
p ()
URL: http://www.elsevier.nl/locate/entcs/volume55.html 19 pages

On the Construction of Monitors for Temporal
Logic Properties

M.C.W. Geilen
1

Section of Information and Communication Systems

Faculty of Electrical Engineering

Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract

Temporal logic is a valuable tool for specifying correctness properties of reactive

programs. With the advent of temporal logic model checkers, it has become an

important aid for the veri�cation of concurrent and reactive systems. In model

checking the temporal logic properties are veri�ed against models expressed in the

tool's modelling language. In addition, model-checking techniques are useful to test

actual implementations or to verify models of the system that are too detailed to

be analysed by a model checker, by means of, for instance, simulation.

A tableau construction is an algorithm that translates a temporal logic formula

into a �nite-state automaton that accepts precisely all the models of the formula. It

is a key ingredient to checking satis�ability of a formula as well as to the automata-

theoretic approach to model checking. An improvement to the eÆciency of tableau

constructions has been the development of on-the-
y versions.

In this paper, we present a particular tableau construction for the incremental

analysis of execution traces during test, simulation or model-checking. The automa-

ton forms the basis of a monitor that detects both good and bad pre�x of a particular

kind, namely those that are informative for the property under investigation. We

elaborate on the construction of the monitor and demonstrate its correctness.

1 Introduction

Temporal logic, introduced in [11], is a popular formalism to express dynamic

properties of reactive and concurrent systems. When the (abstraction of the)

system is �nite-state, model checking procedures can be used to verify its cor-

rectness automatically. A tableau construction is an algorithm that translates

a temporal logic formula into a �nite-state automaton (possibly on in�nite

1 Email: M.C.W.Geilen@tue.nl

c
2001 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Geilen

words) that accepts precisely all the models of the formula. The automata-

theoretic approach to model checking ([10,13]) relies on tableau algorithms to

turn a temporal formula into an observer of a model's behaviours. Driven by

practical needs, tableau constructions are being continuously improved and

reimplemented (e.g. [7,3,5]). One such improvement has been the develop-

ment of on-the-
y versions of tableau constructions. In general this means

that the tableau automaton is constructed in a lazy way, generating states

and transitions as they are needed.

Model-checking has gained a reputation for automatic veri�cation of the

correctness of (models of) real-life systems. At the same time it is recognised

that similar techniques can be applied in other ways as well. One may use

them not only for the veri�cation of the formal abstract models, but also for

actual software implementations or detailed simulation models and analyse

their behaviour for the desired correctness properties during run-time. One

particular reason to do so is to counter the e�ects of the state-space explosion,

that makes that traditional veri�cation techniques do not scale up well. An

important aspect of traditional model-checkers is a systematic search through

a system's state space. During the veri�cation of a running system, this control

over the state-space exploration is not available. Backtracking is impossible or

extremely costly. Therefore monitors for the analysis of the behaviour exposed

by the running system, must be able to analyse the behaviour incrementally

and deterministically. Moreover, as cycles go undetected, properties cannot be

inferred directly about in�nite traces. For this reason, run-time model check-

ing requires modi�cations to the veri�cation approach. Such modi�cations are

discussed in this paper.

Contribution of this paper

In this paper we present the (automatic) construction of run-time moni-

tors for properties expressed in linear temporal logic. These monitors allow

the (simultaneous) detection of both (informative) good and bad pre�xes of an

execution and can thus serve to monitor temporal logic properties incremen-

tally and deterministically at run-time. We show that the transition systems

belonging to a tableau automaton on in�nite state sequences, the �nite state

automaton for informative good pre�xes and the �nite state automaton for

informative bad pre�xes (almost) coincide. The automata di�er only in ac-

ceptance conditions and we show how they can be combined into a single

monitor.

Related Work

This work builds on the work of Kupferman and Vardi [9]. Whereas their

main objective is to simplify the model-checking procedure for safety proper-

ties using alternating automata, we study the use of their notion of informative

pre�xes for the construction of tableau automata and run-time monitors in

2

Geilen

particular. We focus on the construction of �nite state and ultimately deter-

ministic �nite state automata. [9] also elaborates on the classi�cation of pre-

�xes and complexity results. Other related work includes the the papers [2,8]

which give a more pragmatic treatment of run-time temporal logic veri�cation.

In [2], the basic unfolding principle of the construction of a tableau automa-

ton is used, the main disadvantage is that formulas are manipulated directly

during simulation, which may not be very eÆcient. Also in [8], the observa-

tion of LTL properties in simulations of System-C descriptions is discussed.

Formulas are interpreted over �nite state sequences and given a three-valued

interpretation. Work on on-the-
y tableau constructions includes [7,4,3].

Overview of the paper

The paper is structured as follows. Section 2 introduces some general

preliminaries and informative pre�xes in particular. In section 3, we discuss a

normal form, based on the notion of informativeness that will form the heart

of the tableau constructions. The tableau construction itself is discussed in

section 4. How to make run-time monitors from these tableaux is the topic of

section 5, where it is also shown to be correct. Section 6 concludes.

2 Preliminaries

Finite and In�nite Words

A word �w = �0�1�2 : : : �n�1 (of length n) over an alphabet � is a sequence

of symbols from �; An in�nite word (!-word) �w = �0�1�2 : : : over an alphabet

� is an in�nite sequence of symbols from �; �w(k) denotes �k and �wk refers

to the tail �k�k+1�k+2 : : :. We use the latter notations for other kinds of

sequences as well. The concatenation of a �nite word �w1 and a �nite or

in�nite word �w2 is denoted as �w1 � �w2. A �nite word �w1 is said to be a pre�x

of a �nite or in�nite word �w2 if there is some word �w3 such that �w2 = �w1 � �w3.

