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1. Let (E, 6,~) be a complete measure space of total mass one and 
let J’” be the set of all A E d such that p(A) = 0.i We shall write A G B 
whenever &I A B) = 0; obviously A s B is an equivalence relation 
in 6’. The tribes (= o-algebras) F c d considered below, will be always 
supposed to contain X. 

Let now F c Q be a tribe and let p be a mapping of F into F. Prop- 
erties of p, such as those listed here, will be considered in what follows: 

(I) p(A) =A; 

(II) A z B implies p(A) = p(B) ; 

(III) ~(4) = 6, p(E) = E; 

(IV) p(AnB) =Pv)nPw; 

(VI PM"4 =P(A)"P(w 
Using the results of [l], Maharam showed in pj that: 

(M) Given a tribe F c d there exists a mapping p of .F into .P 
satisfying (I)-(V). 

As a matter of fact, in p] Maharam proved in detail only the existence 
of a mapping y of F into Y having the properties (I)-(IV). Once this 
is achieved, the existence of p satisfying (I)-(V) follows, as it was remarked 
in [a], by repeating an argument due to von Neumann [3, pp. 11 l-112 I\. 
The validity of property (M) had been previously established by 
von Neumann (see [3]; see also [4, Chap. VI] and [5]) for the case when 
E = 10, l] and (E, 9, p) is the usual Lebesgue space. 

* This paper was sponsored by the Office of Ordnance Research under Grant 
So. DA-ORD-12. 

’ For the notations and terminology concerning integration theory see [4, 
and [9]. 
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We shall give here (Theorem 1) a different proof of property (M). 
In particular, we shall work directly on the abstract measure space 
(E, b, p) avoiding thus the use of any isomorphism theorem “with infinite 
products of unit intervals or 2-point spaces.” Also, we shall not use the 
results of [l]; the classical martingale theorem (see [6]) will be enough 
for our purpose. Propositions 3 and 4 of this paper could be avoided, 
and instead we could essentially repeat the (above-mentioned) argument 
of von Neumann to deduce the existence of a mapping p of 9 into Y 
satisfying (I)-(V), once we know the existence of a mapping y of Y into Y 
satisfying (I)-(IV). However, we included here the detailed proofs of 
these propositions since they give an entirely different approach than 
that devised in [3]. Moreover, they provide supplementary information 
about the property (M) and make the paper self-contained. 

The last part of the paper contains various applications of the above 
results. 

2. The results given in this and the next section will be used in 
the proof of Theorem 1. 

Let SC I be a tribe, H E &’ and Y the smallest tribe containing 
9 and H; every set X E .Y can be written under the form 

X=(AnH)u(BnCH) 

with A ~g, B E 9. We shall prove now the : 

PROPOSITION 1. Suppose that there is a map#Gzg I of 9 into S having 
the properties (I)-(V). Thelz there is a mapping p of F into F verifying 
(I)-(V) am! coiwidirtg with J on 9. 

We shall divide the proof into five parts. 
(a) For each X E B let p(X) be the set of all A ~9 such that 

A r-t X z 4 and X, = lJA&tX) l(A). It is easy to see thatX, ES(X). 
In fact, let (A,JncN be a sequence (which we may suppose increasing) 
of elements of F(X) such that 

SUP~est(~)p(A) = sup,mv,44 =,4B); 

here B = UneN A,. It is obvious that B E s(X). Now if A E s(X) then 
A U B ES(X) and hence p(A u B) = y(B); thus &A) c l(B). We 
deduce2 that X, = I(B) EF(X) (see also [2, p. 9931). 

We remark that 

x, n (CX), = 4 (1) 

2 Note that &Y,) =X,. 
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In fact, 

X, n (CX), = (X, n (CX),n X) u (X,n (CX),n CX) c 4 

and hence 

?i,n (CX), = A(X,) n A((CX),) = A(+) = 4 

(b) For each set X E 8 write O(X) = X n X,. Define now: 

p(H) = (H u 0(CH)) n W(N) = (H n CO(H)) u 8(CH), (2) 

p(W) = (CH u O(H)) n CO(W) = (CH n Clo(CH)) u O(H). (3) 

From (2) and (3) we deduce that p(M) = Q(H). 
(c) For every C Ed we have l(C) n p(H) = $. Since n(C) C H, 

we deduce 

A(C) n H n CO(H) = A(C) n H n (CH u CH,) = 4; 

on the other hand, by (l), 

l(C) n o(CH) = l(C) n CH n (CH), = #I. 

