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Precision of Sensing Cell Length via Concentration Gradients
Filipe Tostevin*
FOM Institute AMOLF, Amsterdam, The Netherlands
ABSTRACT Unicellular organisms are typically found to have a characteristic cell size. To achieve a homeostatic distribution
of cell sizes over many generations requires that cell length is actively sensed and regulated. However, the mechanisms by
which cell size is controlled remain poorly understood. Recent experiments in fission yeast have shown that cell length is
controlled in part by polar gradients of the protein Pom1 together with localizedmeasurement of concentration at midcell. Dilution
as the cell grows leads to a reduction in the midcell protein concentration, which lifts a block on mitosis. Here we analyze the
precision of this mechanism for length sensing in the presence of inevitable intrinsic noise in the processes leading to formation
and measurement of this gradient. We find that the use of concentration gradients allows for more robust length sensing than a
comparable spatially uniform system, and allows for reliable length determination even if the average protein concentration
throughout the cell remains constant as the cell grows. Optimal values for the gradient decay length and receptor dissociation
constant emerge from maximizing sensitivity while minimizing the impact of density fluctuations.
INTRODUCTION
Under any given environmental conditions, cells are typi-
cally found to have a characteristic range of sizes (1). In
proliferating cells, this distribution of sizes can be stable
over several generations. Because cell growth and division
will inevitably have some random variation, we would
naturally expect this distribution of sizes to broaden over
time. The observed invariance of cell size distributions
means that size must be actively sensed and regulated (2).
However, many questions remain about the molecular
mechanisms by which growth and division are coupled (1).

It has long been believed that the cell cycle of fission
yeast, Schizosaccharomyces pombe, is regulated by cell-
size-dependent checkpoints at the G1/S transition and the
initiation of mitosis (3–5). Recent experiments have clari-
fied the mechanism of the mitotic size checkpoint (6,7).
The protein Pom1 forms polar concentration gradients
within the cell (8). Pom1 is an inhibitor of cell division,
acting to localize the division factor Mid1 to the cell mid-
plane (9,10). In addition, Pom1 phosphorylates and
suppresses the activity of Cdr2, a promoter of mitosis, which
localizes in nodes near midcell (6,7). In short cells the
concentration of Pom1 at midcell is high, and hence Cdr2
activity is inhibited. As the cell grows, the concentration
of Pom1 at midcell decreases; consequently Cdr2 becomes
activated and the cell proceeds into mitosis. The Pom1
gradients in fission yeast appear similar to those of division
inhibitors in bacteria, such as MipZ in Caulobacter cres-
centus (11) and MinCD in Bacillus subtilis (12,13) and
Escherichia coli (14,15), raising the possibility that this is
a more general mechanism for size control in unicellular
organisms.
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The use of concentration gradients of morphogen proteins
to provide positional information in developmental systems
is well established (16,17). In addition to promoting differ-
entiation and specifying cell fate (18), some morphogens
also regulate cell growth and proliferation (19,20), thereby
providing positional cues for tissue growth. More recently,
subcellular concentration gradients have also been observed
in a wide variety of systems (21–24). It has also been shown
theoretically that diffusion together with the localization of
enzymes has the potential to generate gradients of protein
activity (25) and concentration (26,27), and to regulate
intracellular processes based on cell size and shape (28,29).

To determine whether the mechanism of length-sensing
proposed by Martin and Berthelot-Grosjean (6) and Mose-
ley et al. (7) is viable in vivo, it is important to analyze its
robustness to biochemical noise. The formation of the
protein gradient together with the measurement of the
protein concentration will be subject to inevitable fluctua-
tions due to the finite protein copy number, the discrete
nature of biochemical reactions, and the intrinsic random-
ness of physical processes such as diffusion. These fluctua-
tions will limit the precision with which any subcellular
system can measure and regulate cell length. Previous anal-
yses have addressed how reliably absolute position can be
encoded in concentration gradients (30,31), and analyzed
how noise in downstream reactions can affect position spec-
ification (32). In this article we analyze a simple model of
the length-sensing mechanism proposed by Martin and
Berthelot-Grosjean (6) and Moseley et al. (7) and estimate
both the precision with which concentration gradients are
able to provide information about cell length, and the preci-
sion with which this information can be decoded by a
downstream detector.

To investigate the use of intracellular concentration gradi-
ents for size sensing, we consider a simple mathematical
model of gradient formation on the cell membrane
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FIGURE 1 A schematic depiction of the model of protein dynamics

within the cell, incorporating membrane diffusion and dissociation. Cyto-

plasmic diffusion and the details of polar reassociation are coarse-grained

out, replaced by a polar influx of proteins. The concentration of the gradient

protein is measured by detectors localized at midcell.
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consisting of localized protein influx, diffusion, and uniform
dissociation, and a detector which responds to the local
concentration of the gradient protein at midcell. We show
that the use of concentration gradients together with a local-
ized concentration readout allows for more precise size-
sensing than a comparable spatially uniform system of
concentration measurement over a biologically relevant
range of parameter values. Additionally, if the protein in
question is constitutively expressed, such that its average
concentration in the cell is held constant as the cell grows,
spatial gradients still allow the cell to detect changes in
length while a uniform system is no longer viable. Impor-
tantly, this means that the level of such a protein need not
be regulated over the cell cycle. We show that these conclu-
sions apply both for the protein gradient itself and the
readout of this gradient by downstream signaling proteins.
Finally, the simple model suggests that appropriate choices
of the gradient length scale and detector dissociation
constant can maximize the precision of length sensing.