For a �nite word �w, j �wj denotes the number of symbols in the word. For an

in�nite word �w over �, inf(�w) denotes the symbols of � that occur in�nitely

often in �w. A set of words is called a language.

Finite State Automata

Let alphabet � be a set of symbols. A labelled transition system L =

hQ;Q0; V; Æi over � consists of a �nite set Q of locations; a �nite set Q0 � Q

of initial locations; a mapping V : Q! 2� labelling every location with a set

of symbols from the alphabet and a set Æ � Q�Q of edges. A run describes a

path through the transition system. It provides the location of the transition

system at any moment, by recording the sequence of locations. A run of a

labelled transition system L = hQ;Q0; V; Æi is a (�nite or in�nite) sequence �q

of locations �q(k) 2 Q such that for all k � 0 (and k < j�qj�1 if �q is �nite), there

is an edge (�q(k); �q(k + 1)) 2 Æ. In this case we also say that �q is a run from

location �q(0), or a �q(0)-run for short. A run �q is called initial if �q(0) 2 Q0.

3

Geilen

Given a word �w and a run �q of equal length, �q is a run for �w (or �w matches

�q) if 2 for all k � 0, �w(k) 2 V (�q(k)).

A �nite state automaton A = hQ;Q0; V; Æ; fi over � consists of a labelled

transitions system over � and a set f of �nal locations. Automaton A accepts

a �nite word �w (of length n) if it has an initial run �q for �w ending in a �nal

location (�q(n�1) 2 f). A (generalised) B�uchi automaton A = hQ;Q0; V; Æ; F i

over � on the other hand is an automaton on in�nite words and consists of

a labelled transition system over � and a set F of acceptance sets f � Q. A

generalised B�uchi automaton A accepts an in�nite word �w if it has an initial

run �q for �w such that for every f 2 F , inf(�q) \ f 6= ?. For a �nite state

automaton or B�uchi automaton A, the language L(A) of A is the set of all

words that it accepts.

Linear Temporal logic

We use the standard de�nition of Linear Temporal Logic and assume the

existence of a �nite set Prop of atomic propositions. The syntax of LTL is

given by the following grammar (p 2 Prop):

 ::= true j p j : j 1 _ 2 j
 j 1U 2:

We let , ', 0, '0, 1, '1, 2, '2, etcetera range over LTL. We use cl(')

to denote the subformula closure of '. In the remainder we use the duals

of the operators w.r.t. negation (false = :true, '1 ^ '2 = :((:'1) _ (:'2))

and '1V'2 = :((:'1)U(:'2))) to push negations inward until they occur

only in front of atomic propositions, and write formulas in positive normal

form. We shall identify formulas with the corresponding formulas in positive

normal form 3 . Moreover, if � is a set of formulas, we write
V
� to denote the

conjunction of these formulas and we write �� j= � to denote that �� j=
V
�.

The language P' of (in�nite) state sequences that satisfy the formula ' is

referred to as the property expressed by LTL formula '.

Certain properties can be quali�ed as safety properties (stating that `some-

thing bad will never happen') or liveness properties (stating that `something

good will eventually happen'). A property P is a liveness property if for every

�nite state sequence �� there exists some in�nite state sequence ��0 such that

�� � ��0 2 P (although other de�nitions are possible [1,12]). A property is a

safety property if every in�nite state sequence �� =2 P , has a pre�x ��0 such

that ��0 � ��00 =2 P for every state sequence ��00. The latter kind of pre�x is called

a bad pre�x ; a pre�x �� is called a bad pre�x for a property P if there is no

state sequence ��0 such that �� � ��0 2 P . A good pre�x for a property P , on the

other hand, is a pre�x �� such that for every ��0, �� � ��0 2 P [9].

2 As locations are labelled with sets of symbols, a single run corresponds in general to a

set of words.
3 Using cl(:) = :cl() rather than cl(:) = : [cl() to make cl insensitive to a

formula's representation.

4

Geilen

De�nition 2.1 [9] A �nite word �u 2 �� is called a good pre�x for the language

L � �! i� for every in�nite word �w 2 �!, �u � �w 2 L. Similarly, �u is called a

bad pre�x for the language L i� for every in�nite word �w 2 �!, �u � �w =2 L. 2

This paper deals with the veri�cation of safety properties expressed by

LTL formulas, however, not all safety formulas are alike. In [9], safety formulas

are classi�ed into three kinds, the intentionally safe, the accidentally safe and

the pathologically safe, depending on the kinds of pre�xes their properties

possess. A pre�x �� is called informative for a formula if it \tells the whole

story"[9] of why the formula holds for every in�nite state sequence of which

�� is a pre�x. This is made precise below. Intentionally safe formulas are

formulas of which every bad pre�x is informative (e.g. 2p), an accidentally

safe formula is a safety formula that is not intentionally safe, but of which

all state sequences that violate it, do have some informative bad pre�x (e.g.

2(p _ (
q ^
:q))). Pathologically safe safety formulas are formulas that

have computations that violate it without any informative bad pre�x (e.g.

((2(q _23p)) ^ (2(r _ 23:p))) _2q _ 2r, examples from [9]).

A set of formulas is said to be locally informative if it is `informative' in the

sense that every compound formula in the set is supported by one or more of

its direct subformulas. Together the formulas constitute an explanation why

a requirement will hold. If a set contains the formula '1 ^ '2, then it must

also contain both '1 and '2 to demonstrate this. Similarly if a set contains

'1U'2 then it must contain '1 or '2 as well (this only pertains to the current

state, not containing '2 leads to extra constraints on the formulas that hold

at the following moment). In the remainder of the paper we let � range over

sets of LTL formulas.