Hence (c) is proved. 
(d) For every C Ed we have J.(C) n p(W) = 4. To prove (d) 

it is sufficient to replace H by CH in (c). 
(e) For an arbitrary X = (A n H) u (B n CH) E .?(A, B E SF) define 

P(X) = (44 nf(fV u MB) ndW). 

If (A, n H) u (B, n CH) G (A2 n H) u (B, n CH) then A, A A, E S(H) 

and B, A B, E 9(M). From (c) and (d) it follows that p is well defined 
on 7 and that p coincides with I on 9. 

An immediate computation shows that p has the properties (I)-(V). 
Hence the proposition is completely proved. 

3. For each tribe Y c 6’ denote with M”(T) the Banach algebra 
of all bounded real-valued T-measurable functions, defined on E, 
endowed with the norm f -+ J(f(la, = supsEE If(z)\. We shall denote 
by Y(Y) the vector subspace of M”(Y) consisting of all functions 
f = z!=i ci P)Ai, where cr,. . . , C~ are real numbers and A,, . . . , A, E F 
(pA is the characteristic function of the set A). Let .N” be the ideal 
of all f E M”(Y) which are equal to zero almost everywhere (Na, does 
not depend on T). We shall write f E g whenever f - g E .N* ; it is 
obvious that f = g is an equivalence relation on M”(F) and that A s B 
(A, B ET) if and only if 9A z P)~. We shall denote by f -+ N,(f) the 
essential supremum semi-norm on M”(F) 
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LetnowT: f + T, be a mapping of Mm(Y) into M”(Y). Properties 
of T, such as those listed below, will be considered in what follows: 

(I’) TI=f, 
(II’) f - g implies T, = T,; 
(III’) T, = 1; 
(IV’) f > 0 implies T, > 0 ; 
0”) Taf+sg = aTf + PT,; 
(VI’) T, = Tt Tg. 
Let us remark that if T: f ---t Tf is a mapping of M”(Y) into Mm(r) 

satisfying (I’)-(V’), then 

~/Tfjjco = N,(f) for each f EMa( (4) 

We shall denote below by q(r) the set of all mappings T: f ---f T, 
of M”(Y) into M’O(Y) satisfying (I’)-(V’). 

REMARK. If T E’%?(Y) and f, g EMU, then Tfg(x) = Tf(x)Tg(x) 
for each x E E such that (z} 4 .Y. 

In fact, let D = {yjT,(y) # Tf(y)Tg(y)}. It follows from (I’) that 
D EM. Hence if x E E is such that {x} 6 Y-, then x 6 D and thus 

Td4 = T,(x) T,(x). 

PROPOSITION 2. The tribe 3 has the $roperty (M) if alzd ortly if there 
is a mappirtg T: f -+ T, of M”(F) into M”(Y) having the properties 
(rl)-( VI’) * 

Suppose that 9 has the property (M) and let p be a mapping of 
Y into Y satisfying (I)-(V). For f = zy=i ci qJAj E 9’(Y), define 

T, = z;= 1 cj ‘&(A$. It is easy to see that T, is well defined and that 

IlTtllcL, = N,(f) f or each f E Y(Y); the properties (I’)-(VI’) are also 
satisfied by f + Tf on Y(Y). Since 9’(Y) is dense in M”(F) (for the 
topology defined by N,), T: f ---f T, can be extended by continuity to 
Mm(Y) and the extension continues to satisfy the conditions (I’)-(VI’). 
Conversely, if there is a mapping T: f -+ Tf of Mm(Y) into M@‘(F) 
verifying the conditions (I’)-(VI’) and if for A EY we set vptAJ = TVA 
(it is obvious that TWA is a characteristic function), we obtain a mapping 
p of Y into 9 having the properties (I)-(V). 

REMARK. The mappings p and T considered in the above proof verify 
the equations qp(AJ = TPA for all A E r. 

We shall denote below by R’ the locally convex space fl,,,., R(Ax) 
where I = M”(Y) x E and R(f+) = R (= the real line with the usual 
topology) for all (f, x) E I. Every T E Q?(Y) can be identified with the 
element (Tf(x)) (f,%) E I of RR’; hence U(Y) can be identified with a 
convex part of R’. 
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We denote by L”(Y) the quotient Banach algebra M”(Y)/N” and 
by f -+ 7 the canonical mapping of M”(Y) onto L”(r). The norm on 
L”(F) is given by f --+ N,(f) = N,(f). Let now 9 be the set of all 
x’ E (Lm(Y))’ verifying the relations: i) x’(1) = 1, and ii) x’(f) > 0 if 
j > 0. We recall that the set of extremal points of B coincides with the 
set of all characters of L”(Y) (see, for instance, [7, p. 4431). 

