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Abstract

In this work we perform an experimental study of iterative methods for solving large sparse linear systems arising from a
second-order 2D mimetic discretization. The model problem is the 2D Poisson equation with different boundary conditions. We
use GMRES with the restarted parameter and BiCGstab as iterative methods. We also use various preconditioning techniques
including the robust preconditioner ILUt. The numerical experiments consist of large sparse linear systems with up to 643 200
degrees of freedom.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models of continuum mechanics problems are often described by boundary value problems,
expressed as systems of partial differential equations or integral equations. To facilitate their numerical solution, these
equations can be discretized by any one of a large number of techniques. Standard methods include various finite
difference and finite element approaches. Often, these traditional methods are applied by discretizing the defining
system of equations directly. One disadvantage of such an approach is that the discretization scheme that is selected
may have little connection with the underlying physical problem.

The mimetic methods produce discrete differential operators that mimic some fundamental properties of divergence
and gradient operators, among others. A wide summary of methods related with the construction of mimetic discrete
operators can be found in [1–4], and some of their applications in [5,6]. Recent advances in mimetic or compatible dis-
cretizations have been discussed in three recent workshops (see http://www.sci.sdsu.edu/compscims/MIMETIC and
http://www.math.unm.edu/stanly) with one of the main focus of discussion being the importance of differential geome-
try in producing mimetic or compatible discretizations and some practical use in 3D computational electromagnetism.

Recently, in [7], a methodology to build discrete operators that satisfy a discrete analog of the divergence theorem
was presented. In this technique, higher-order mimetic differential operators can be built in the interior as well as on
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the boundary for uniform grids in 1D. This technique has been extended to non-uniform grids [8]. A second-order
mimetic discretization is constructed and is compared to another second-order mimetic discretization applied to an
elliptic boundary value problem in one dimension in [9]. Such a technique, which employs a matrix formulation
to incorporate mimetic constraints, produces approximations whose order at a grid boundary is equal to that in the
grid interior. Mimetic schemes for the steady state diffusion equation based on Castillo–Grone approach have been
reported in [9–11]. Each one of these articles provides evidence of quadratic convergence rates for such schemes.

In addition, the computational solution of linear equation systems is one of the most important research areas
nowadays. This is true specially for those systems that come from modelling physical problems with certain
complexity, which are generally associated with industrial applications, such as fluid dynamics and structural
mechanics. These applications are governed by partial differential equations which are discretized using a variety
of numerical methods. A linear system of equations arise from the discretization process.

Iterative methods are among the most appropriate computational tools used to solve these problems, because
they allow fulfilling a specific precision and do not introduce fill-in (thus having minimum memory requirements).
Furthermore, they are highly parallelizable, which differs from the more traditional direct methods. However, it is
well known that iterative methods may have very slow convergence, which sometimes is not even assured. In order to
overcome this disadvantage, it is required to apply some preconditioning techniques that accelerate the convergence
and improve the performance, while having a low impact on the overall computational cost.

In this work, we use the second-order operators obtained by Castillo [11,12]. To obtain these operators we use
the Castillo–Grone [7] approach and we use these results to build a mimetic discretization applied to an elliptic
boundary value problem in two dimensions. For details about the construction of the 2D operators see [13]. We make
an experimental study about the sparse linear systems of equations arising from Poisson equation in 2D. We would
like to mention that we are already using 2D operators to solve elastic wave propagation problems (see [14]) with
very promising results which are in preparation to be submitted for publication very soon. We are also extending
the operators to 3D for elastic wave propagation, oil reservoir and porous media flow problems. Also an approach to
construct higher dimension operators using graph theory and Kronecker products is also in preparation to be submitted
for publication [15].

