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a b s t r a c t

Recently, the micropositioner has become an important developing target for achieving
the requirements of precision machinery. The piezo-actuating device plays a very
important role in this application area. In this paper, a model-free adaptive sliding-mode
controller is proposed for a 3D piezo-actuating system because of the system’s hysteresis
nonlinearity and time-varying characteristics. This control strategy employs the functional
approximation technique to establish the unknown function for releasing the model based
requirements of the sliding-mode control. The update laws for the coefficients of the
Fourier series function parameters are derived from a Lyapunov function to guarantee
the control system stability. To verify the effectiveness of the proposed controller, drilling
process control using the designed controller is investigated in this paper.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, 3D micropositioning technology has become an important developing target for achieving high-
resolution requirements of the precision industry, such as in microscopy applications, semiconductor manufacturing
processes and opto-electronics systems. Since the piezoelectric actuator has many advantages, such as high resolution,
ultrahigh precision and quick response speed, it has been widely used as a micropositioning system actuator in these
production areas. However, piezoelectric actuators are ferroelectric and exhibit undesired hysteretic behaviors which lead
to inaccuracy problems and limit the tracking performance of the piezoelectric actuated system.

Recently, different methods have been proposed for controlling the piezoelectrically actuated micropositioning system.
Lin and Yang [1] employed a PI feedback control associated with feedforward compensation based on the hysteresis
observer to compensate the nonlinearity of the piezoelectric actuator. Chang and Sun [2] tried to control a two-degree-
of-freedom monolithic piezoelectric actuator. Bashash and Jalili [3] proposed a modeling and control methodology for
real-time compensation of nonlinearities along with precision trajectory control of piezoelectric actuators in various ranges
of frequency operation. Liaw et al. [4] presented a robust motion tracking control methodology for a flexure based four-bar
micro/nanomanipulator driven by a piezoelectric actuator. In addition, control techniques involving feedback and
feedforward–feedback features have been proposed to remove the hysteresis-caused tracking error [5]. Meurer and Kugi [6]
designed an asymptotically stabilizing tracking controller for an undamped wave equation modeling a piezoelectric stack
actuator. Lin and Lin [7] proposed a novel feedforward compensationmechanism based on the Duhemmodelwith crossover
terms for obtaining the cross-coupling effects between the X axis and Y axis of a biaxial piezo-actuated positioning stage. For
3D precision positioning applications, Chang et al. [8] presented an ultraprecision three-dimensional micropositioner using
a built-inmultilayer piezoelectric actuator. Themicropositioner was controlled to achieve the goal of nanometer resolution.
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Fig. 1. 3D piezoelectrically actuated drilling system.

Fung and Lin [9] proposed an adaptive backstepping control method for the contour tracking of a plane-type 3D precision
positioning table.

It is well known that sliding-mode control can be used to handle system nonlinear behavior, model uncertainty and
external disturbance [10–12]. However, the traditional sliding-mode control scheme has model based requirements: it
still needs the system dynamic model and the value of the uncertain bound for controller design. Hence, the functional
approximation (F.A.) technique is employed to release these model based requirements. The functional approximation
technique was utilized to design an adaptive sliding controller for different nonlinear systems containing time-varying
uncertainties [13].

In this paper, a functional approximation based adaptive sliding controller is developed for controlling a 3D
piezoelectrically actuated system. It has the advantage of designing a sliding-mode controller for a nonlinear 3D
piezoelectrically actuated system without the dynamic model requirements. The system uncertainties and the internal
states are lumped into a time-varying function with unknown bounds; then, the functional approximation technique is
utilized to expand and capture the system dynamics plus uncertainties using finite linear combinations of basis functions
with unknown constant weighting vectors. The update laws for the weighting vector of the approximation functions
can be derived and the stability of the designed controller is proven in the sense of the Lyapunov stability theorem.
Finally, a drilling process control using the designed controller is investigated to verify the effectiveness of the proposed
controller.

2. The system structure

A 3D piezoelectrically actuated drilling system shown in Fig. 1 was built for investigating the dynamic system control
behavior. A PC based controller is developed for this system. The 3D piezoelectrically actuated drilling system has three
independent axes, X, Y and Z , separately driven by three piezoelectric actuators. The experimental layout of this positioning
system is shown in Fig. 2 in which the control voltage is calculated on the PC, converted from a digital to an analogue signal
by a D/A interface card and sent to the piezoelectric actuator driver unit to actuate the piezoelectric motor for each axis.
The displacements of this 3D piezoelectrically actuated system are measured by linear encoders and sent back to the PC via
an encoder card for closed-loop control. Three HR8 motors were used to actuate the X, Y and Z axes, respectively. On the
basis of the features of these motors, there is a linear relationship between the piezoelectric actuator velocity and the driver
control voltage. Therefore, the actuator and driver can be modeled as a DC motor with internal friction. The motor is driven
by a voltage amplifier. The driver generates a 39.6 kHz sinusoidal wave to drive the actuator with an amplitude function
when a command voltage within ±10 V is sent to the driver unit. This constant oscillation frequency is generated from the
driver unit which was supplied by Nanomotion Limited.