De�nition 2.2 A set � of formulas is locally informative if

� false =2 �;

� if '1 _ '2 2 � then '1 2 � or '2 2 �;

� if '1 ^ '2 2 � then '1 2 � and '2 2 �;

� if '1U'2 2 � then '1 2 � or '2 2 �;

� if '1V'2 2 � then '2 2 �.

Local informativeness constrains the formulas that are required to hold for

a particular state sequence. In the case of Until or Release operators however,

constraints may also need to be imposed on the remainder of the state sequence

(for instance if the set contains '1U'2 and '1, but not '2). If the truth of

an Until or Release formula follows directly from the other formulas in the

set, then such a set is said to be trivial for that Until or Release formula (if

the set contains both '1U'2 and '2, or both '1V'2 and '1). It is said to

be non-trivial otherwise. (Non-)trivial sets will play an important role in the

tableau constructions, because they pose constraints on the remainder of the

state sequence, and thus determine `temporal informative successors'.

5

Geilen

De�nition 2.3 A set � of formulas is non-trivial for

� the Until formula '1U'2, if '1U'2 2 � and '2 =2 �, let Next('1U'2) =

'1U'2;

� the Release formula '1V'2, if '1V'2 2 � and '1 =2 �, let Next('1V'2) =

'1V'2;

� the formula
', if
' 2 �, let Next(
') = '. 2

A set �0 of formulas is a temporally informative successor of the set � of

formulas if for every formula such that � is non-trivial for , �0 contains

Next(). Another way to formulate temporal informativeness, is to say that

for �0 to be a temporally informative successor of �, it must contain at least

certain formulas that are determined by �. This is captured by the following

de�nition.

De�nition 2.4 Let � be a set of formulas. Then the set Next(�) of temporal

informativeness constraints is the set :

fNext() j 2 � such that � is non-trivial for g:

�0 is a temporally informative successor of � if Next(�) � �0. This is denoted

as �! �0. 2

In some of the proofs we use Next(�1;�2) to denote fNext() j 2

�2 such that �1[�2 is non-trivial for g. We have, for instance, that fpUq; pg

! fpUq; qg and fpUq; qg ! ?, but not fpUq; pg ! fpg and not f
qg ! fpg.

We can now de�ne the notion of an informative good (bad) pre�x.

De�nition 2.5 ([9] 4) Let �� be a �nite state sequence. �� is informative for '

i� there exists a �nite sequence IS 2 (2LTL)� of sets of formulas, say of length

n+ 1 � j�� j+ 1, such that

� ' 2 IS(0);

� IS (n) = ?;

� for all 0 � i < n and 2 IS(i),

� if is an atomic proposition p, then p 2 ��(i);

� if is a negated atomic proposition :p, then p =2 �� (i);

� IS(i) is locally informative;

� IS(i+ 1) is a temporally informative successor of IS(i). 2

We call such a sequence IS an informative sequence. If such an informative

sequence exists, it tells us why ' holds for any extension of the pre�x �� . It

indicates what formulas hold at what moment of the pre�x and why. Since

IS(i) is at some point empty, this reasoning is complete and thus applies to

any extension of the pre�x. For instance, if 1 _ 2 2 IS (i), then by the

4 we rephrase the de�nition of [9] in terms of our notions of local and temporal informa-

tiveness.

6

Geilen

informativeness requirements, 1 2 IS(i) or 2 2 IS(i), which tells us that

 1 _ 2 holds for any extension of �� i (the part of �� from state i to the end)

since at least one of 1 and 2 holds for any extension of �� i. If 1U 2 2 IS(i),

 1 2 IS(i), and 2 =2 IS (i), then according to temporal informativeness,

 1U 2 2 IS(i + 1). This signi�es that 1U 2 must hold for any extension of

�� i, because 1 holds for any extension of �� i and 1U 2 holds for any extension

of �� i+1. Since IS (n) = ?, such a reasoning does not depend on any part of

the state sequence beyond position n. It is complete and \tells the whole

story"[9]. Thus, �� is an informative good pre�x for ' if it is informative for '

and �� is an informative bad pre�x for ' if it is informative for :'.

3 Informative Normal Form

(On-the-
y) tableau constructions for linear temporal logic are often intro-

duced using a rewriting procedure that rewrites formulas into `disjunctive

temporal normal form' in order to separate constraints on the current state

from constraints upon the rest of the state sequence [7,4,3]. In this paper we

introduce an on-the-
y tableau construction based on informativeness. No-

tice that although this construction is not identical, it closely resembles such

constructions.

In correspondence with the disjunctive temporal normal form of traditional

on-the-
y tableau constructions we de�ne an `informative normal form'.

De�nition 3.1 A set � of sets of LTL formulas is in informative normal form

if every set in � is locally informative.

We now introduce a number of rewrite rules, that transform any set into

normal form. In the rewriting rules we represent the set of sets of formulas as

a set of pairs hNew ;Oldi (we call them terms) of sets of formulas, in order to

discriminate the formulas that have been processed (Old) from the formulas

that still need to be processed (New). The rules are presented in �gure 1,

which is interpreted as follows. Consider a set � [fhNew [f g;Oldig of

terms. The row in the table in which the Case �eld coincides with the shape

of the LTL formula determines how the set is rewritten.

