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Abstract 

We shall extend our previous results (Chanane, 1998) on the computation of eigenvalues of second order Sturm- 
Liouville problems to fourth order ones. The approach is based on iterated integrals and Fliess series. @ 1998 Elsevier 
Science B.V. All rights reserved. 
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1. Introduct ion 

This paper is a sequel of  our recent paper [3] on the computation of eigenvalues of  Sturm-Liouville 
problems and their error bounds. We shall be concerned here in the approximation of  eigenvalues 
of  fourth order Sturm-Liouville problems using Fliess series [6, 7, 11]. 

Suppose we are given the fourth order equation 

Ly  : =  y(4) _ (s(x)y(l))(I) + q(x)y = 2y, O<.x<~a (1 .1 )  

together with the self-adjoint boundary condition 

4 4 

Z M i j y ( j - l ) ( o )  = O, Z N q y ( J - 1 ) ( a )  = O, i = 1,2, (1 .2 )  
j = l  j--I 

where q, s, s' E Ll(O,a). It is well known [5, 13] that such a problem has an infinite sequence 
of eigenvalues 2o ~< 21 ~< 22 ~< 23 ~ • "', )~n ~ +00 as n ~ oo and each eigenvalue has muRiplicity at 
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most 2. For more details see [9] and the references therein. On the numerical side, the only code 
available to deal with fourth order Sturm-Liouville problems is SLEUTH (Sturm-Liouville eigen- 
values using theta matrices) [10]. This situation contrats with the availability of  many sot~ares  
dealing with the second order case, SLEIGN [2], SLEIGN2 [1], SLEDGE [8] . . . . .  

For definiteness we shall consider the case when the boundary condition reduces to 

y(0, 2) = y~2)(0, 2) ---- y(a, 2) = y~2)(a, 2) = 0. (1.3) 

Other boundary conditions can be treated in the same manner. 
With obvious notations we shall transform (1.1), (1.3) into 

3 

Ly :=  y(4) + Z qi(x)y(i-1) _~ 2y, O<~x<~a 
i=l (1.4) 

y(0, 2) ---- y(2)(0, 2) = y(a, 2) = y(2)(a, 2) = 0 

then the eigenvalues of eq. (1.4) are the zeros of  the boundary function B defined by 

B(2) := y(a,2) ,  (1.5) 

where y(x, 2) is the solution of  the initial value problem 

3 

Ly :=  y(4) q_ Zqi(x)y(i-1)  = 2y, O<<.x<<.a 
i=l (1.6) 

y(0,2)  = y~2)(0,2) = 0, y~i)(0,2) = 1, y(3)(0,2)  = 

the ~ is chosen so that y~Z)(a,2) = 0. Thus, we are normalizing the eigenfunctions using ytl)(0,2) 
= 1 .  

Following [3] we shall use the concepts of iterated integrals [4] and Fliess series, well-known 
in control theory, to derive in Section 2 formal series representations for y(x, 2) and the boundary 
function B(2). In Section 3, we address the problem of  convergence of  these series and their ap- 
proximations by finite sums, the computation of  eigenvalues and their error bounds. In Section 4, 
we work out few examples to illustrate the method. 

2. The boundary function 

Let Yl = Y, Y2 = dy/dx, Y3-- d2y/dx2, y4 = d3y/dx3 and introduce Y = (yl,Y2,Y3,ya)t,Y O= 
(0, 1,0, ~)'. Thus, (1.6) becomes 

dY 3 
- - A Y + Z q i ( x ) N i Y  , Y ( 0 ) =  y0, (2.1) 

dx 
i=1 

where 

No= 
( 1001 (000000 ) 

0 0 , N 1 =  0 0 0 ' 

0 0 - 1  0 0 
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N2= 0 0 0 0 0 0 

0 0 0 , N3 = 0 0 0 ' 

0 - 1  0 0 0 - 1  

and A = No. 

We shall see (2.1) as a bilinear system where qi(x), i = 1,...,3 are the inputs and as such we 
may use the Fliess series representation of Y in term of the qi(x). Hence, 

3 x 

y= r° + ~-~ ~ N,~....N, or° fo d(/,.., d(io (2.2) 
k>~0 io,..., 'k = 0  

and the iterated integrals fo dffi,.., d{io are defined as follows: 

/ ~o(X) = xf~ x 

(~(x) q~(s)ds, i =  1,...,3, (2.3) 

/o ~ /o ~ /o z d ~ i ,  . . .  d~,o = d~,, (z) d~,,_, ... d~, o. 