MODEL

We consider a simple model of a bipolar concentration gradient on the

membrane of a rod-shaped cell. As a starting point for our analysis we

take a model for the dynamics of Pom1 recently considered by Padte

et al. (10). In this model Pom1 associates with the membrane at cell poles.

Once on the membrane, it is able to diffuse until spontaneous dissociation

returns the protein to the cytoplasm. In the cytoplasm, Pom1 again diffuses

until it returns to the cell pole and reassociates with the cell membrane. This

cycle of localized membrane attachment and global dissociation is similar

to mechanisms proposed by Lipkow and Odde (26) and Daniels et al. (27)

for the establishment of intracellular concentration gradients via localized

kinase and distributed phosphatase activity. However, here we are con-

cerned not with the overall density of total protein, but only with the

gradient of membrane proteins which is naturally generated in this model.

We therefore make a number of simplifications to this model to simplify

and generalize our analysis.

First, although Padte et al. (10) postulated a second polar inhibitor mole-

cule to explain the symmetric positioning of Mid1 despite asymmetry in the

Pom1 gradient, we instead consider only a single species of protein which

forms a symmetric gradient by associating with the membrane at both

cell poles. This is also reminiscent of the largely symmetrical gradients

which are observed for bacterial cell-division inhibitors MipZ and MinCD

(11–13).

Second, because we are primarily concerned with the effects of concen-

tration gradients on the cell membrane, we neglect the explicit dynamics of

the protein within the cytoplasm. Instead we simply model this recycling as

an influx of proteins onto the membrane at the two cell poles. The appro-

priate choice for this flux will be discussed below. The model is shown

schematically in Fig. 1.

The long-axis of the cell extends from x ¼ – L(t)/2 to x ¼ L(t)/2, where

growth is represented by the cell length L(t) increasing with time. We

suppose that the cell wishes to identify when a target length, LT, is reached.

The circumference of the cell is taken to be Lt. Proteins are injected

into the cell at each pole with rate J/2, such that the total protein influx is

j ¼ J/Lt. On the cell membrane, proteins diffuse with diffusion constant

D. Dissociation is modeled as removal of proteins with a constant rate m,

independent of position. The average density of membrane-associated

proteins, r (x, t), is then described by the reaction-diffusion equation

vr

vt
¼ D

v2r

vx2
� mr; (1)
together with the boundary conditions describing the protein sources,

D
vr

vx
jx¼�LðtÞ=2 ¼ � j

2
;

D
vr

vx
jx¼ LðtÞ=2 ¼

j

2
;

(2)

If cell growth is slow, the concentration profile can be taken to be in quasi-

steady state as the cell grows. This assumption appears reasonable in many

cell types, where the doubling time is tens of minutes (for E. coli) to hours

(for fission yeast) whereas the time required for the gradient to reach steady

state will typically be a few tens of seconds. The average density profile at

a given length is then given by

rðx; LÞ ¼ j

2
ffiffiffiffiffiffiffi
Dm

p coshðx=lÞ
sinhðL=2lÞ ¼ N

2Ltl

coshðx=lÞ
sinhðL=2lÞ; (3)

where l ¼ ffiffiffiffiffiffiffiffiffi
D=m

p
is the characteristic decay length of the gradient and

N ¼ J/m is the mean number of proteins located on the cell membrane.

Although the model has been outlined above in terms of protein produc-

tion and decay reactions, we emphasize that the addition and removal of

proteins from the membrane population should be interpreted in terms of

exchange with the cytoplasmic pool, and not de novo translation and degra-

dation. A single protein may therefore cycle many times between the

membrane and cytoplasm. Nevertheless, the irreversibility of the exchange

cycle implies that the system operates out of equilibrium, and must

consume energy to maintain the membrane gradient.

We assume that the cell measures and responds to the concentration of

the gradient protein only at the position x ¼ 0. We will not concern

ourselves with how the cell is able to localize the detection machinery to

this position. In the case of fission yeast, the Pom1 gradient itself contrib-

utes to localization of the Cdr2-containing foci (6,7) and Mid1 (9,10). In

bacterial systems, the cooperative self-assembly of FtsZ may also lead to

effective confinement of FtsZ to midcell in response to the gradient (33).

The average concentration at x ¼ 0 is given by

r0ðLÞ ¼ N

2Ltl

1

sinhðL=2lÞ: (4)

For comparison, the same number of proteins distributed uniformly

throughout the cell and diluted by growth would have a mean density

ruðLÞ ¼ N

LLt

: (5)

The midcell density for a bipolar gradient is always lower than if the same

total number of proteins were uniformly distributed along the length of the
Biophysical Journal 100(2) 294–303
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cell, and this difference becomes more pronounced as the decay length l

decreases, or as the cell grows.

