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Abstract

We promote a study of D-branes of type IIB string on the AdS5 × S5 background. The possible D-branes preserving
of supersymmetries were classified up to and including the fourth order of fermionic variableθ in our previous work [hep-
th/0310228]. In this work we show that our classification is still valid even at the full order ofθ . This proof supplements ou
previous results and completes the classification of D-branes in the type IIB string theory on the AdS5 × S5.
 2004 Elsevier B.V.
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1. Introduction

D-brane is an important key ingredient in studies of non-perturbative aspects of superstring theories[1]. A recent
interest is to investigate D-branes on general curved backgrounds, motivated by recent developments in stud
pp-wave backgrounds. To begin with, the maximally supersymmetric type IIB pp-wave background was found[2].
Then the Green–Schwarz type IIB string theory on this pp-wave was shown to be exactly solvable in the lig
gauge[3,4]. After that D-branes on the pp-wave were intensively investigated[5–10]since one can study direct
them by solving classical equations of motion and quantizing the theory.

The covariant studies of D-branes in type IIB and IIA strings on pp-waves were discussed in[11] and[12],
respectively, by using the method of Lambert and West[13]. Motivated by these developments, we have car
out the covariant analysis for D-branes of type IIB string on the AdS5 × S5 background[14]. The allowed 1/2
supersymmetric (SUSY) D-brane configurations have been classified. Our result is also consistent to that
probe analysis done in[7]. In addition, Penrose limit[15,16]1 of D-branes in the AdS5 × S5 has been discusse
and we have seen that the result after this limit agrees with the possible D-brane configurations in the
pp-wave background. On the other hand, by combining the methods proposed in[18,19], the covariant method i

E-mail addresses: msakaguc@sci.osaka-cu.ac.jp (M. Sakaguchi), kyoshida@post.kek.jp (K. Yoshida).
1 Penrose limit of superalgebra in the AdS5 × S5 background was discussed in[17].
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also applicable to open supermembrane theory on the pp-wave[20,21]and AdS4/7 ×S7/4 [22] backgrounds. Thes
results are related via Penrose limit and are also consistent to the brane probe analysis in eleven dimensions[23].

In this Letter, we continue to study D-branes of type IIB string on the AdS5 ×S5 background[14]. The previous
analysis at the fourth order ofθ is extended to the full order. We show that the higher order terms with resp
θ do not affect the classification of 1/2 SUSY D-branes at the fourth order under the conditions obtained in the
fourth order analysis. This proof completes our classification of D-branes.

The organization of the present Letter is as follows. InSection 2, we introduce our previous result on th
classification of D-branes in type IIB string theory on the AdS5 × S5 background, based on the analysis up to
including the fourth order ofθ . In Section 3, we show that the classification is still valid even at the full order oθ .
Section 4is devoted to a conclusion and discussions.

2. Classification of 1/2 SUSY D-branes

Here we will briefly review our classification result of 1/2 SUSY D-branes of type IIB string theory on th
AdS5 × S5 background[14]. We work in the notation and convention used in[14].

The open-string world-sheetΣ has the one-dimensional boundary∂Σ , and we can impose the Neumann a
Dirichlet boundary conditions on∂Σ . These conditions are represented by

(2.1)∂σ XA ≡ ∂σ XMeA
M = 0 (Neumann condition),

(2.2)∂τX
A ≡ ∂τX

Me
A

M = 0 (Dirichlet condition),

where we have used the overline asAi (i = 0, . . . , p) for the indices of Neumann coordinates and the underlin
Aj (j = p + 1, . . . ,9) for the indices of Dirichlet coordinates.

By using the projection operatorsP±, boundary conditions are imposedon the fermionic variableθ as

(2.3)P±θ = θ, P± = 1

2
(1± M).

The gluing matrixM is described as follows:

M =
{

m ⊗ iσ2, d = 2(mod4), p = −1,3,7,

m ⊗ ρ, d = 4(mod4), p = 1,5,9,

(2.4)m = sΓ A1 · · ·Γ Ad , s =
{

1, for X0: Neumann,
i, for X0: Dirichlet,

ρ =
{

σ1, whenσ = σ3,

σ3, whenσ = σ1.

In [14], a classification of 1/2 SUSY D-branes in the AdS5 ×S5 was given by considering the vanishing conditio
of theκ-variation surface terms up to and including the fourth order inθ .

For thed = 2(mod4) case, the possible configurations of D-branes need to satisfy the following conditio

• The number of Dirichlet directions in the AdS5 coordinates(X0, . . . ,X4) is even, and the same condition
also satisfied for the S5 coordinates(X5, . . . ,X9).

For thed = 4(mod4) case, D-branes satisfying the following condition are allowed:

• The number of Dirichlet directions in the AdS5 coordinates(X0, . . . ,X4) is odd, and the same condition
also satisfied for the S5 coordinates(X5, . . . ,X9).