PROPOSITION 3. Let 8’, 0” be two mappings of .F into 5 and let 9 be 
the set of all T E U(F) such that q8,CA, < T,, < @?(A) foY each A E F. 
Then 9 c V(F) is convex and T E 9 is extremal in 9 if and only if T is 
extremal in %7(Y). 

If T E 9 is extremal in g(Y), then obviously T is extremal in 9. 
Conversely, suppose that T E 9 is extremal in 9 but is not extremal 
in V(Y). There exist then T(l), T(‘) E g(Y), T(l) # T@), and 0 < t < 1 
such that T = tT(‘) + (1 - t)T@). Let now A E F ; we have 

TpA(x) =tT$(x) + (1 - t)TFi(x) for all XEE. If xE:B’(A) then TcA(x) =l 

and hence T!:(x) = 1 for j = 1, 2; if x 4 e’(A), then P)@‘(A) (x) = 0. 

It follows that for all x E E, T!:(x) > verCA,(x), (j = 1, 2). If x $ e”(A) 

then TVA(x) = 0 and hence T!:(x) = 0 for i = 1, 2; if x E e”(A) then 

Q)~u(~)(x) = 1. It follows that for all x E E, T::(x) < peSJ(AJ(~), (i = 1, 2). 
Hence T(j) E 9 for j = 1, 2, and this leads to a contradiction. This 
completes the proof of the proposition. 

PROPOSITION 4. Suppose that G?(F) is nonvoid. Then there is a mappilzg 
T*: f + T,* of M”(F) into M”(F) satisfying (I’)-(VI’). Moreover, if 

T E %(,F) is given, zue can choose T* so that T:A = T,, for A E .F-, 
whenever T,, is a characteristic function. 

Let T E g(Y) be given. We shall divide the proof into five parts: 

(a) For each A ET define W(A) = {xiTqA(x) = 1) and B”(A) 
= (xJTrpA(x) # 0); we have obviously B’(A) z B”(A) z A and 

%‘(A) d %A < %“(A). 

(b) Denote by 9 the set of all mappings S E w(Y) such that 
percAj < S,, < pet/cAJ for all A E F. 

We shall identify .9 with a part of RI; 93~ R’ is obviously convex 
and by hypothesis nonvoid. For S E 9 and (f, x) E I, we have by (4), 
lSf(x)l < N,(f); hence 9 is a bounded part of R’. 

(c) We shall show now that 9 is a closed part of R’. Denote by B” 
the Banach algebra of all bounded real-valued functions on E, with the 
norm f + lIfl(m = SUP,,~ If(z)!. Let now (T(n),,, be a filtering family 
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of elements of 9 converging to an element of RI. For each f E M”(.F) 
and x E E we have 

limj,J T,(i) (x) = T!“(x). (5) 

It is obvious that TCO, as a mapping of M”(Y) into B” satisfies the 
conditions (II’)- ; in particular, it follows that jITf”\ Jm < N,(f) for 
each f E Mm(Y). From (b) and (5) we deduce: 

qw(~) < T; d W’(A) for all A ~9-. 63) 

But (6) implies that Tz E M”(Y) and that Tg4 = P)A for each A E 9. 
Hence Tf” E M”(7) and Ttm = f for each f E Y(T). Since 9’(Y) is 
dense in M”(Y) and f -+ T,” is a continuous mapping of M”(Y) into B”, 
it follows that Tf” z f for all f E M*(F). Thus T” E .9 and 9 is closed. 

(d) Since 9 is a convex compact part of R’, there exists an extremal 
point T* E .9 (see [S, Chap. II, p. 841 and [7, p. 4401). We shall show 
that T* satisfies also (VI’). By Proposition 3, T* is extremal in a(Y). 
Now every extremal point of V(YJ satisfies (VI’).3 For the sake of 
completeness, we shall give here a direct proof of this assertion: 

(e) Let T* E%(Y) be an extremal point of %Y(.Y) and let x,, E E. If 
(~a} $ .Y we have, by the remark preceding Proposition 2, Tfg*(x,,) 