It remains now to specify how the effective protein influx J, or alternatively

the number of proteins at the cell membraneN, should be chosen. In general,

this will depend on the precise dynamics of the gradient protein, and the rates

of protein production and degradation. In this articlewe shall assume that the

overall concentration of the protein of interest within the cell is constant as

the cell grows; then the total copy number Ntot(L) increases linearly with

L. Experiments have found no change in the expression level of Pom1 over

the cell cycle (34), although its activity may change over time (35).

Because diffusion of proteins within the cytoplasm (with typical diffu-

sion constants ~10 mm2 s–1) is much faster than diffusion at the membrane

(diffusion constants of ~0.1 mm2 s–1), we assume that on the timescale of

dissociation events, proteins in the cytoplasm have time to diffuse

throughout the cell. Therefore, neglecting the nonuniform distribution of

positions at which proteins dissociate from the membrane, the net reassoci-

ation flux is given approximately by

JzkNcytðLÞ=L;
where Ncyt(L)¼ Ntot(L) – N(L) is the number of proteins in the cytoplasm, k

describes the effective polar association rate, and the factor of L–1 repre-

sents the probability of a cytoplasmic protein being found in a polar region

where it is able to reassociate with the membrane. Under our quasi-steady-

state approximation, the fraction of proteins on the cell membrane, F(L) ¼
N(L)/Ntot(L), can be found by matching the influx Jwith the net dissociation

flux, mN(L); this leads to F(L)¼ 1/(1þ aL), where a–1¼ k /m parameterizes

the rate of polar reassociation. Then the polar influx takes the form

J ¼ mNtot(L)/[1 þ aL].

We will focus on two limiting cases.

In the first instance we take the flux to be a constant, J ¼ J0, independent

of cell length. This corresponds to the limit of slow polar reassociation or

large a, for which the membrane fraction decreases as F(L) ~ L–1; as a result,

the number of proteins on the membrane, N(L)¼ N0, is constant. We denote

the gradient profile with this choice of N(L) by rn(x, L).

The second case we shall consider is the limit of small a, or fast reasso-

ciation, for which F(L) ~1 is independent of length. The protein influx

and the number of proteins on the membrane will then increase linearly

with the cell length, such that the mean concentration on the membrane

is constant. We choose N(L) ¼ N0 L/LT and denote the corresponding

concentration profile by rc(x, L). In this way we compare the two cases

on the basis of the same concentration profile at the target length,

rc0(LT) ¼ rn0(LT).

In addition to the protein forming the concentration gradient, we also

consider a simple model for the detection of this gradient. We assume

that the detector molecule has active and inactive states. To achieve

a switchlike response of the detector as a function of the density of the

gradient protein, the gradient protein cooperatively promotes switching of

the detector to the active state with cooperativity parameter g R 1. Active

detectors spontaneously switch back to the inactive state with a constant

rate. For a population of Nd detectors switching independently, the average

number of active detectors, a, can then be described by

da

dt
¼ kþ r0ðLÞgðNd � aÞ � k�a; (6)

where kþ and k– are the rates of detector activation and deactivation respec-

tively. If we again assume that the switching dynamics of the detector are

fast compared to changes in cell length, we can write the average fraction

of active detectors as

f ðLÞ ¼ aðLÞ ¼ r0ðLÞg
g g

; (7)

Nd r0ðLÞ þK

where K ¼ (k–/kþ)
1/g is the density at which the fractional detector activity

is one-half.
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From a measurement of the midcell concentration or detector activity, the

cell length can be inferred by inverting Eq. 4 or Eq. 7. The target cell length

LT can be identified when a threshold value of the density r0(LT) or detector

activity a(LT) is reached. However, such a measurement will always be

subject to numerous sources of noise. The processes of diffusion, dissocia-

tion, and reassociation which determine the concentration of the gradient

protein are intrinsically stochastic, as are the binding reactions of the

protein to its downstream detector and the (in)activation of this detector.

This noise will lead to some error in our estimate of the cell length. The

variance in the estimate of this length can be related to the noise in the

measured quantity z, which could be the midcell concentration or detector

activity, by

ðDLÞ2z s2
z ðLTÞ��vLzðLTÞj2

¼
�
szðLTÞ
zðLTÞ

�2�jvLzðLTÞj
zðLTÞ

��2

; (8)

where zðLÞ and s2z(L) are, respectively, the mean and variance of z at length

L and vLzðLTÞ represents vz=vL evaluated at L ¼ LT. The two terms on the

right-hand side of Eq. 8 have a straightforward interpretation. The first is

the coefficient of variation in z; a higher coefficient of variation means

that the value of z at a particular length is more variable over time in a single

cell and between different cells, and hence the expected error in estimating

L increases. The second term describes the sensitivity of z to changes in the

cell length; increasing the sensitivity allows for different lengths to be more

reliably distinguished.