De�nition 3.2 The (informative) normal form procedure starts with a set �

of formulas. It maintains a set �n of terms hNew;Oldi that is initialised to

�0 = fh�;?ig. Then as long as some reduction rule of table 1 applies, a rule

is applied to �n to obtain �n+1. The procedure terminates when no more

reduction rules apply to �k for some k � 0. The result of the procedure is the

set fOld j h?;Oldi 2 �kg.

It is easy to show that the procedure terminates and that all terms in �k

are then of the form h?;�ii for some set �i of formulas. Depending on the

order in which terms from � and formulas from New are selected, di�erent

normal forms may be obtained. In the sequel, we assume the existence of a

7

Geilen

Case � [fhNew [f g;Old ig reduces to:

1 = false �

2 = true � [fhNew ;Old [f gig

3 = p � [fhNew ;Old [f gig

4 = :p � [fhNew ;Old [f gig

5 = 1 _ 2 � [fhNew [f 1g;Old [f gi; hNew [f 2g;Old [f gig

6 = 1 ^ 2 � [fhNew [f 1; 2g;Old [f gig

7 =
 0 � [fhNew ;Old [f gig

8 = 1U 2 � [fhNew [f 2g;Old [f gi; hNew [f 1g;Old [f gig

9 = 1V 2 � [fhNew [f 1; 2g;Old [f gi; hNew [f 2g;Old [f gig

Table 1

Local informativeness procedure

deterministic procedure NF that computes a particular normal form for any

given set of formulas. We use NF (') to denote NF (f'g).

Lemma 3.3 Let � be a set of LTL formulas. Then, NF (�) is in informative

normal form and furthermore, if �� is a state sequence, such that �� j= �, then

there exists a set �0
2 NF (�) such that (i) �� j= �0, (ii) ��1 j= Next(�0) and

(iii) for every Until formula = '1U'2 2 � such that �� j= '2, '2 2 �0.

Proof. The fact that �0 is locally informative can be shown by an invariant

on the sets �n stating that the terms hNew ;Oldi in �n are locally informative

w.r.t. the formulas in Old . (This means that the rules of local informativeness

are interpreted as: `false =2 Old ' and `if 2 Old , then : : : 2 Old [New '.)

When the procedure ends, all formulas are in the Old sets and the sets in

NF (�) are locally informative. The second part is proved using an invariant

saying that there exists a term hNew ;Oldi 2 �n such that (i) �� j= New [Old ,

(ii) ��1 j= Next(New ;Old) and (iii) for every Until formula = '1U'2 2 Old

such that �� j= '2, '2 2 �0. 2

Example

Consider the LTL formula 3p = trueUp. In terms of the normal form pro-

cedure, the rewriting process of trueUp proceeds as follows (we write �1) �2

to express that �2 is obtained from �1 by one or more steps in the procedure).

fhftrueUpg;?ig)

fhfpg; ftrueUp; gi; hftrueg; ftrueUpgig)

fh?; ftrueUp; pgi; h?; ftrueUp; truegig

8

Geilen

New := NF ('), Q := ?, Q0 := New, Æ := ?

while New 6= ? do

Let � 2 New

New := Newnf�g

Q := Q [f�g

for every �0
2 NF (Next(�)) do

Æ := Æ [f(�;�0)g

if �0
=2 Q then New := New [f�0

g

od

od

Fig. 1. Algorithm for constructing locations and edges of the on-the-
y tableau

automaton

The normal form suggests that there are two ways to demonstrate that trueUp

holds. Either demonstrate that p holds, or demonstrate that true holds (triv-

ial) and (since Next(ftrueUp; trueg) = ftrueUpg) that trueUp holds at the

next moment.

Complexity

One can show that the worst-case complexity of the normal form proce-

dure NF (�) is O(2n) where n =
P

 2� j j. Since at every step,
P

 2New
j j

decreases for the new terms that replace hNew ;Oldi in the reduction and it

is replaced by at most two new terms. If we further know that every 2 � is

an element of cl(') for some formula ', then it follows that the complexity of

NF is O(2j'j
2

). In that case however, a clever selection of the formula used for

reduction (select the largest formulas �rst) reduces the complexity to O(2j'j).

This can be seen by considering that on any path leading from the initial term

hNew ;?i to a �nal term h?;Oldi every formula 2 cl(') can be used for

reduction at most once, hence such a path is of length at most j'j and the

total number of reductions applied is O(2j'j).

4 Tableau Construction

4.1 The tableau algorithm

The construction of a tableau automaton for an LTL formula ', is based upon

the normal form introduced in the previous section. The construction is closely

related to the construction of [7]. Next formulas however are represented

implicitly rather than explicitly. The number of formulas that may occur in

the sets of the normal form terms is limited to syntactic subformulas of '.

The tableau automaton of an LTL formula ' is computed in the following

way.

9

Geilen

�

�

�

Fig. 2. Example tableau automaton of the formula 23p

De�nition 4.1 Let ' be an LTL formula. The tableau automaton A' of '

is the automaton hQ;Q0; V; Æ; F i over the alphabet 2
Prop , where

� The locations (Q), initial locations (Q0) and transitions (Æ) are computed

by the procedure depicted in Figure 1. The locations q 2 Q are sets of LTL

formulas;

� V (q) = f� 2 2Prop j 8p2Propp 2 q) p 2 �;:p 2 q) p =2 �g. That is,

a location q is labelled with all states that are consistent with the atomic

propositions and the negated atomic propositions in q;

� F contains for every Until formula = '1U'2 2 cl('), a set f = fq 2 Q j

 2 q) '2 2 qg.