The D-branes in the AdS5 × S5 are restricted with respect to the directions to which a brane world-volume
extend. All of possible D-brane configurations at the origin are summarized inTable 1. When we consider th
D-branes sitting outside the origin, only a D-instanton is allowed.
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Table 1
The possible 1/2 supersymmetric D-branes in AdS5 × S5 sitting at the origin

D-instanton D-string D3-brane D5-brane D7-brane D9-bran

(0,0) (0,2), (2,0) (1,3), (3,1) (2,4), (4,2) (3,5), (5,3) absent

In the next section we will discuss that the higher order terms with respect toθ do not modify the above
classification of D-branes sitting at and outside the origin.

3. Validity of the classification at full order of θ

Now let us show that our classification at the fourth order ofθ is still valid at the full order ofθ . We shall start
from the covariant Wess–Zumino term[24]:

(3.1)LWZ = −2i

1∫
0

dt ÊAθ̄ΓAσÊ,

whereÊA(X, θ) ≡ EA(X, tθ) andÊα(X, θ) ≡ Eα(X, tθ).
We notice that the surface term coming from theκ-variation is represented by2

(3.2)EA
τ (θ̄ΓA)ασδκZM̂Eα

M̂
,

whereEA
τ denotes theτ -component ofEA

i . Here we should remark that the Nambu–Goto or Dirac–Born–In
part of the action does not produce any surface term under theκ-variation. Then, in order to check our classificati
of D-branes at the full order ofθ , it is sufficient to show the key relations:

(3.3)E
A
τ = ∂τZ

M̂E
A

M̂
= 0,

(3.4)P∓δκZM̂Eα

M̂
= 0 for θ = P±θ

under the conditions denoted inSection 2. When the relations(3.3)and(3.4)are proven, we can easily see that
surface term(3.2)should vanish as

(3.5)EA
τ θ̄P±ΓAσδκZM̂E

M̂
= EA

τ θ̄ΓAσP∓δκZM̂E
M̂

= 0.

Therefore, all we have to do in order to show the validity at the full order is to prove two relations(3.3)and(3.4).
We will prove(3.3)and(3.4)below by using the 1/2 SUSY conditions obtained at the fourth order analysis. Be
going to the detail analysis, we should remark about the D-instanton case. This case has no Neumann co
and so it is sufficient to see(3.3)only in order for the surface term to vanish.

3.1. Proof of (3.3)

Here let us show the relation(3.3). For this purpose, we consider the term∂τX
ME

A

M and rewrite it as

∂τX
ME

A

M = ∂τX
M

[
e
A

M + iθ̄Γ A

(
sinh(M/2)

M/2

)2

[Dθ ]M
]

= ∂τX
M

[
iθ̄Γ AP∓

(
sinh(M/2)

M/2

)2

P∓[Dθ ]M
]

2 We will omit the symbol “hat” ofEA andEα because the shiftθ → tθ does not affect our discussion.
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∂τX

MeB
Mθ̄Γ AP∓

(
sinh(M/2)

M/2

)2

P∓Γ̂Biσ2θ

(3.6)+ i

4
∂τX

MeD
Mθ̄Γ AP∓

(
sinh(M/2)

M/2

)2

P∓ΓBCθω
BC

D
,

where we have introduced the following notation:

[Dθ ]M ≡ λ

2
eB
MΓ̂Biσ2θ + 1

4
ωAB

M ΓABθ.

In the second equality in(3.6), we have used the definition of the Dirichlet boundary condition

(3.7)∂τX
Me

A

M = 0,

and the identities

(3.8)P+M2nP− = P−M2nP+ = 0,

which hold under the conditions obtained in the fourth order analysis.
The first term in the most right-hand side of(3.6)vanishes under the conditions: the even number of Diric

directions are contained in the case ofd = 2(mod4), or the odd number of Dirichlet ones are in thed = 4(mod4)
case. The second term vanishes at the origin because the spin connection vanishes at the origin. That is, the
line of (3.6)vanishes at the origin under the conditions obtained in the fourth order analysis. Therefore, we obtai

(3.9)∂τX
ME

A

M = 0.

In addition, we can easily show the relation

(3.10)∂τ θ
ᾱE

A

ᾱ = 0,

under the fourth order conditions. Thus, we have shown that the relation(3.3) should be satisfied under th
conditions found at the fourth order.

We should note that(3.6) is trivially zero for the D-instanton because it contains no Neumann directions. T
condition(3.6)= 0 is satisfied at and outside the origin. Namely, we have seen that 1/2 SUSY D-instanton has n
modification from higher order terms ofθ . And the consideration for 1/2 SUSY D-branes sitting outside the orig
has been completed.

Finally, we would like to comment on thephysical interpretation of the condition(3.3). The condition(3.3)
implies that the configurations of D-branes are static, becauseit represents that the momenta for Dirichlet directions
are zero. It would be also helpful to consider a flat limit (λ → 0) and to see

(3.11)E
A
τ = ẊA − iθ̄Γ Aθ̇ = 0.

This interpretation should be plausiblebecause D-branes moving in the target space would be less supersymme
rather than 1/2 supersymmetric ones. It is well known that theκ-symmetry in open string theories governs
dynamics of D-branes[25]. This fact may be partially realized in our case as the condition(3.3).