To examine whether the model proposed above is compatible with exper-

imentally observed variability in cell length, typically ~55–10% in fission

yeast (5–7,36), we will consider the following representative parameter

values: LT ¼ 14 mm, Lt ¼ 10 mm, and N0 ¼ 4000 copies of the gradient

protein on average at the target length (a typical number for regulators of

cytokinesis in fission yeast (37)). We take D ¼ 0.2 mm2 s–1, representative

of a membrane-associated protein. Except when examining the dependence

of the length uncertainty on the parameter l, we will choose l ¼ 2 mm.
RESULTS

Uncertainty due to noise in the protein
concentration

In the remainder of this article we will examine the contri-
butions of different sources of noise to uncertainty in length
determination, and ask whether the precision which can be
achieved by this model is consistent with observed vari-
ability in cell size. First we shall consider uncertainty in
estimating the cell length due solely to fluctuations in the
concentration of the protein gradient at midcell, DLconc.
This corresponds to a lower bound on the total uncertainty,
which would be achieved if the cell were able to measure the
concentration with perfect accuracy.

The diffusion, production, and decay processes which
make up the dynamics in the gradient model described
above are each Poissonian. For this simple model we would
therefore expect that the protein concentration at any point
will also be Poisson-distributed (30,38). That is, the number
of proteins within an area (Dx)2 centered at position x will
have a mean hn(x)i ¼ hr(x)i(Dx)2 and variance sn

2 ¼ hn
(x)i. In general, the exchange of proteins between the
membrane and cytoplasm may lead to correlations between
protein dissociation events and subsequent association reac-
tions, which would in turn lead to deviations from purely
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sion than the uniform system, and shows an optimum as a function of l.

(Inset) Length uncertainty after time-averaging over t ¼ 300 s. Parameter

values are as described in Model (see text).
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Poisson density statistics. However, in the parameter range
of interest for the known intracellular protein gradients,
stochastic simulations show that local density fluctuations
are well described by sn

2 ¼ hn(x)i, as noise is dominated
by the diffusive transport of proteins to the detection volume
(see the Supporting Material). The variance in the concen-
tration at midcell in a cell of length L will then be given
by (30)

s2
r0

¼ s2
n=ðDxÞ4 ¼ r0ðLÞ=ðDxÞ2:

The coefficient of variation therefore decreases with
increasing concentration, as one would expect for a Pois-
son-distributed variable. We can identify Dx as the size of
the detector which reads out the protein concentration. In
the case of Pom1, this will be approximately the size of
a Cdr2 protein cluster.

We first consider the case where the signal protein is
uniformly distributed throughout the cell membrane.
Substituting ru(L) from Eq. 5 into Eq. 8, we find

�
DLu

conc

LT

�2
¼ LTLt

ðDxÞ2N0

¼ 1

ðDxÞ2ruðLTÞ
: (9)

As we would expect, increasing the protein concentration
reduces the impact of the Poisson density fluctuations. In
addition we see that increasing Dx reduces the uncertainty
in estimating the cell length, effectively providing spatial
averaging of fluctuations in the protein density.

We now turn to the system employing spatial concentra-
tion gradients. Taking the case of a constant number of
membrane proteins, with midcell concentration rn0(L), the
uncertainty in cell length is given by

�
DLn

conc

LT

�2
¼ LTLt

ðDxÞ2N0

8l3

L3
T

sinh3ðLT=2lÞ
cosh2ðLT=2lÞ

: (10)

Fig. 2 shows that an optimal value of the gradient length
scale exists which minimizes the uncertainty in estimating
cell length. This optimum can be understood as a result of
a trade-off between increasing sensitivity and increasing
noise as l is varied. The noise in the protein density,

s2
r0
=r0ðLTÞ2� lsinhðLT=2lÞ;

and the sensitivity,

jvLrn0ðLTÞj=rn0ðLTÞ ¼ ½2l tanhðLT=2lÞ��1
;

are both monotonically decreasing functions of l. When l is
small and decreasing, the increase in noise in the protein
density � leLT=2l dominates over the increase in sensitivity
~l�1, and so the uncertainty in cell length increases. For
large l both the noise and sensitivity tend to constant values,
and so the uncertainty in cell length varies little with l.
However, there is an intermediate regime around l ~ LT/2
where the reduction in sensitivity as l is increased remains
~l�1, while the change in the average midcell density, and
therefore the reduction in noise, is small. The change in
sensitivity therefore dominates, leading to the increase in
DLnconc with increasing l which can be seen in Fig. 2. The
existence of an optimal gradient length-scale for the deter-
mination of cell length parallels similar observations for
the accuracy of position determination (30) and the specifi-
cation of gene expression domains (32). Interestingly, the
optimal length scale of l z LT/6 is similar to the ratios
observed for the division inhibitors Pom1 in fission yeast,
where l ~2 mm and LT ~ 14 mm (6,7,9,10), and MipZ in Cau-
lobacter, where l ~ 0.25 mm in a cell body of length LT ~
2.5mm (11).