Example

If we take the formula 23p = falseV (trueUp) and apply the tableau

algorithm, we arrive at the automaton represented in Figure 2. Only the

atomic propositions in the locations have been depicted. Location 1 is the set

f23p;3p; pg and location 2 is the set f23p;3p; trueg. Initial locations are

represented by a small arrow not originating from any location leading to the

initial location. There is only one acceptance set f3p, the locations of which

are denoted with an extra circle around them.

Complexity

As all locations of the tableau automaton are subsets of cl('), there are at

most 2j'j di�erent locations. For every location �, the normal form procedure

is applied on Next(�). The procedure was shown to be O(2j'j) in section 3.

Thus the complexity of the tableau algorithm is 2O(j'j).

4.2 Correctness

Here, we give a brief sketch of the proof that the tableau construction is cor-

rect, i.e. that for any LTL formula ', the tableau automaton of ' accepts

precisely those state sequences that satisfy '. The algorithm based on infor-

mativeness constraints is very close to the algorithm of [7] and also the proof

resembles those of [4,7,3].

Theorem 4.2 Let ' be an LTL formula and let A' be the corresponding

tableau automaton. Then for every state sequence ��, A' accepts �� i� �� j= '.

10

Geilen

This theorem follows from soundness (every state sequence accepted by A'
satis�es ') and completeness (every state sequence satisfying ' is accepted by

A') of the construction as expressed by lemmas 4.4 and 4.7 below. In the

remainder of this section, we assume that A' = hQ;Q0; V; Æ; F i is the tableau

automaton of the formula '.

Soundness

We demonstrate that the automaton accepts only state sequences that

satisfy '. The main lemma is the following, claiming that any formula in a

particular location is dealt with correctly.

Lemma 4.3 Let �� be a state sequence, let �q be a run of A' matching �� and

let 2 �q(0). Then �� j= .

Proof. By induction on the structure of . We only show the case related

to the Until formula. If '1U'2 2 �q(0), then it can be shown by the reduc-

tion of '1U'2 in the normal form procedure and by the construction of the

automaton, that '1U'2 propagates at least until some location contains '2

(such a location is eventually reached since the run satis�es the acceptance

condition related to f'1U'2), by local informativeness, up to that point every

locations contains '1. Thus, there is some k, such that '2 2 �q(k) and for

every 0 � m < k, '1 2 �q(m). By the induction hypothesis it follows that

�� j= '1U'2. 2

One can furthermore easily show that every initial location contains the

formula '. From this and lemma 4.3, it follows immediately that every state

sequence accepted by the tableau automaton A' satis�es '.

Lemma 4.4 If A' accepts the state sequence ��, then �� j= '.

Completeness

Here we demonstrate that every state sequence that satis�es ' is accepted

by the tableau automaton. The normal form procedure guarantees that if a

state sequence �� satis�es a formula , then there is a term in the normal form

of , that is satis�ed by ��. Since the remainder of the state sequence satis�es

the formulas in the corresponding Next set, there is a transition that can be

taken by the automaton. This argument can be repeated to construct a run

of the automaton for ��. Moreover, one can show that the successor location

can be chosen so as to satisfy the acceptance conditions.

The following lemma is the crux to the incremental construction of an

accepting run for any state sequence �� that satis�es '.

Lemma 4.5 Let q 2 Q and let �� be a state sequence such that �� j= Next(q).

Then there exists an edge (q; q0) 2 Æ such that (i) �� j= q
0, (ii) ��1 j= Next(q0)

and (iii) for every Until formula = '1U'2 2 Next(q) such that �� j= '2,

q
0
2 f .

11

Geilen

The lemma follows straightforwardly from lemma 3.3 and the construc-

tion of the tableau automaton. Similarly we can use lemma 3.3 to prove the

following lemma that tells us how to select an appropriate initial location to

start the construction of the run using the previous one.

Lemma 4.6 Let �� be a state sequence such that �� j= '. Then there is some

q 2 Q0 such that �� j= q and ��1 j= Next(q).

From lemma 4.6 and repeatedly applying lemma 4.5 to construct an ac-

cepting run, it follows that A' accepts all state sequences that satisfy '.

Lemma 4.7 If the state sequence �� j= ', then A' accepts ��.

5 Automata for Pre�xes

In this section we discuss how the tableau method can be adapted to the

analysis of pre�xes of state sequences. It is possible to e�ectively construct

an automaton on �nite words that accepts all bad (good) pre�xes for a given

formula [9]. We concentrate however on automata that recognise informa-

tive pre�xes only, for two reasons. Firstly, the construction of automata for

all bad pre�xes is doubly exponential in the length of the formula, whereas

the construction of automata for informative pre�xes is only singly exponen-

tial [9]. Secondly, the informative bad pre�xes can be considered as the only

proper counterexamples, since they demonstrate why the formula does not

hold. Other bad pre�xes depend on some peculiarity of the formula. For ex-

ample, if is a formula that is not satis�able, then every �nite state sequence

is a bad pre�x of the formula 3 , but this �nite state sequence itself provides

no information why the formula does not hold.

The idea behind the construction is very simple. One creates the on-the-

y tableau automaton of the formula ', but interprets it as an automaton on

�nite words. The original acceptance conditions can be forgotten, since they

refer to in�nite state sequences. The automaton's transition system however,

has the following property. If a �nite state sequence �� is an informative bad

pre�x, then there is no �nite run on the transition system that matches it.

If on the other hand, it is an informative good pre�x, then there is a run to

the location ?. To be precise, for any extension of the pre�x, longer than the

pre�x itself, there is a matching run, the last location of which is ?. As a

consequence, if an automaton does not have a location ? then the formula

does not have any informative good pre�xes.