Lemma 2.1. The solution y(x,2) of  (1.6) and the boundary function B(2) associated with the 
eigenvalue problem (1.4) have the followino formal expansions: 

3 x 

y(x, 2) ---- C O + ~ ~ C~.../o(2) fo d~;,.., d(~o, (2.4) 
k~>O 'o,...,ik = 0  

3 a 

B ( 2 ) = D  ° +:~--~ ~ D~**...,o(2)fo d~,,...d~o, 
k>~0 'o,..., ik = 0  

where 

C O = CY °, C = (1,0,0,0), 

and 

C~...io(2) = CNi~....N,o Y°, io,...,ik = 0,...,3 

D O = EY  °, E = ( 1 , 0 , 0 , 0 ) ,  

D~,...io(2) = ENi~....N~o Y°, io, ..., ik = O, 1. 

(2.5) 

(2.6) 

(2.7) 

Proof. That the series (2.4) is indeed solution to (2.1) is seen from the facts 

/0 x /0 ~ d d~o d~,k 1.--d~,o = d~,_,.., d~o, 
dx 

/o ~ /o x d d(i d(,, ,...d(~ o = q~(x) d(,~_,...d(io, i = 1 ..... 3 
dx 

and a differentiation of (2.2), whereas, B ( 2 ) =  EY(a,2).  

(2.8) 
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Remark 2.2. In the above equations (2.4), (2.6) and (2.5), (2.7) E = C and the D's  coincide with 
the C's with corresponding indices just because the boundary function is given by (1.5) otherwise 
E # C. Indeed, if the boundary condition is y(0) = y(2)(0) = y'(a) = y(Z)(a) = 0 for example, then 
E = (0, 1,0,0) while C = (1,0,0,0). 

Remark 2.3. Although the expansion (2.2) originated from the method of successive approximations 
(Picard-Lindeloef method [5]), the way the terms of the series are arranged giving rise to iterated 
integrals, yielded the name Fliess series. 

3. Eigenvalues approximation 

In this section we shall address the problem of convergence of the series in (2.4) and (2.5) and 
their approximations by finite sums, the problem of computing the eigenvalues based on these finite 
sum approximations and their error bounds. 

n We shall be using the following norms, IIA[I = max/=l,...,n )-~j=l laijI and Ilxll = maxi=l, ,, Ix~l as 
matrix and vector norms respectively. We claim the following results whose proofs are immediate. 

Lemma 3.1. The coefficients in the series (2.4) and (2.5) satisfy the growth condition 

[[C~ i0(2)1 [, [[O~./0(2)[l~max(1,[2[) k+l, k~>0. (3.1) 

Lemma 3.2. / f  7(x) = sup(fo x Iq,( )l Iq3(ff)l d ,x) < ~ then [fox d~,~...d~iol <,?(x)k+'/(k + 
1)!, and the series (2.4) and (2.5) are absolutely and uniformly convergent on compact sets. 

Proof. The result follows immediately from [ fo e d~ik.., d~i0 J ~< (?(X))k+l/(k + l )! which can be proved 
by induction on k. 

Lemma 3.3. Let BN(~,) be defined by 

io a BN(2) := DO ~- 2 Dk...io(2) d~i,.., d~io ( 3 . 2 )  
k=O io,..., ik =0 

then 

[B(2) - BN(2)[ ~<E([AI,N) (3.3) 

where 

E(I2I,N ) = e3r(a)max("12l)(r(N + 1) - F(N + 1,3v(a)max(1, I2I)))/F(N + 1) (3.4) 

and F(x,z) is the incomplete gamma function defined by F(x,z) = f f f  e-tt x-~ dt, F(x) being the 
gamma function. 
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Theorem 3.4. Let qi E L'(O,a),i = 1 .... ,3 and tr be the set o f  eioenvalues of (1.4) 
Ve > O, V2 E a ,~V(e ,~)  > 0,32N such that - where B(-2) = 0 and BN('2N) = O. 

Furthermore, we have the followin9 estimate: 

{ 
E([AI,N) 

infx<<~ulB~(~)l 

I 2E(IAI,N) 
i n f ~  I~(~)I 

if the eigenvalue is simple, 

if the eigenvalue is double. 

(3.5) 
Proof. The above estimate follows immediately from the BN(2 ) -  BN(2N) = B N ( - ~ ) -  B(~), the 
use of the mean value theorem and the fact that 2 and 2N are either simple zeros of B and BN 
respectively for N large enough or double zeroes. Furthermore, the right-hand side of (3.5) can be 
made arbitrarily small by choosing N large enough. 