2. Mimetic methods

Mimetic methods begin by first discretizing the continuum theory underlying the problem. By “discretizing
the continuum theory”, we mean that mimetic methods initially construct a discrete mathematical analog of a
relevant description of continuum mechanics. Typically, this description takes the form of a physical conservation
or constitutive law. The discrete form of the conservation or constitutive law constrains the structure that discrete
operators can take. After building discrete operators that obey the discretized physical law, these mimetic operators
can then be substituted into the system of partial differential equations or integral equations. This yields a mimetic
discretization for the partial differential equations which automatically satisfies the discrete version of the physical law.

As a result, discretizations obtained using mimetic methods tend to replicate much of the behavior found in the
actual continuum problem. Because the physical laws are, in effect, built into the discretization, mimetic methods turn
out to be good candidates for modelling even challenging problems such as those involving anisotropic or strongly
inhomogeneous material properties [16]. Furthermore, the physical basis for mimetic discretizations tends to reduce
the occurrence of various non-physical numerical artifacts that can occur when using a traditional discretization
technique.

Given a discrete conservation law and a uniform grid, one can readily create mimetic approximations of high order
on the interior of a region. Building mimetic operators with comparably high-order approximation at or near the
boundary of a region, however, has been considered challenging even in the simplest case, namely, that of a uniform
bi-dimensional grid. Recently, Castillo and Grone [7] have developed an approach to create mimetic operators that
manages to overcome this difficulty. In addition, a wide summary of methods related with the construction of mimetic
discrete operators are given in [1–4], as well as some of their applications [5,6].

A numerical mimetic method produces the following discretizations:

• Gradient, denoted by G
• Divergence, denoted by D
• Boundary operator, denoted by B.
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Fig. 1. Staggered grid for the divergence and gradient.

The mimetic divergence D maps function values evaluated at the nodes in 1D, edges in 2D and faces in 3D to
values located at the cell centers of the grid. In contrast, the mimetic gradient G maps functions evaluated at the cell
centers and boundary points to values located at the nodes in 1D, edges in 2D and faces in 3D. So, the operators D
and G can be composed by matrix multiplication, resulting in a discrete second-order differential operator that maps
function values evaluated at the cell centers and boundary points to values located at the cell centers. In the Fig. 1, we
can observe an example of a staggered grid with 5 × 5 cells. We compute the divergence at the center of the cells in
the left figure using the bullet points from the right figure and we compute the gradient at the bullet points in the right
figure with the marked points in the left figure. In this paper we use the natural ordering.

Castillo and Grone [7] constructed a discrete analog of the conservation law as

〈Du, f 〉Q + 〈u, G f 〉P = 〈Bu, f 〉I (1)

for a generalized inner product 〈x, y〉A = yT Ax . The positive definite matrices Q and P , produce various quadrature
rules (see [7] and [17]) driving the form of D and G, respectively. In this context, the matrix B helps to maintain the
global conservation requirement for the discrete conservation law. The local and global conservation requirement also
constrains the structure of D and G.

3. Problem formulation and generalization

We want to solve the linear system Ax = b, where the matrix A is large and sparse. The linear system is obtained
by discretizing the Poisson equation using the Castillo–Grone approach to Dirichlet and Robin problems on the
rectangular domain [0, L] × [0, L].

For the 2D case, the Poisson equation has the following structure:

−∇
2 f = F, on Ω = [0, L] × [0, L], (2)

with Robin boundary conditions:

(
α f − β

∂ f
∂y

)
(x, 0) = γ (x, 0),(

α f + β
∂ f
∂x

)
(L , y) = γ (L , y),(

α f + β
∂ f
∂y

)
(x, L) = γ (x, L),(

α f − β
∂ f
∂x

)
(0, y) = γ (0, y),

(3)
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where f = f (x, y) is the unknown function, F = F(x, y) is the forcing or source function and ∂Ω is the boundary.
In this work, the boundary is a unitary square and {α, β, γ } are parameters.