De�nition 5.1 Let A = hQ;Q0; V; Æ; F i be an !-automaton over the alpha-

bet �. Then [A'] denotes the automaton hQ;Q0; V; Æ; Qi on �nite words over

the same alphabet, i.e. the same automaton interpreted as a safety automa-

ton (all locations are �nal) on �nite words. hA'i denotes the automaton

hQ;Q0; V; Æ; Q \ f?gi on �nite words over �, i.e. the same automaton inter-

preted as an automaton on �nite words with the location ? (if it exists) as its

12

Geilen

� � �

� � �

� � �

�

Fig. 3. Automaton for pre�xes of the formula pVq

only �nal location.

Note that since the automata [A'] and hA'i for non-bad and good pre�xes

respectively, are slight modi�cations to the B�uchi tableau automaton, the

complexity of their construction is the same, i.e. 2O(j'j).

Example

Figure 3 shows the labelled transition system of the automaton ApVq.

The state sequence fqgfqgfp; qg is an (informative) good pre�x of pVq. The

corresponding run to the location ? (the right location) is fpVq; qgfpVq; qg

fpVq; p; qg?. The run itself forms the informative sequence that establishes

this. An informative bad pre�x is fqgfpg. It can be veri�ed that this sequence

has no matching �nite initial run on the transition system. A corresponding

informative sequence demonstrating that the pre�x is informative for :(pVq)

is f:(pVq);:pgf:(pVq);:qg?. The informative sequence can be interpreted

as follows. It claims (:(pVq) 2 IS(0)) that there is no matching run starting

from any location containing the formula pVq (and all initial locations of the

transition system contain it). The reason for this is that the �rst state of the

pre�x does not satisfy p (:p 2 IS (0)) and the remainder does not satisfy pVq

(:(pVq) 2 IS (1)). There is no matching run starting from the middle loca-

tion, since it contains p. Any successor location of the left location contains

pVq again. According to the informative sequence, a run from such a succes-

sor location (left and middle) for the remainder fpg does not exist since the

second state of the pre�x does not satisfy q (:q 2 IS(1)). This immediately

rules out both locations as possible locations for a matching run and thus a

matching run does not exist.

5.1 Correctness

The above example illustrates that for an informative bad pre�x, there is no

matching run on the tableau automaton. Vice versa, if there is no matching

run for a pre�x on an automaton [A'], then the pre�x is informative for :'.

This relationship between a �nite state sequence being an informative bad

pre�x and the existence of a matching run is formalised in theorem 5.6 of

this section. The example also showed the relationship between good pre�xes

and �nite runs on the tableau automaton ending in the location ?. Every

�nite run on hA'i ending in ? constitutes an informative sequence matching

13

Geilen

informative good pre�xes. Conversely, for any informative good pre�x such a

run can be found. This is demonstrated with theorem 5.8. For the proof of

correctness, we extend the notion of bad pre�x to sets of formulas and to sets

of such sets (such as the normal forms NF).

De�nition 5.2 A �nite state sequence �� is an informative bad pre�x of a

set � of formulas if there is some 2 � such that �� is an informative bad

pre�x for or there is some 2 Next(�), such that �� 1 is an informative bad

pre�x for . It is an informative bad pre�x for a set � of such sets, if it is an

informative bad pre�x for every � 2 �.

Automaton for Bad Pre�xes

The normal form procedure preserves informative bad pre�xes. If a pre-

�x is informatively bad for a normal form of some formula, then it is also

informatively bad for the formula itself.

Lemma 5.3 If �� is an informative bad pre�x for NF (�), then �� is an infor-

mative bad pre�x for
V
�.

For the proof, see appendix A. Next follows the main lemma to show that

pre�xes for which there is no matching run on the tableau automaton starting

from some location �, are informatively bad for the formula corresponding to

the location �.

Lemma 5.4 Let A' be a tableau automaton, let � be a location of A' and let

�� be a �nite state sequence for which there is no run on A' starting from �.

Then �� is an informative bad pre�x for �.

Proof. By induction on the length of the pre�x �� .

� If j�� j = 1 then there is some 2 �, either an atomic proposition or the

negation of an atomic proposition, such that �� (0) 6j= and thus f: g? is

an informative sequence showing that �� is an informative bad pre�x for �.

� If j�� j > 1 then either

� the �rst symbol does not match the location �, which is similar to the

�rst case, or

� the �rst symbols matches the location �, but there is no successor location

for which there is a run. By induction we have that �� 1 is an informative

bad pre�x for every successor location �i, and thus for NF (Next(�)), and

by lemma 5.3 it is an informative bad pre�x for
V
Next(�). From this it

follows that �� is an informative bad pre�x for �.

2

The following lemma is the main ingredient to show the converse, i.e. that

informative bad pre�xes have no matching run on the tableau automaton.

Lemma 5.5 Let 2 � and let IS be an informative sequence demonstrating

: for �� . Then there is no run for �� on [A'] starting from �.

14

Geilen

This lemma is proved by induction on the length of �� and the structure

of . The proof is in appendix A. Now we can show that our tableau au-

tomata accept all �nite sequences except the ones that are informative for :'

(Kupferman and Vardi show a similar result for alternating automata in [9]).

Theorem 5.6 Let ' be an LTL formula and let A' be a tableau automaton

for '. Then [A'] accepts �nite state sequence �� i� �� is not an informative bad

pre�x of '.

Proof. ()) Assume towards a contradiction that �� is an informative bad

pre�x for '. Any initial run starts from a location � such that ' 2 �. But

by lemma 5.5 such a run cannot exist.