3.2. Proof of (3.4)

We shall prove the relation(3.4)below. In order to show it, we need to prove the relation:

(3.12)δκXMe
A

M = 0.

By definition of theκ-transformation, we have

(3.13)δκEA = δκXMEA
M + δκθ ᾱEA

ᾱ = 0.
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From this equation, we obtain

(3.14)δκXMeA
M = −iθ̄Γ A

(
sinh(M/2)

M/2

)2

[Dθ ]NeN
B eB

MδκXM + EA
ᾱ δκθ ᾱ ≡ HA

BδκXMeB
M + EA

ᾱ δκθ ᾱ.

Here, in order to make the structure clear, let us introduce the following abbreviations:

(3.15)δκXMeA
M ≡ δxA, δκθEA ≡ δθA,

and then(3.14)is written as

(3.16)δxA = HA
BδxB + δθA.

By using this equation recursively, we can derive the following expression:

(3.17)δxA = (H 15 + · · · + 1)ABδθB.

Now let us evaluate each of terms in the r.h.s. of(3.17)and show that all of them are zero in the case thatA is a
Dirichlet direction. Noting that

(3.18)δθB = EB
ᾱ δκθ ᾱ = iθ̄Γ B

(
sinh(M/2)

M/2

)2

δκθ

{ �= 0, B: Neumann,
= 0, B: Dirichlet,

Eq. (3.12)becomes

(3.19)δxA = (H 15 + · · · + 1)ABδθB = 0.

The zero-th order term with respect toH is obviously zero becauseδA
B = 0. The first order termHA

B is written
as

(3.20)HA
B = −iθ̄Γ A

(
sinh(M/2)

M/2

)2

[Dθ ]MeM

B
= −iθ̄Γ AP∓

(
sinh(M/2)

M/2

)2

P∓[Dθ ]MeM

B
.

We can rewrite furthermoreP∓[Dθ ]MeM

B
as

(3.21)P∓[Dθ ]MeM

B
= P∓

(
λ

2
eC
MΓ̂Ciσ2θ + 1

4
ωCD

M ΓCDθ

)
eM

B
= λ

2
Γ̂Biσ2P

∓θ + 1

4
ω

CD

B
ΓCDP±θ.

The first term in the extreme right-hand side vanishes forP±θ = θ . Because the components of spin connec

vanish at the origin, i.e.,ωCD

B
= 0, the termHA

B should vanish at the origin. Using this fact, we find that

(3.22)HA
C1H

C1
C2 · · ·HCn

B = HA
C 1

HC 1C 2
· · ·HC n

B = 0.

Thus, we have shown the useful identity(3.19), and so(3.12).
Now let us return to the proof of(3.4)and consider

(3.23)P∓δκZM̂Eα

M̂
= P∓(

δκXMEα
M + δκθ β̄Eα

β̄

)
,

for the boundary conditionsθ = P±θ . First, we shall consider the first term in r.h.s. of(3.23), which can be
rewritten as

P∓ sinhM
M [Dθ ]MδκXM = P∓ sinhM

M P∓[Dθ ]AeA
MδκXM

(3.24)= P∓ sinhM
M P∓

(
λ

2
Γ̂Aiσ2θ + 1

4
ωBC

A
ΓBCθ

)
eA
MδκXM.
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In the first line of(3.24), we have used the relations,(3.8)and(3.12). The first term in the last line of (3.24) always
vanishes for the conditionsθ = P±θ . The second term is also zero at the origin by usingθ = P±θ . Hence we have
seen that the first term in(3.23)vanishes. Furthermore, we can see that the second term in(3.23)also vanishes
from the relation:

(3.25)P∓ sinhM
M δκθ = P∓ sinhM

M P∓δκθ = 0,

because ofθ = P±θ . Thus, we have shown that the second key relation(3.4).
Finally, we would like to comment on thephysical implication of the condition(3.4). When we consider the fla

limit (λ → 0), (3.4) is reduced to the 1/2 SUSY condition:

(3.26)P∓δκθ = 0.

Hence(3.4)may be a generalization of projection condition to the AdS5 × S5 case.

4. Conclusion and discussion

We have shown that higher order surface terms with respect toθ , which come from theκ-variation, do not affec
the classification obtained in the fourth order analysis. This proof completes our previous classification at th
order. As a matter of course, our proof is obviously applicable to the full order analysis of D-branes in the t
string on the pp-wave background. But the validity of D-brane classification in the pp-wave should be obvi
the Penrose limit[15–17]of D-branes on the AdS5 × S5. Hence, we may say that the fourth order analysis in
covariant formulation is sufficient to classify the possible configurations of D-branes.

In this work, we have considered D-branes of open F- and D-strings, and presented a simple prescri
the vanishing conditions of theκ-variation surface terms. Our scenario can be extended to D-branes of an
Dp-brane in an obvious way. It is also interesting to consider intersecting D-branes (for those on pp
see [26]). We reserve these issues for the next publication. Also, it is not quite trivial in the case of
supermembrane on the pp-wave and AdS4/7 × S7/4 backgrounds because of the dimensionality. We will rep
on these cases in another place soon[27].
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