The Poisson equation is discretized using approximations for the continuum divergence (∇·) through the extended
mimetic divergence (D̂), the continuum gradient (∇) through the order two mimetic gradient on the boundary (G2)
developed by Castillo [9,10]. For the boundary conditions, the directional derivative on the border ( ∂

∂ En ) is expressed
in terms of the nabla operator and discretized using the mimetic operator B1G2. This is shown as follows:

−∇
2 f = −∇ · (∇ f ) ≈ −D̂ · (G2) f = F on Ω (4)

α f + β En · ∇ f ≈ α f + βB1G2 f = γ on ∂Ω . (5)

For details about the construction of the 2D mimetic operators see [13].

3.1. Dirichlet problem

The linear system associated with discretization, with Dirichlet boundary condition has the following form:

(BD + D̂G2)f = b, (6)

where BD is a matrix associated with the boundary conditions given in (3) and L̂2 = D̂G2 is a matrix associated with
the main equation, given in (2). The operator BD is a coefficient matrix for the Dirichlet boundary condition, G2 is the
mimetic gradient, L̂2 = D̂G2 is the extended mimetic Laplacian, f is a vector column of the unknown functions and b
is the right-hand side vector column of the system.

3.1.1. Coefficient matrix for the Dirichlet (BD) boundary condition
The entries of this matrix are the α parameters of the Dirichlet boundary conditions, which are set on the main

diagonal. For a 5×5 grid, the order of this matrix is 45×45. On an N×N grid the matrix size is (4N+N 2)×(4N+N 2).

3.1.2. Column vector f
This vector is obtained using the elements of the unknown function f, which are set on an extended grid. For a 5×5

grid, the vector size is 45 × 1. This vector can be written as f = ( f1, . . . , f45)
t . On an N × N grid, the vector size is

(4N + N 2) × 1 and it can be written as f = ( fi )
t , i = 1, . . . , 4N + N 2.

3.1.3. Column vector b
This vector is generated using the function F , the right-hand side of the Poisson equation and the γ parameters.

These parameters are set on the right member of the boundary conditions. For a 5 × 5 grid, the vector size is 45 × 1.
On an N × N grid, the vector size is (4N + N 2) × 1.

3.1.4. Extended mimetic divergence (D̂)

This operator is obtained from the mimetic divergence. On a 5 × 5 grid, the size is 45 × 60. On a N × N grid, this
operator has six rows with zero at the beginning and at the end of the matrix. Also, this matrix has two rows with zero
between each block generating eight groups, each one with two rows with zero, for a total of twenty rows with zero.
On an N × N grid, there is (N + 1) rows with zero at the beginning and at the end. Between each block, there are
two rows with zero given a total of 2(N − 1). Thus, the total number of rows with zero is 4N . For details about the
construction of this 2D operator see [13].

3.1.5. Mimetic gradient (G2)

This mimetic gradient is obtained using the methodology proposed by Castillo in [7,9]. On a 5 × 5 grid, the matrix
size is 60×45. On an N ×N grid, the matrix size is (2N +2N 2)×(4N +N 2). There are rows with only three non-zero
entries (−8/3, 3, −1/3). These entries are put on the bottom and left part of the grid. Also, other entries (1/3, −3,
8/3) are put on the top and right part of the grid. The rest of the entries in this gradient coincide with the centered
finite differences, i.e., there are only two values different from zero: −1 and 1. For details about the construction of
this 2D operator see [13].
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Fig. 2. Matrix G.

3.1.6. Extended mimetic Laplacian (L̂2)

This operator is obtained in the same way as that of the 1D case, i.e. we compute the matricial product (D̂G2). On
a 5 × 5 grid, the matrix size is 45 × 45. On an N × N grid, the matrix size is (4N + N 2) × (4N + N 2).

3.2. Robin problem

Using the Robin boundary conditions, the linear system associated with the differential operator discretization is:

(BD + BNB1G2 + D̂G2)f = b. (7)

3.2.1. Coefficient matrix for the Neumann (BN) boundary conditions
This matrix is used to preserve the boundary conditions matrix (B1G2) in the system (7). The matrix entries are

β parameters, which are on the main diagonal. It is important to mention that, these entries can be overlapped at
some place on the diagonal. On a 5 × 5 grid, the matrix size is 45 × 45. On an N × N grid, the matrix size is
(4N + N 2) × (4N + N 2).