In addition to the nonlinear hysteresis, a dead-zone offset voltage can also be observed in the X–Y–Z table system. Such
a nonlinearity appearing in the low control voltage range is called the dead-zone offset voltage because it is caused by the
static friction andpreload. The dead-zone offset voltage is time-varying. Therefore, its value changeswith the operation time,
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Fig. 2. System experimental layout.

direction, humidity and temperature. In order to handle the complexity of the system’s behaviors, the nonlinearities, such
as the hysteresis and dead-zone offset, and the time-varying uncertainties will be lumped into an unknown time-varying
function. Then, the functional approximation based adaptive sliding-mode control scheme is applied to approximate this
time-varying function.

To simplify themodel description, the system dynamics for each of the three axes can be represented using the following
second-order model:

ẍ = f (x, t) + b(t)u (1)

where x is the displacement of one of the three axis stages, f (x, t) is a function of the state variables, b(t) is the control gain
and u(t) is the control voltage.

The function f (x, t) is an unknown time-varying function with unknown variation bound. However, the bound of the
unknown function b(t) can be estimated, i.e., bmin ≤ b(t) ≤ bmax. Define b(t) as

b(t) = bm + 1b (2)

where bm is the nominal value and 1b is a bounded uncertainty value.

|1b| < β, β > 0. (3)

Here, the functional approximation technique is employed to approximate this unknown function f (x, t) for releasing
the model requirements.

3. The controller design

If a piecewise continuous time-varying function g(t) satisfies the Dirichlet conditions, it can be transformed into a
generalized Fourier series function expansion within a time interval [0, Ti]:

g(t) = a0 +

∞
n=1

(an cosωnt + bn sinωnt) (4)

where a0, an and bn are the Fourier coefficients and ωn =
2nπ
Ti

is the frequency of the sinusoidal function. Define

Z(t) =

1 cosω1t sinω1t cosω2t sinω2t · · · cosωnt sinωnt

T (5)

W =

a0 a1 b1 a2 b2 · · · an bn

T
. (6)

Then Eq. (4) can be rewritten as

g(t) = W TZ(t) + ε(t) (7)

where ε(t) is the approximation error. When n is large enough, g(t) can be approximated as

g(t) ≈ W TZ(t). (8)
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Fig. 3. System control block diagram.

Since the unknown dynamics function f (x, t) in Eq. (1) is a continuous time-varying function, it can be approximated
by linear combinations of finite orthogonal basis functions Z(t) to an arbitrarily prescribed accuracy as long as n is large
enough:

f (x, t) ≈ W T
f Zf (t) (9)

where Zf (t) is a orthogonal basis function vector and Wf is a weighting coefficient vector. If the number of basis functions
is large enough, Eq. (9) can be described as the following approximation form:

f (x, t) = W T
f Zf (t) (10)

where Zf (t) =

Z1(t) Z2(t) · · · Zn(t)

T , andWf =

W1 W2 · · · Wn

T .
The system control block diagram of this 3D piezoelectrically actuated system is shown in Fig. 3. The sliding surface of

the second-order system can be defined as

s = ė + λe (11)

where the positive parameter λ implies the convergent rate of x on the sliding surface. The time derivative of s can be
derived as

ṡ = ë + λė = ẍ − ẍr + λė (12)

where xr is the desired value of x. Substituting Eq. (1) into (12) yields

ṡ = f (x, t) + b(t)u − ẍr + λė. (13)

In order to achieve the sliding surface reaching condition and establish the approximation error compensation, the
control law u(t) can be designed as

u(t) =
1
bm

(−f̂ + ẍr − λė − ηsgn(s)) (14)

where f̂ is the functional approximation value of f (x, t).
The positive constant η is a design parameter, for achieving an appropriate robustness. Substituting Eq. (14) into (13)

yields

ṡ = −ηsgn(s) + (f − f̂ ) + 1bu. (15)

Here, f and f̂ can be presented via the functional approximation technique as

f = W T
f Zf (16)

f̂ = Ŵ T
f Zf (17)

where Wf , Ŵf ∈ ℜ
n are weighting vectors and Zf ∈ ℜ

n is a vector of the basis Fourier series function. Hence, Eq. (15) can
be rewritten as