Comparing the results of Eqs. 9 and 10, we can see that
the ratio of uncertainties in the two models is

�
DLn

conc

DLu
conc

�2
¼

�
2l

LT

�3
sinh3ðLT=2lÞ
cosh2ðLT=2lÞ

: (11)

From Fig. 2 we can see that for l larger than ~LT /12 the
bipolar gradient allows for more accurate estimation of
cell length than the corresponding spatially uniform system.
This is despite the fact that the midcell concentration is
lower in the gradient model, and hence the effective noise
in the concentration is larger. Indeed the improvement in
precision comes about because the midcell concentration
in the gradient model decreases more rapidly with
increasing cell length than in the uniform model. At around
the optimal gradient length scale of l z LT /6, the variance
in length estimates for the gradient model is reduced by
approximately a factor of three compared to the uniform
model. For small l ( LT /12, the uniform model achieves
greater precision. In this regime the protein concentration
at midcell becomes very low in the gradient model, and
hence the higher noise in the protein levels severely compro-
mises precision. Finally, when diffusion is fast and lT LT /2
Biophysical Journal 100(2) 294–303
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the two models become equivalent, as the concentration in
the gradient model becomes approximately uniform.

We now turn to the case, discussed in Model, above,
where the number of proteins located at the membrane
increases linearly with cell length. It is clear that then if
the signal protein is uniformly distributed vLr

u(LT) ¼ 0
and DLconc / N; because the mean concentration is
constant, measuring concentration provides no information
about cell length. However, for the bipolar gradient model
the midcell concentration does vary with length,

rc0ðLÞ ¼ N0

2LtLTl

L

sinhðL=2lÞ: (12)

Substituting into Eq. 8 the length uncertainty for this
modified model is

�
DLc

conc

	2 ¼
�
DLn

conc

	2
½1� ð2l=LTÞtanhðLT=2lÞ�2

: (13)

We can see that DLcconc is always larger than DLnconc. This is
because the increase in the number of proteins counteracts
dilution as the cell grows, reducing the sensitivity of the
midcell concentration to changes in length. From Fig. 2
we can also see that the precision of length estimation is
much more sensitive to parameter variations if the number
of proteins on the membrane increases with length: the
observed minimum in the uncertainty as a function of l

becomes much more pronounced. This is because as l is
increased the protein gradient approaches a uniform concen-
tration profile, for which the sensitivity to changes in cell
length vanishes. The position of the minimum shifts to
a slightly shorter length scale; however, this change is small,
and the resulting optimal value of l is still comparable to the
observed length scales of in vivo gradients.

The results presented here for the limiting cases of large
and small a are qualitatively unchanged for intermediate
values. We note that choosing N to be linear in L provides
a worst-case scenario for the estimation of cell length: if
the total number of proteins within the cell increases linearly
with cell length the value of jvLr0j, and consequently also
the sensitivity, will be smallest when F(L) ¼ 1. Our results
show that through the use of concentration gradients
together with localized detectors, the cell can nevertheless
use a concentration-sensing mechanism to estimate cell
length even though the average concentration of the
measured protein within the cell or on the cell membrane
remains constant.

Given the above results, we can ask whether or not cells
are able to achieve a level of precision which is compatible
with experimentally observed variability in cell length.
Using representative parameter values for Pom1 (see Model,
above) we find DLnconc=LTz1:2 for the gradient model with
a constant number of membrane proteins. For a spatially
uniform protein distribution, or in the case of a gradient
with constant mean concentration, DLu;cconc=LT> 1.6. A reli-
Biophysical Journal 100(2) 294–303
able estimate of cell length cannot be achieved from a single
instantaneous measurement of the concentration, even if this
measurement is perfectly accurate.
Time averaging

To reduce the impact of intrinsic noise in protein concentra-
tions, biochemical detection systems often exploit temporal
averaging. We suppose that the detector integrates the
concentration of the gradient protein at midcell over some
period t. The appropriate averaging timescale is set by the
process which detects and reads out the concentration of
the gradient protein, which will be considered below. In
effect, in the period t a detector is able to perform t/tD inde-
pendent measurements of the protein concentration (39),
where tD is the correlation time of fluctuations in the protein
density or alternatively the timescale on which the area
sampled by the detector is refreshed. The variance of the
averaged density measurements is reduced compared to an
instantaneous measurement by a factor t/tD. For the two-
dimensional system we are considering here, we take
tD ¼ (Dx)2/D (ignoring logarithmic corrections which
have a negligible effect on the averaging time (30)). Then
the uncertainty in estimating cell length, DLct, will be�

DLc
t

LT

�2
¼

�
DLc

conc

LT

�2
tD
t
; (14)

¼ LTLt

N0Dt

8l3

L3
T

sinh3ðLT=2lÞ
½2lsinhðLT=2lÞ � LTcoshðLT=2lÞ�2

:

(15)

We can see that if D is increased, while also increasing m so
as to hold l ¼ ffiffiffiffiffiffiffiffiffi

D=m
p

constant, the uncertainty in cell length
is reduced. This is because faster diffusion allows for more
rapid refreshing of the environment of the detector reading
out the concentration, increasing the number of independent
measurements which can be made. Varying m while holding
D constant, we find (Fig. 2, inset) that the uncertainty
still has a minimum as a function of l. We also note that,
because tD is the same in both cases, time averaging does
not affect the relative precision of the gradient models
with different flux conditions. For the uniform model the
effect of time averaging is less clear; the appropriate aver-
aging time may depend on both diffusion and (uniform)
exchange between membrane and cytoplasm. However,
the latter is likely to occur on a longer timescale than
diffusion over the short length scales assumed here for
the detector size, Dx, and as such it is unlikely that
time averaging will be able to reduce DLut below DLnt if
LT/10 ( l ( LT.