3.2.2. Matrix for the boundary operator (B1)

From (1) above we get that:

B = QD̂ + GtP, (8)

where Q is the weight matrix of the extended mimetic divergence operator, D̂ is the mimetic divergence extended,
Gt is the gradient transposed and P is the weight matrix of the gradient operator G. For example, Fig. 2 shows the
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Fig. 3. Matrix B1.

G matrix for a 5 × 5 grid, h is the discretization step. The matrix size is 60 × 45. This gradient is order one on the
boundary and order two into the grid.

The weight matrix Q is the extended identity matrix for the second-order divergence. On a 5 × 5 grid, the matrix
size is 45 × 60. On an N × N grid, the matrix size is (4N + N 2) × (2N + 2N 2).

The matrix P is the weight matrix of the gradient operator proposed by Castillo [9]. This matrix is square. On a
5 × 5 grid, the matrix size is 60 × 60. The only matrix entries different from zero are: 1/2 and 1. These elements are
on the main diagonal. On an N × N grid, the size of the weight matrix P is (2N + 2N 2) × (2N + 2N 2).

In [9,10], it is demonstrated that the matrix B can be written as B = B1 + O(h) for the second-order mimetic
operators. The B1 matrix has only −1 and 1; and the rest of the entries are zeros. In addition, the solution of the
Poisson problem using B or B1 is the same. In this paper we will use B1.

On a 5×5 grid, the size of matrix B1 is 45×60 (see Fig. 3). On an N × N grid, its size is (4N + N 2)×(2N +2N 2).
Thus, for the Robin boundary condition the structure of the final coefficient matrix is different for both B′s. If we

use the B1 then the resultant system is non-symmetric. If we use the B then the structure of the resultant system is
symmetric.

4. Numerical experiments

Sparse linear systems were generated for the test cases with the dimensions depending on the number of intervals,
N , in [0, L]. In all cases we used L = 1. For this study, we use two iterative methods, GMRES [18] and BiCGstab [19],
and two different preconditioner, incomplete factorization proposed by Saad [20] and SParse Approximation of the
Inverse (SPAI) proposed by Grote [21]. The restarted parameter of GMRES was 32 and the incomplete factorization
were ILU(0) and ILUt(10). All these methods are used from UCSparseLib library [22]. As the stopping criterion
we used the relative residual test: ‖r‖2/‖b‖2 < tol. In all cases, we used tol = 10−12. For ILUt(10) the numerical
threshold was 10−3. For the SPAI preconditioner, we used two approximations to control the density (0.1 and 0.4).
The computed solution was compared with the exact solution.

4.1. Dirichlet problem

We use the Castillo–Grone approach to build a mimetic discretization on a uniform grid to solve

−∇
2 f =

(
λ2

eλ − 1

)
eλx (9)
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Fig. 4. Matrix structure for a 5 × 5 grid.

Table 1
Dirichlet, Description of the preconditioners (case N = 100)

Precond Den (%) Required space Precond × vector

ILU(0) 0.05 1.292E+00 9.920E−02
ILUt(10) 0.24 3.476E+00 4.808E−01
SPAI(0.1) 0.18 2.323E+00 3.527E−01
SPAI(0.4) 0.04 8.592E−01 9.682E−02

Table 2
Dirichlet, Iterations of the iterative methods (case N = 100)

Name Iterations

BiCGstab-ILU(0) 92
BiCGstab-ILUt(10) 17
BiCGstab-SPAI(0.1) 97
BiCGstab-SPAI(0.4) 139

GMRES-ILU(0) 202
GMRES-ILUt(10) 26
GMRES-SPAI(0.1) 252
GMRES-SPAI(0.4) >500

subject to boundary conditions: f (x, y) = γ (x, y), on the domain [0, L] × [0, L] where λ is a scalar. The exact
solution is

f (x, y) =
eλx

− 1
eλ − 1

. (10)

The function γ (x, y) is simply the evaluation of f (x, y) on the boundary of the domain.
In this case, the dimension of the system is N 2 where N is again the number of intervals in [0, 1]. Here, λ = −1.