= Tt*MT,*k,) for all f, g E M”(F). If (x,,} E Y and ~({x,,}) > 0 then 
obviously Tfg*(xO) = T,,*(x,,)T,*(x,,) for all f, g E M”(F). Finally, if 
{x0} E F and p({%,}) = 0, consider the mapping xX,: f- Tf*(x,,) of L”(F) 
into R; it is clear that xzQ E 8. We shall show that xzO is extremal in 9. 
In fact, otherwise there would exist x1, xz E 9 x1 # xz and 0 < t < 1 
such that xr. = txl + (1 - t)X2. Define now T(i) by Tr(i)(y) = Tf*(y) 
for y # x,, and Tr’i)(x,,) = xi(f) (i = 1, 2); it is clear that T(l), Tt2k U(F), 
T(l) # Tt2), and that T* = tT@) + (1 - t)Tt2). But this contradicts 
the fact that T* is extremal in V(.Y); hence xz, must be a character of 
Lm(Y) and thus Tfg*(xO) = TI*(x,,) T,*(x,) for all f, g E Mm(F). Therefore 
T* satisfies (VI’). 

Since the last assertion of Proposition 4 is obvious, the proposition is 
completely proved. 

4. We shall show now that (E, B, ,u) has always the property (M). 

3 In fact, a more general result is valid: Let 2, and 2, be two compact spaces, 

C(Z,) and C(Z,) the corresponding Banach algebras of continuous real-valued func- 
tions on 2, and Z,, respectively, and 48 the convex set of all linear positive mappings 
T of C(Z,) into C(Z,) mapping 1 into 1. Then T E % is extremal in %? if and only 
if it is multiplicative. 
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THEOREM 1. Let (E, 8, ,u) be a complete measure space of total mass one. 
Then there is a mapping T: f-+ T, of M”(d) into M”(6) satisfyitig the 
coaditions (I’)-( l/I’). 

Let H be the set of all pairs (Y-, fl) where 7 c 6 is a tribe and fl 
a mapping of M”(F) into M”(F) h aving the properties (I’)-(VI’); it is 

clear that H is nonvoid. We shall order the set H as follows: (9,F) 

< (9, T’) if .9 c 9 and if the restriction of T’ to Mm(g) coincides 

with T F . It is obvious that to prove the theorem, it is enough to show 
that every totally ordered part of H has an upper bound in H. In fact, 

by Zorn’s theorem, there is then a maximal element (9, T9) in H; 
by Proposition 1 (and Proposition Z), it follows that 5? = d and hence 

that there is a mapping T = TB of M”(b) into M”(b) satisfying 
(I’)-(VI’). 

To prove that every totally ordered part of H has an upper bound 
in H we shall reason as follows: Let Q> = (Y+ T(i)),.,, be a totally 

ordered family of elements of H (we denote here flj = T(i) for each 
i E J) and let Ym be the tribe spanned by UjEJ Yj. We have to distin- 
guish two cases: 

(a) There is no countable cofinal part in J. 
Let f E M”(F-,) ; there is then a countable part I c J such that 

f E M”(F,) where YI is the tribe spanned by UiG1 Yj. If h E J is an 
element superior to all i E I, then f E Mm&F,,). Define T,” = TF); it is 
clear that T, * is well defined and that Tm : I- T,” is a mapping of 
M”(F-,) into M”‘(Fm) satisfying (I’)-(VI’) and the equation Ti” = T,Ci) 
for all j E J and f E M”(Fj). This shows that (.Y,, T”) is an upper 
bound of the family @. 

(b) There is a countable cofinal part K in J. 
We may suppose that K is the set of elements of an increasing sequence 

(i(n)),,, (the case when J is finite is obvious). Remark that in 
this case Ym is the tribe spanned by UneN .YjfnJ. For each f E Mm(Ya) 
and rz EN, denote by f,, (an arbitrary bounded determination of) 
the conditional expectation of f with respect to Yjl,,, ; we have ] IT~~“l], 
= Nm(f,,) < N,(f). Let now % be an ultrafilters on N finer than the 
FrCchet filter. For each f E Mm(Fw) and x E E define: 

T{(x) = lim% T5n(i(*)) (x). 

4 It is sufficient to take for y  the tribe consisting of all the sets A EJV  ̂ and 
CA with A EN, to define p(B) = 4 if B f.,V and p(B) = E if CB E JV and to 
use Proposition 2. 