Again using parameters for Pom1, the uncertainty in
length from time-averaged measurements is DLct=LT �
0:36=

ffiffiffi
t

p
: Therefore, cells will be able to reduce the uncer-

tainty in cell length to ~55% by averaging over a time t
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minimum of DLnsw is at a smaller value of l. Parameters are as described

in Model (see text) and Nd ¼ 200.
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~50 s, even for the less accurate constant-density gradient
model. Parameter values for the detection of Pom1 by
Cdr2 or other downstream proteins, and in particular the
averaging timescale on which these interactions take place,
are not known. The required timescales are sufficiently short
that these levels of precision could be reached during one
cell cycle. However, it should be noted that with a doubling
time of ~2 h, the cell length would itself change by a few
percent during an integration period t ~10 min, potentially
leading to systematic errors in the estimated length.

Uncertainty due to detector switching

We have seen above that by employing a detector which is
able to integrate over fluctuations on the protein concentra-
tion, a cell is able to greatly improve the precision of length
sensing. However, the interaction of the gradient and
detector proteins will itself be stochastic. It is therefore
important to consider also the limit that the noise in these
detection reactions places on the accuracy of length deter-
mination, DLsw. This represents a different lower bound
on the total precision of the system from that calculated
above, which corresponds to the limit that fluctuations in
the protein concentration are negligible.

We use Eq. 8 to estimate the uncertainty in cell length for
the detector switching model (described in Model, above) in
terms of fluctuations in the number of active detectors, a(L).
For a population of Nd independent detectors, the number of
active detectors will have a binomial distribution, with the
probability of each individual detector being active equal
to f (L), given by Eq. 7. In particular, the variance in the total
detector activity will be sa

2 ¼ Ndf (1 – f). Assuming that Nd

is a constant independent of cell length, we find

vLaðLTÞ ¼ gNd f ðLTÞð1� f ðLTÞÞ vLr0ðLTÞ
r0ðLTÞ : (16)

Combining these results and Eq. 7, the uncertainty in cell
length is given by

ðDLswÞ2 ¼ ðr0ðLTÞg þKgÞ2
g2NdKgr0ðLTÞg

�jvLr0ðLTÞj
r0ðLTÞ

��2

: (17)

The dependence of the uncertainty on the detector
dynamics is contained in the factor

ðr0ðLTÞg þKgÞ2=�g2NdK
gr0ðLTÞg

	 ¼ 1=g2s2
a:

It was recently shown (40) that the precision with which
ligand-receptor binding is able to provide information about
concentration fluctuations is optimized when K matches the
mean background concentration. Similarly, we find that the
error in length detection can be minimized for a fixed
gradient profile by choosing K ¼ r0(LT), as shown in
Fig. 3 a.

Substituting rn0(LT) into Eq. 17 we find that for fixed K the
uncertainty again has a minimum as a function of l. The
position and depth of this minimum depend on the other
parameters of the model, including K: from Fig. 3 b we
can see that the optimal value decreases and the minimum
becomes more pronounced as K increases. Note, however,
that the optimal value of l does not correspond to choosing
rn0ðLTÞ ¼ K: By choosing a slightly smaller value of l, one
can both decrease the noise in the state of the detector pop-
ulation and increase the sensitivity of the system. Using the
constant-density model rc0 instead gives qualitatively similar
results (data not shown). As we saw for the uncertainty due
to density fluctuations, in this case the uncertainty as a result
of detector switching is slightly larger and more sensitive to
changing l. This is again because increasing protein levels
partially compensate for dilution, reducing sensitivity of
the detector output to changes in length.

As before, we can compare this with a spatially uniform
system, for which we have

�
DLu

sw

LT

�2
¼ ðruðLTÞg þKgÞ2

g2NdKgruðLTÞg : (18)

As shown in Fig. 4, we find that for large regions of param-
eter space the gradient model is able to achieve significantly
higher precision than the corresponding uniform system—
only for small l does the gradient model perform worse.
This is in part because the different models provide different
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FIGURE 4 Comparison of the uncertainty due to detector switching for

the gradient and uniform models. (Grayscale) Ratio of uncertainties

(DLnsw)
2/(DLusw)

2 as K and l are varied, for g ¼ 2. (Left of solid line)

Uniform model allows for higher precision. (Right of solid line) Gradient

model performs better.
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concentrations at LT, and therefore have different optimal
choices for K. However, we note that even if the optimal
value of K ¼ ru(LT) for the uniform model is chosen, the
gradient model is still able to achieve greater precision
over a wide, and biologically relevant, range of l.