(() Again by contradiction. Assume that �� is not accepted by [A']. Then

by lemma 5.4, for every � 2 NF (f'g) (the initial locations of the automaton),

�� is an informative bad pre�x for �. Thus by lemma 5.3, �� is an informative

bad pre�x for '. 2

Automaton for Good Pre�xes

Next, we show that informative good pre�xes are recognised by the au-

tomaton hA'i.

Lemma 5.7 Let � be a set of formulas and let IS be an informative sequence

with � � IS (0). Then there is some �0
2 NF (�) such that �0

� IS (0) and

Next(�0) � IS(1).

The proof is given in appendix A. As a consequence, a �nite state sequence

is an informative good pre�x i� there is a matching run leading to the location

?.

Theorem 5.8 Let A' be the on-the-
y tableau automaton of the formula '.

A �nite state sequence �� is an informative good pre�x of ' i� hA'i accepts �� .

Proof. ()) Let IS be an informative sequence with ' 2 IS(0). By lemma

5.7, there is some � 2 NF (') such that � � IS(0) and Next(�) � IS (1).

Repeating the argument, we can show that there is a run �q such that �q(k) �

IS(k) for all 0 � k � jIS j. Thus �q(jIS j) = ?.

(() Let �q be such a run. Then �q itself is an informative sequence for ' since

all locations are locally informative and all edges are temporally informative.2

5.2 Practical Use of the Pre�x Automata

We have seen how we can construct �nite state automata that recognise the

informative good and bad pre�xes of a particular formula '. It has been

shown that both automata share the same transition system but di�er only in

acceptance conditions. On the basis of these automata one can construct an

observer that is linked to a running model in such a way that it can evaluate its

15

Geilen

atomic propositions de�ned as boolean properties of the model and is run in

lock step or alternatingly with the (relevant) transitions of the model. As the

monitor is made deterministic (possibly using an on-the-
y determinisation),

the analysis of the increasing run can be performed incrementally. Detection

of informative good or bad pre�xes can be reported, possibly halting the

execution of the model.

If an execution is halted without encountering either of both conditions, the

encountered pre�x is inconclusive w.r.t. the formula '. Yet, further analysis

of the pre�x might still reveal interesting (statistical) information. How this

information may be obtained however, requires further study. One would need

to know what subformulas of ' have been informatively ful�lled and possibly,

how many times.

6 Conclusions and Future Work

The use of temporal logic model-checking techniques on running implementa-

tions or simulations of detailed system models calls for the on-the-
y incre-

mental analysis of �nite execution traces. In this paper we have shown how

to construct from a linear temporal logic formula, a �nite state automaton

that can act as a monitor to perform this type of analysis for the detection of

(informative) satisfaction as well as violation of the formula by a �nite execu-

tion of the system. These �nite state automata can be determinised (possibly

on-the-
y as well), to remove their non-determinism.

We are further investigating the use of similar techniques to construct run-

time monitors (in the form of timed-automata) for real-time temporal logic.

We will further implement the technique in a simulator for concurrent systems

called SHESim[6].

References

[1] Alpern, B. and F. Schneider, De�ning liveness, Information processing letters

21 (1985), pp. 181{185.

[2] Can�eld, W., E. Emerson and A. Saha, Checking formal speci�cations under

simulation, in: Proceedings International Conference on Computer Design.

VLSI in Computers and Processors (1997), pp. 455{460.

[3] Daniele, M., F. Giunchiglia and M. Y. Vardi, Improved automata generation for

linear temporal logic, in: N. Halbwachs and D. Peled, editors, Computer Aided

Veri�cation: 11th International Conference Proceedings, CAV'99, Trento, Italy,

July 6-10, 1999 (LNCS 1633) (1999), pp. 249{260.

[4] D'Souza, D., \On-the-Fly Veri�cation for Linear Time Temporal Logic,"

Master's thesis, SPIC Mathematical Institute, Madras (1997).

16

Geilen

[5] Etessami, K. and G. Holzman, Optimising b�uchi automata, in: Proceedings of

the 11th Int. Conf. On Concurrency Theory (CONCUR'2000) (2000), pp. 153{

167.

[6] Geilen, M., J. Voeten, P. van der Putten, L. van Bokhoven and M. Stevens,

Object-Oriented modelling and speci�cation using SHE, Journal of Computer

Languages, special issue for VFM'99 (to be published) (2000).

[7] Gerth, R., D. Peled, M. Vardi and P. Wolper, Simple on-the-Fly automatic

veri�cation of linear temporal logic, in: Proc. IFIP/WG6.1 Symp. Protocol

Speci�cation Testing and Veri�cation (PSTV95), Warsaw Poland (1995), pp.

3{18.

[8] Ho�mann, D., J. Ruf, T. Kropf andW. Rosenstiel, Simulation meets veri�cation

- checking temporal properties in SystemC, in: F. Vajda, editor, Proceedings of

the 26th EUROMICRO Conference - Volume I, Maastricht, the Netherlands,

Sept 5-7, 2000 (2000), pp. 435{438.

[9] Kupferman, O. and M. Y. Vardi, Model checking of safety properties, in:

N. Halbwachs and D. Peled, editors, Computer Aided Veri�cation: 11th

International Conference Proceedings, CAV'99, Trento, Italy, July 6-10, 1999

(LNCS 1633) (1999), pp. 172{183.

[10] Lichtenstein, O. and A. Pnueli, Checking that �nite state concurrent programs

satisfy their linear speci�cation, in: Proc. Of Twelfth Annual ACM Symposium

on Principles of Programming Languages (1985), pp. 97{107.

[11] Pnueli, A., The temporal logic of programs, in: Proc. Of the 18th Annual

Symposium on Foundations of Computer Science (1977), pp. 46{57.