6 The use of the ultrafilter 4? was suggested in [5]. 
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By the martingale theorem (see [6]) the sequence ( T::))(x))~~~ converges 
to f(x) for almost every x E E, and hence T,’ E Mm&F-,) and Tf’ z f. 
It is easy to see that T’: f- Tj’ is a mapping of M”(.Fm) into M”(F-,) 
having the properties (I’)-(V’). By Proposition 4, there is a mapping T” : 
f- T,” of M”(Y-,) into M”(Fa) satisfying (I’)-(VI’) and the equation 

TcA = Ti, for A E F-m. whenever Tk, is a characteristic function. If 
A E Fi for some j E J, then for all n sufficiently large A E Fit%, and 
hence TkA = ‘j$r” = Tkjj, is a characteristic function. It follows that 

Tp* = Tb, = Tti for every i E J, A E Fj, and therefore Tf” = Tf(iJ for 
all f E M”(Yj), j E J. This shows that (F,, T”) is an upper bound of 
the family @. 

Hence the theorem is completely proved. 

COROLLARY 1. Let (E, 8, p) be a complete totally a-finite measwe space. 
Then there is a mappirtg T: f + T, of M”(b) into M”(6) satisfying the 
conditions (I’)-( VI’). 

The algebra M”(b) is defined here as before. 

COROLLARY 2. Let 2 be a locally compact space and p a positive Radort 
measure on 2. The% there is a mapping T: f--f T, of M-(Z) i&o M”(Z) 
satisf yirtg the conditions (I’)-( VI’). 

We denote here by M”(Z) the (Banach) algebra of all real-valued 
bounded ,u-measurable functions [4, Chap. IV] defined on Z and by JY” 
the ideal of all locally ,u-negligible functions [4, Chap. IV] belonging to 
M”(Z) ; N, is the essential supremum seminorm on M”(Z) [4, Chap. IV]. 
Corollary 2 is a consequence of Theorem 1 above and of Proposition 4 in 
[4, Chap. V, pp. 6-71. 

REMARK. In connection with the corollary on p. 993 in [Z], we wish 
to remark that the Haar measure on a compact group is completion regular 
(see [9, pp. 28%2891). This gives immediately the above mentioned 
corollary. 

5. Using Corollary 2 above, we deduce that Theorem 1 and the 
Corollaries 1, 2, and 3 in [4, Chap. VI, 5 2, No 51 remain valid without 
the assumption that the locally convex space F contains a countable 
dense set.s In the case when F is a normed space, the norm on LTfS should 

be defined by (f + i is the canonical mapping of LFgS onto Lk) : 

6 The assertion of corollary 3 in [4, Chap. VI, p 2, No 51 that there is a 
determination of f such that f(t) E H’ for each t E T, can be proved using “the exist- 

ence of a lifting” given by Theorem 1 of this paper. 
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We wish to mention explicitly that the above results show in particular 
that the Dunford-Pettis theorem (see [lo] and [7, pp. 50335041) holds 
without any countability hypothesis (this was shown in [5], at least for 
the case of Banach spaces, assuming that the result of Corollary 2 of this 
paper was valid). 

The Proposition 10 in [4, Chap. VI, $ 2, No 61, giving the dual of 
the space L,l, remains also valid without assuming that F contains a 

countable dense set [the norm on Lg, is again defined by formula (7)]. 
Let now Z be a locally compact space, ,U a positive Radon measure 

on Z and F a separated locally convex space; let P be the set of all 
continuous seminorms on F. For each mapping f of 2 into F let 

Denote by @*l the vector space of all mappings f of Z into F such that 

fli,, (f) is finite for each fi E P (m,, is obviously a seminorm on A@~‘). 
Consider on gF1 the locally convex topology defined by the family of 

seminorms (fl,,),,.. Let XFC %‘=l be the vector space of all contin- 

uous mappings of Z into F having compact support. Denote by 8,r 

the closure of XF in gF1, by LF1 the associated separated space and by 

f + 7 the canonical mapping of gF1 onto LF1. It can be shown that: 
(i) If f E LFF1, g’ E 9$S and g’(Z) is an equicontinuous part of F’, 

then z++ (f(z), g’(z)) is essentially integrable : 

(ii) If fr = f, E LF1, g’ = g” E LF, s and g’(Z), g”(Z) are equicontin- 
uous parts of I;‘, then (fl, g’) = (fz, g”) locally almost everywhere. 

It follows that 

(here g’ is an element belonging to the class g EL;‘.< such that g’(Z) is 
an equicontinuous part of F’) is a well defined (continuous linear) mapping 
of LF1 into R. Moreover, we have the following 

THEOREM 2. Let F be a separated locally convex @ace. Then 0 : g + 0(g) 

is a ooze-to-one linear mapfiilzg of Lzls onto the dual of L,l. 

We shall not give here the proof of Theorem 2 (it can be obtained 
using essentially the same method as in the proof of Proposition 10 in 
[4, Chap. VI, 5 2, No 51). 
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