To estimate a lower bound on the uncertainty due to noise
in detector switching for the Pom1 system, we choose the
optimal value for K ¼rn0ðLTÞ, where rn0ðLTÞ is calculated
using the parameters described previously. The resulting
uncertainty is

DLn
sw=LTz0:6=g

ffiffiffiffiffiffi
Nd

p
;

meaning that precision of 55% of LT could be achieved
with Nd ~130 independent detectors with only linear binding
kinetics, g ¼ 1, if there were no fluctuations in the concen-
tration of the gradient protein. This value appears compa-
rable to the number of Cdr2-containing clusters which is
observed experimentally (6,7). The addition of cooperativ-
ity greatly reduces the number of required detectors: for
a highly cooperative response with g ¼ 10, a couple of
detector clusters may be sufficient to achieve the required
accuracy. If we apply the same procedure for a spatially
uniform system we find that the number of detectors
required to reach the same level of precision is ~10-fold
larger than for the gradient model.
Combining diffusive and switching noise

In reality, the state of the gradient read-out mechanism will
be affected by both the intrinsic randomness of switching
and by extrinsic fluctuations in the density of the gradient
protein. For each detector, the intrinsic contribution to the
noise will simply be f (1 – f), while the extrinsic contribution
will have the form (41)

ðvrf Þ2s2
rtD=

�
tf þ tD

	
:

Here tf ¼ [kþr0(L)
g þ k–]

–1 is the correlation time for
detector switching, which sets the timescale over which
Biophysical Journal 100(2) 294–303
the state of the detector is influenced by previous values
of the density, and therefore also the time interval over
which density fluctuations are integrated. The variance
in the activity of the population of detectors will be
approximately

s2
az

XNd

i¼ 1

XNd

j¼ 1



f ð1� f Þdi; j þ Ci; j

�
; (19)

where the sums run over detectors, di, j is the Krönecker
delta, and Ci, j is the covariance of the time-averaged density
at detectors i and j. In general this will be a function of the
distribution of distances between detectors and the aver-
aging time tf. Here we will simply assume that each detector
is perfectly correlated with a fraction f of the total popula-
tion of detectors, and is uncorrelated with the remaining
detectors. In particular, we would expect correlations
between detectors which are separated by(

ffiffiffiffiffiffiffiffi
Dtf

p
; because

in a time tf diffusing proteins will be able to visit both
detector sites, and negligible correlations between detectors
at more distant sites. Additionally, if tf m >> 1 the typical
distance that a protein will diffuse before dissociating is
limited to ~l, and hence so too is the density correlation
length, leading to f ~ l2/A, where A is the area of the
membrane where detectors can be found. For the Pom1-
Cdr2 system, f ~ l2/(Lt � 4 mm) ~0.1. Different assump-
tions about the correlations between detectors do not
qualitatively change our conclusions below, but may change
the value of f. Taking additionally tf >> tD, the overall
variance in the total detector activity becomes

s2
azNd½ f ð1� f Þ� þ N2

dfs
2
rðvr f Þ2

tD
tf
; (20)

where the last term can be interpreted as the averaging of
density fluctuations over a number f –1 of effectively inde-
pendent detectors.

The overall length uncertainty then has the form

ðDLtotÞ2 ¼ ðDLswÞ2 þf
�
DLtf

	2
: (21)

This equation shows that the two components of the uncer-
tainty are largely independent. Strategies which reduce
intrinsic detector noise, such as increasing Nd or g, have
little effect on the uncertainty due to density fluctuations.
Conversely, density fluctuations can be reduced principally
by increasing tf, which in itself does not affect intrinsic
switching noise. Because we saw previously that for real-
istic parameter combinations the two individual uncer-
tainties could each be reduced to the level of a few
percent of the cell length, it follows from Eq. 21 that the
combined uncertainty can also reach this level of precision.

At the level of the reaction parameters we once again find
a nonmonotonic dependence on the dissociation constant K.
Substituting into Eq. 21 gives
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ðDLtotÞ2 ¼ r0ðLTÞg þð1 þ g23ÞKg

g2Nd

�
r0ðLTÞg þKg

r0ðLTÞgKg

�

�
�jvLr0ðLTÞj

r0ðLTÞ
��2

; (22)

where

3 ¼ fNdkþ r0ðLTÞg�1
=D:

DLtot is minimized by choosing (varying k– while holding kþ
constant)

Kopt ¼ r0ðLTÞ
�
1 þ g23

	�1=2g
; (23)

which differs slightly from the value at which sensitivity is
maximized, K ¼ r0(LT). This is because choosing a slightly
smaller value of K reduces the impact of noise in the protein
density through two effects: First, moving the target concen-
tration away from the most sensitive regime of the detector
means that the variability in detector activity due to density
fluctuations is reduced. Second, decreasing k– increases the
correlation time of the detector, increasing the effective time
over which density fluctuations are integrated. These effects
become increasingly important as the correlations between
detectors increase, because this increases the contribution
of noise in the protein density to the overall uncertainty.
DISCUSSION

In this article, we have analyzed a mechanism of size regu-
lation by polar protein gradients, which was recently
described in fission yeast by Martin and Berthelot-Grosjean
(6) and Moseley et al. (7). We have calculated the expected
uncertainty in length estimation based on the inevitable
intrinsic noise in the physical processes and chemical reac-
tions of formation and detection of a protein concentration
gradient. Our results show that this mechanism is able to
perform with a greater accuracy than a simpler spatially
uniform model. We have seen that cells can still reliably
detect changes in cell length even if the overall density of
proteins within the cell is unchanged. Importantly, therefore,
the use of concentration gradients potentially allows a cell to
regulate its size, and cell cycle progression, with proteins
whose expression are not themselves under cell cycle
control. Furthermore, the accuracy of the system can be
improved by matching the dynamics of the gradient and
detector proteins. We find that the optimal value of K repre-
sents a compromise between maximizing the sensitivity of
the system and reducing the impact of fluctuations in the
concentration of the gradient protein.