[12] Sistla, A., Safety, liveness and fairness in temporal logic, Formal Aspects of

Computing 6 (1994), pp. 495{511.

[13] Vardi, M. and P. Wolper, An Automata-Theoretic approach to automatic

program veri�cation, in: Proc. Of Logic in Computing Science, 1986.

A Proofs

Proof of lemma 5.3

Lemma 5.3 states that informativeness of pre�xes is preserved by the nor-

mal form construction. To prove it, we need to de�ne when a pre�x is consid-

ered to be informative for the artifacts used during the normal form procedure.

De�nition A.1 A �nite state sequence �� is an informative bad pre�x for a

term hNew ;Oldi if there is some 2 New [Old such that �� is an informative

bad pre�x for or there is some 2 Next(New ;Old) such that �� 1 is an

informative bad pre�x for .

De�nition A.2 A �nite state sequence �� is an informative bad pre�x for a

set � of terms if �� is an informative bad pre�x for every hNew ;Oldi 2 �.

17

Geilen

Two informative sequences can be combined into a single new one, simply

by taking the union of the corresponding sets. If IS 1 and IS 2 are both infor-

mative sequences, then (IS 1 [IS 2)(k) = IS 1(k) [IS 2(k) for all k � 0 (taking

IS(k) = ? if k > jIS j). It is easy to see that if IS 1 and IS 2 are informative

sequences for �� , then IS 1 [IS 2 is an informative sequence for �� as well.

The next lemma shows that reductions in the normal form procedure pre-

serve informativeness of bad pre�xes.

Lemma A.3 Let pre�x �� be an informative bad pre�x for �0 and let �) �0

in the normal form procedure. Then �� is an informative bad pre�x for �.

Proof. One can prove this for the reduction cases individually, which is a

tedious case analysis. We only show case 5. � = �00
[fhNew[f 1_ 2g;Oldig

and �0 = �00
[fhNew [f 1g;Old [f 1 _ 2gi; hNew [f 2g;Old [f 1 _

 2; gig. If �� is an informative bad pre�x of �0, it is a bad pre�x of both

hNew [f 1g;Old [f 1 _ 2gi and hNew [f 2g;Old [f 1 _ 2; gi. If IS is

an informative sequence demonstrating this (both), then IS [f:(1 _ 2)g

is an informative sequence for hNew [f 1 _ 2g;Oldi. From this it follows

straightforwardly that �� is an informative bad pre�x for � (note that moving

 1 _ 2 to Old does not add any informativeness constraints). 2

From this it follows immediately that the entire normal form procedure

preserves informativeness of bad pre�xes.

Lemma A.4 (Lemma 5.3) If �� is an informative bad pre�x for NF (�),

then �� is an informative bad pre�x for
V
�.

Proof of lemma 5.5

This lemma says that an informative bad pre�x cannot have a run on the

on-the-
y tableau automaton.

Lemma A.5 (Lemma 5.5) Let 2 � and let IS be an informative sequence

demonstrating : for �� . Then there is no �-run for �� on [A'].

Proof. By induction on the length of �� and the structure of . We show

the case = 1U 2, then either 2 2 � or 1 2 � and 2 �q(1) for any

appropriate run �q. Since :(1U 2) 2 IS (0), : 2 2 IS (0) and : 1 2 IS(0) or

: 2 IS(1). That such a run �q cannot exist follows by induction. Notice that

the latter case can only occur if j�� j > 1 since IS(j�� j) = ?, i.e. : cannot be

postponed forever. 2

Proof of lemma 5.7

This lemma suggests how informative sequences can be used to construct

a run to the empty location. The lemma is proved using an invariant on the

normal form procedure, introduced in the next de�nition.

18

Geilen

De�nition A.6 In the following lemma, the predicate Inv(�; IS) holds i�

there is some term hNew ;Oldi 2 � such that New [Old � IS (0) and

Next(New ;Old) � IS (1).

Inv(�; IS) states that IS is informative for at least one of the terms in

� and thus for the set itself. We show that Inv(�; IS) is invariant under

reductions in the normal form procedure.

Lemma A.7 Let �) �0, let IS be an informative sequence and assume that

Inv(�; IS) holds, then also Inv(�0
; IS) holds.

Proof. By case analysis of the procedure. We only show case 9. � = �00
[

fhNew [f 1V 2g;Oldig and �0 = �00
[fhNew [f 1; 2g;Old [f 1V 2gi;

hNew [f 2g;Old [f 1V 2gig. If there is some hNew 0
;Old 0i 2 �00 such that

New 0
[Old 0 � IS (0) and Next(New 0

;Old 0) � IS(1) then the result is trivial.

Otherwise, the term satisfying the property is hNew [f 1V 2g;Oldi. Then

 1V 2 2 IS(0) and by local informativeness 2 2 IS(0).

� If 1 2 IS(0) then New[f 1; 2g[Old[f 1V 2g � IS(0) and Next(New[

f 1; 2g;Old [f 1V 2g) � Next(New [f 1V 2g;Old) � IS(1).

� If 1 =2 IS (0) then New [f 2g [Old [f 1V 2g � IS(0) and Next(New [

f 2g;Old [f 1V 2g) � Next(New [f 1V 2g;Old) [f 1V 2g � IS (1)

since 1V 2 2 IS (1) by temporal informativeness.

2

From the previous lemma it follows directly that the following holds for

the entire normal form procedure.

Lemma A.8 (Lemma 5.7) Let � be a set of formulas and let IS be an in-

formative sequence with � � IS(0). Then there is some �0
2 NF (�) such that

�0
� IS (0) and Next(�0) � IS(1).

19