Remark 3.5. As in the second order case the error estimate (3.5) makes a sense only if 
2 max(f o Iql(OI d(, ..., Jo Iq3(~)l d(, a) max(l, 121) is small. Otherwise N becomes prohibitively large. 
We shall see in the next section that the actual error is much smaller than the computed one. 

4. Numerical examples 

As pointed out earlier the only available software to deal with the fourth order Sturm-Liouville 
problem is SLEUTH developed by Greenberg and Marietta [9], whereas in the second order case 
many such software exist. We quote SLEIGN (Sturm-Liouville Eigenvalue) [2], SLEDGE (Sturm- 
Liouville Estimates Determined by Global Error (control)) [8], SL02F [12] and SLEIGN2 [1]. 

In this section we shall solve two eigenvalue problems using the method introduced. 

Example 4.1. 

Ly  & y(4) _ 0 . 0 2 x 2 y ( 2 )  _ 0.04xy(l) + ( 0 . 0 0 0 1 x  4 _ 0.02)y = 2y, 

y(0) = y(2)(0) = y(5) = y(2)(5) = 0. 

Using N = 40 we obtain the first eigenvalue at 0.215050864369729 within 3 x 10 - 3 .  The second 
eigenvalue is found to be 2.75480993468240. The corresponding error obtained from (3.5) is mean- 
ingless. It is easy to check that these eigenvalues are the square of the eigenvalues of the following 
second order Sturm-Liouville problem 

lye_ _ y(2) + 0 . 0 1 x 2 y  = 2y, y(0) = y(5) = 0. 

The eigenvalues for this second order problem have been computed using the technique introduced 
in [3] and are 0.46373576999161440254, 1.6597620114591833222 which agree with those obtained 
using SLEIGN2 (0,463735819 and 1.65976214 to within an error of 0.75 x 10 -7 and 0.909 x 10 -7, 
respectively). The error on the first eigenvalue is 0.60328468492722423180 × 10 - 9 ,  while the error 
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on the second is meaningless. However, the absolute differences between these eigenvalues and the 
square of  the eigenvalues of  the corresponding second order system are 0.14 × 10 -13 and 0.63 x 10 -12, 
respectively. Note that since the eigenvalues of the second order problem are positive, the correspond- 
ing eigenvalues for the fourth order problem are simple as by product of  Theorem 6.1 in [ 10]. These 
values agree with the ones obtained using SLEUTH (0.2150508678096625 and 2.754809926369330 
to within an error of  7.878973 × 10 -11 and 3.19882435 × 10 -1° respectively). 

Example 4.2. We shall take the same differential equation as in the previous example, with different 
boundary conditions 

Ly ~- y(4) _ 0.02x2y(2) _ 0 . 0 4 x y ( l )  q_ ( 0 . 0 0 0 l x  4 _ 0.02)y = 2y, 

y(0)  = y(l~(0) = y(5) -- y(1~(5) = 0. 

Using N = 40 we obtain the first eigenvalue at 0.866902502399502 within 6.9 × 10 -3 .  The second 
eigenvalue is found to be 6.35768644815908 while the error obtained from (3.5) is meaningless. 
Note that here we took Y0 -- (0, 0, 1, ~)' i.e., the eigenvalues are normalized using y/2~(0, 2) = 1, and 
solved for ~ and 2 the system 

y(a ,2 ,~)  = 0, y(l~(a,2, ~) = 0, 

where we have written explicitely a,2, ct in the arguments to show the dependence of  y and y(~ on 
these quantities. These values agree with the ones obtained using SLEUTH (0.866902500921400 and 
6.357686441644492 to within an error of  4.228077 × 10 -11 and 7.861389796 × 10 -11, respectively). 

5. Conclusion 

In this paper we have been able to extend our previous results on the computation of eigenvalues 
of  second order Sturm-Liouville problems [3] to fourth-order problems. Using the ideas of iterated 
integrals and Fliess series we derived series expansions for the solution of the initial value problem 
and the boundary function associated with the regular fourth order Sturm-Liouville problem. We 
computed the eigenvalues 2 and provided error bounds for them. These bounds are meaningful 
only if 2 max( f  o [ql(~)l d~, ..., fo Iq3(¢)l d¢, a )max( l ,  121) is small. However, the actual error is much 
smaller than the computed one. We have worked out few examples to illustrate the theory and seen 
that our results are in agreement with those obtained using SLEUTH. 
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