The analysis presented here indicates that the measure-
ment of cell length itself can be sufficiently accurate to
achieve experimentally observed levels of variability in
cell length (6,7). From Eq. 21 we find that for realistic
parameters—averaging density fluctuations over a timescale
of a minute with ~100 detectors—precision in length
sensing can reach a few percent of cell length. A significant
contribution to this error comes from noise in the density of
the gradient protein, which can be difficult to reduce if there
are significant correlations between fluctuations at different
detectors. Instead, density fluctuations must be managed by
time-averaging. However, there may be an upper limit to the
timescale over which the cell can integrate: if this time is so
long that there is significant growth during the integration
period, then errors in the length at which cell cycle events
occur may be introduced due to fluctuations in the growth
rate or integration time itself. Our results therefore suggest
that density fluctuations may impose a significant limit on
the precision with which length can be sensed in vivo.

There are likely to be many additional sources of inaccur-
acy which also contribute to the observed variation in cell
length, but have not been included in this model. Among
the most significant will be cell-to-cell variability in the
copy numbers of the gradient and detector proteins. These
extrinsic fluctuations in protein numbers will lead to differ-
ences between the effective target lengths of different cells.
Another potential source of inaccuracy is variability in the
time taken between the initiation of mitosis and the comple-
tion of cell division. These different sources of error could
potentially be resolved experimentally by examining the
correlations between cell length and the timing of events
nearer the initiation of mitosis such as formation of mitotic
spindle, or the activity of Cdr2 as measured, for example,
via Förster resonance energy transfer.

Here we have considered the error with which the target
length can be estimated at the level of the gradient read-
out. In general, the decision on whether the target cell length
has been reached could instead be made at a downstream
step of the signaling pathway. Each additional step in the
signaling cascade would allow the cell to integrate over fluc-
tuations in the upstream reactions, reducing transmitted
noise. However, each additional reaction would also intro-
duce a source of intrinsic noise which would contribute to
the overall length uncertainty. This includes the ultimate
decision step, which one might expect to always be limited
by binomial-type switching statistics, as considered here for
the protein readout. It is therefore not clear that moving the
decision of whether the target length has been reached
downstream could significantly improve the precision of
length sensing.

We have found that cells may be able to exploit the char-
acteristic length-scale of an intracellular gradient to achieve
greater precision in the sensing of cell length than a spatially
uniform system relying solely on dilution. Importantly,
concentration gradients are also able to reliably specify
the position at which cell division should occur (10,30),
thereby allowing one system to perform two crucial tasks
in cell division and removing the need for separate processes
dedicated to each. However, we did not consider the mech-
anism by which the detector molecules are localized near
midcell. Pom1 is known to play a role in the correct
Biophysical Journal 100(2) 294–303
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localization of Cdr2 and other regulators of mitosis such as
Mid1 (6,7,9,10), and it remains to be seen whether this could
lead to significant changes in the noise properties of the
system. We note that the model discussed here does not
rely on the specific localization of the detector proteins at
midcell, rather than any other fixed position within the
cell. However, it seems most straightforward to localize
the detector proteins to the region of lowest concentration,
which occurs at midcell, than to any other specific position.
Furthermore, the symmetry of the gradient means that the
concentration of the signal protein is relatively constant
over a region around midcell, and therefore localization of
the detector protein need not be exceedingly precise for
the system to function reliably.

There remain many aspects of the Pom1 system which are
poorly understood. For example, what is the effect of clus-
tering of Cdr2 and other downstream signaling proteins? In
the current analysis the only role of clustering is to increase
the effective Pom1 detector size, reducing noise in the
concentration measurement via spatial averaging. Once
time-averaging is taken into account, the uncertainty is
largely insensitive to the detector size; in this case, clustering
effectively reduces the number of detectors and increasing
intrinsic noise, while providing no benefit for reducing
extrinsic noise. Instead, clustering may be important for the
reliable transmission of the Cdr2 signal downstream.

The model discussed here cannot by itself account for
the variability of cell size which is observed in different
growth media or at different growth rates (42,43). A
different mean cell length could be achieved by altering
the relative levels of Pom1, Cdr2, or other downstream
proteins, or their activities, in response to varying environ-
mental conditions. These properties may be subject to active
regulation depending on nutrient availability (43). However,
the Pom1 gradient will also not be the only regulator of
mitotic entry, as demonstrated by the relatively large divi-
sion size of pom1 knock-out strains (6,7). It will be impor-
tant to study these different regulation mechanisms to
understand the precise role of the Pom1 gradient in natural
environments.
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