in Subcase 3) we get

$$
\left.\Sigma_{2}\right|_{M}=\left(2^{n}-1\right) \Sigma_{4} \quad \text { and } \quad\left(2^{n}-1\right) \mid \Sigma_{2}(1)
$$

So we have

$$
\left(2^{n}-1\right) \mid 2^{2 i} \quad \text { or } \quad\left(2^{n}-1\right) \mid\left(2^{2 i}+2^{2 j}\right)
$$

By Lemma 2.3 we get a contradiction.
(ii) The situation of $p \neq 2$.

Again by Ito's theorem we get that either $p \mid \psi(1)$ or $\psi(1) \mid 2\left(p^{n}-1\right)$, for each $\psi \in N L(G)$. Again let t be the number of ψ 's in $N L(G)$ with $p \mid \psi(1)$. Then $t=1$ or 2 . Since $\Gamma(G)$ has no triangles, it follows that

$$
N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\} \quad \text { or } \quad N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\},
$$

with

$$
\psi_{1}(1)=\psi_{2}(1)=p^{n}-1, \quad \psi_{3}(1)=p^{i}, \quad \psi_{4}(1)=p^{j}, \quad 1 \leqslant i, j \leqslant n
$$

Hence we get (as we do before)

$$
\left.\Sigma_{2}\right|_{M}=\left(p^{n}-1\right) \Sigma_{4} \quad \text { and } \quad\left(p^{n}-1\right) \mid \Sigma_{2}(1)
$$

So we have

$$
\left(p^{n}-1\right) \mid p^{2 i} \quad \text { or } \quad\left(p^{n}-1\right) \mid\left(p^{2 i}+p^{2 j}\right)
$$

By Lemma 2.3 the unique solution is $p=3, n=1$. Thus we have

$$
N L(G)=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right\}
$$

with

$$
\psi_{1}(1)=\psi_{2}(1)=2, \quad \psi_{3}(1)=\psi_{4}(1)=3 .
$$

Now we have $|G|=|L(G)|+2^{2}+2^{2}+3^{2}+3^{2}=|L(G)|+26$, or $|L(G)|\left(\left|G^{\prime}\right|-1\right)=26$, which contradicts that $|G|$ has factors 2 and 3 .

This completes the proof.

2.4. Now Theorem 1.1 follows from Lemmas 2.4 and 2.6.

Acknowledgment

We thank the anonymous referee for his or her helpful suggestions.

References

[BCH] Y. Berkovich, D. Chillag, M. Herzog, Finite groups in which the degrees of the nonlinear irreducible characters are distinct, Proc. Amer. Math. Soc. 115 (4) (1992) 955-959, MR1088438 (92j:20006).
[BHM] E.A. Bertram, M. Herzog, A. Mann, On a graph related to conjugacy classes of groups, Bull. London Math. Soc. 22 (1990) 569-575, MR1099007 (92f:20024).
[CHM] D. Chillag, M. Herzog, A. Mann, On the diameter of a graph related to conjugacy classes of groups, Bull. London Math. Soc. 25 (1993) 255-262, MR1209249 (94a:20038).
[CR] C. Curtis, I. Reiner, Methods of Representation Theory, vol. I, Wiley, 1981, MR0632548 (82i:20001).
[FZ] M. Fang, P. Zhang, Finite groups with graphs containing no triangles, J. Algebra 264 (2003) 613-619, MR1981424 (2004f:20051).
[I] I.M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976, MR0460423 (57\#417).
[L1] M.L. Lewis, Derived lengths and character degrees, Proc. Amer. Math. Soc. 126 (7) (1998) 1915-1921, MR1452810 (98h:20011).
[L2] M.L. Lewis, An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math., in press.
[LZ] Z.Q. Lu, J.P. Zhang, On the diameter of a graph related to p-regular conjugacy classes of finite groups, J. Algebra 231 (2) (2000) 705-712, MR1778167 (2001h:05051).
[MW] O. Manz, T. Wolf, Representations of solvable groups, London Math. Soc. Lecture Note Ser., vol. 185, Cambridge Univ. Press, Cambridge, 1993, MR1261638 (95c:20013).
[MQS] A. Moretó, G.H. Qian, W.J. Shi, Finite groups whose conjugacy class graphs have few vertices, Arch. Math. 85 (2) (2005) 101-107, MR2161799 (Review).
[MSW] O. Manz, R. Staszewski, W. Willems, On the number of components of a graph related to character degrees, Proc. Amer. Math. Soc. 103 (1) (1988) 31-37, MR0938639 (89b:20030).
[MWW] O. Manz, W. Willems, T.T. Wolf, The diameter of the character degree graph, J. Reine Angew. Math. 402 (1989) 181-198, MR1022799 (90i:20007).
[P] P.P. Pálfy, Groups with two nonlinear irreducible representations, Ann. Uni. Sci. Budapest. Eötvös Sect. Math. 24 (1981) 181-192, MR0878225 (88a:20018).
[S] G. Seitz, Finite groups having only one irreducible representation of degree greater than one, Proc. Amer. Math. Soc. 19 (1968) 459-461, MR0222160 (36\#5212).
[ZG] G.X. Zhang, Groups with two non-linear irreducible characters, Chinese J. Contemp. Math. 17 (2) (1996) 175184, MR1432498 (98b:20012).
[ZJ] J.P. Zhang, A note on character degrees of finite solvable groups, Comm. Algebra 28 (9) (2000) 4249-4258, MR1772504 (2001f:20020).

[^0]: Supported by the Natural Science Foundation of China, and of City Shanghai (Nos. 10301033, and ZR0614049).

 * Corresponding author.

 E-mail addresses: wuyitao@mail.ustc.edu.cn (Y.-T. Wu), pzhang@sjtu.edu.cn (P. Zhang).