ṡ = −ηsgn(s) + W̃ T
f Zf + 1bu (18)

where W̃ T
f = W T

f − Ŵ T
f . To prove the stability of this control system and find the update laws for vectors Ŵf , a Lyapunov

function candidate is chosen as

V (s, W̃f ) =
1
2
s2 +

1
2
W̃ T

f Qf W̃f (19)
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Fig. 4. X–Y–Z table displacement.

where Qf ∈ ℜ
n×n is a symmetric positive definite matrix. By taking the time derivative of the Lyapunov function candidate,

one obtains

V̇ (s, W̃f ) = sṡ + W̃ T
f Qf

˙̃W f . (20)

Since ˙̃W
T

f = −
˙̂W

T

f , Eq. (20) can be rewritten as

V̇ (s, W̃f ) = s(−ηsgn(s) + W̃ T
f Zf + 1bu) + W̃ T

f Qf
˙̃W f

= −η|s| + W̃ T
f (Zf s − Qf

˙̂W f ) + 1bus. (21)

The update law for Ŵf is chosen as

˙̂W f = Q−1
f Zf s. (22)

Then, Eq. (21) can be further rewritten as

V̇ = −η|s| + 1bus. (23)

In order to cover the uncertainty of the unknown function b(t), and establish an appropriate robustness, the parameter
η can be specified as

η = βumax. (24)

Then Eq. (23) yields

V̇ ≤ 0. (25)

Eq. (25) means that this control system stability can be guaranteed by using the update laws. On the basis of Barbarlet’s
lemma [14], the convergence of the system output error can be guaranteed by using the control law u(t), Eq. (14).

4. Experimental results

In order to investigate the control performance of the proposed controller, the following experiments are performed. The
sampling frequency is chosen as 1000 Hz. The sliding surface parameter λ is chosen as 700, 900 and 1500 for the X axis, Y
axis and Z axis, respectively. The robustness parameter η can be estimated on the basis of Eq. (19). It is selected as 23000,
29000 and 30000 for the X axis, Y axis and Z axis, respectively. In order to improve the control law chattering behavior, the
sgn(s) function in Eq. (9) is replaced by the saturation function sat(s/φ) with a boundary layer thickness φ = 0.1 for all the
three axes. The weighting matrix Qf of the Fourier series function coefficients is set as a small constant matrix Qf = 0.01[I],
to increase the convergence speed. 31 terms of Fourier series functions were used for the functional approximation based
adaptive sliding controller.

First, an oblique circular contour 2 cm in diameter is designed for the 3D motion tracking control. The experimental
result on the tracking response of this 3D system is shown in Fig. 4. The tracking errors for the X, Y and Z axes are shown
in Figs. 5–7. It can be observed that the maximum steady-state tracking errors are 0.035 mm, 0.03 mm and 0.03 mm for
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Fig. 5. Tracking error for the X axis.

Fig. 6. Tracking error for the Y axis.

Fig. 7. Tracking error for the Z axis.

the X, Y and Z axes, respectively. The root mean square (RMS) values of the tracking errors are 0.0233 mm, 0.009 mm and
0.010 mm for the X, Y and Z axes, respectively.

Then, a drilling process control using the designed controller is investigated to verify the effectiveness of the proposed
controller. A matrix-type drilling of holes with a 0.2 mm diameter trajectory, shown in Fig. 8, is designed for the 3D motion
tracking control. The experimental result for the tracking response of this drilling process control is shown in Fig. 9. The
tracking responses for the X, Y and Z axes are shown in Figs. 10–12, respectively. Themaximum steady-state tracking errors
can be controlled as smaller than 0.03 mm for all the three axes. The microscope image of the drilling of holes is shown in
Fig. 13. It can be observed that a good control performance can be obtained for a drilling process by using the proposed
functional approximation based adaptive sliding controller.
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Fig. 8. Matrix-type drilling process trajectory.

Fig. 9. Tracking response of the drilling process control.

Fig. 10. Tracking response for the X axis for the drilling process control.
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Fig. 11. Tracking response for the Y axis for the drilling process control.

Fig. 12. Tracking response for the Z axis for the drilling process control.

Fig. 13. Microscope image of the drilling of holes.
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5. Conclusions

A functional approximation based adaptive sliding controller is developed and successfully employed to control a 3D
piezoelectrically actuated system in this paper. In addition, a drilling process control using the designed controller is
investigated to verify the effectiveness of the proposed controller. Fourier series functions can be used to approximate
the nonlinear time-varying function for designing a sliding-mode controller and achieving good control performance. The
steady-state tracking error can be controlled to less than 0.035 mm for all three axes. The proposed approach can be
effectively applied to control the 3D piezoelectrically actuated system.
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