Fig. 4 show the symmetric structure matrix associated to linear system.
Table 1 shows the properties of the preconditioners for N = 100 (i.e., the dimension of the system is 10 000). The

first column gives the preconditioner. The second column shows the density of the preconditioner. The third column
shows the storage requirement (in Mbytes) for the preconditioner. The last column shows the operations (in Mflops)
needed to apply the preconditioner to a vector in the iterative method. In Table 1, we see that ILU(0) and SPAI(0.4)
are the preconditioners with the least density.

Table 2 shows the number of iterations to achieve convergence of the iterative methods for N = 100. The first
column gives the preconditioned iterative method. The second column shows the number of iterations. We observe
that BiCGstab-ILUt(10) is the most effective method. Also, GMRES-ILUT(10) performs well.
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Table 3
Dirichlet, Description of the preconditioners (case N = 200)

Precond Den (%) Required space Precond × vector

ILU(0) 0.01 5.179E+00 3.984E−01
ILUt(10) 0.06 1.412E+01 1.962E+00
SPAI(0.1) 0.04 9.377E+00 1.425E+00
SPAI(0.4) 0.01 3.473E+00 3.936E−01

Table 4
Dirichlet, Iterations of the iterative methods (case N = 200)

Name Iterations

BiCGstab-ILU(0) 155
BiCGstab-ILUt(10) 37
BiCGstab-SPAI(0.1) 230
BiCGstab-SPAI(0.4) 287

GMRES-ILU(0) 603
GMRES-ILUt(10) 53
GMRES-SPAI(0.1) 863
GMRES-SPAI(0.4) >1000

Table 3 shows the properties of the preconditioners for N = 200 (i.e., the dimension of the system is 40 000). The
first column gives the preconditioner. The second column shows the density of the preconditioner. The third column
shows the storage requirement (in Mbytes) for the preconditioner. The last column shows the operations (in Mflops)
needed to apply the preconditioner to a vector in the iterative method.

In Table 3, we see the low density of the preconditioners. The preconditioner ILUt(10) has more density; it needed
about 14 MB of storage.

Table 4 shows the number of iterations required to achieve convergence of the iterative methods for N = 200. The
first column gives the preconditioned iterative method. The second column shows the number of iterations. In this
case, BiCGstab-ILUt(10) and GMRES-ILUt(10) have the best performance.

4.2. Robin problem

We use the Castillo–Grone approach to build a mimetic discretization on a uniform grid to solve

−∇
2 f =

(
λ2

2(eλ − 1)

)
e0.5λ(x+y) (11)

subject to boundary conditions: α f + β(∇ f · En) = γ (x, y), on the domain [0, L] × [0, L] where α, β, λ are scalars.
The exact solution is:

f (x, y) =
e0.5λ(x+y)

− 1
eλ − 1

. (12)

The function γ (x, y) is defined on any side of the square domain, such that, the boundary condition is satisfied for
f (x, y) where n is the exterior normal vector. For example,

γ (0 ≤ x ≤ L , y = 0) =

(
1

eλ − 1

)
[(α − 0.5βλ)e0.5λx

− α].

In this case, the dimension of the system is 4N + N 2, since we have N 2 inner unknowns and N unknowns on each
boundary side. Here, N is again the number of intervals in [0, 1], and λ = −1, α = −eλ and β =

eλ
−1
λ

. In the Fig. 5,
we can see the non-symmetric structured matrix for 5 × 5 grid.

Table 5 shows the properties of the preconditioners for N = 100 (i.e., the dimension of the system is 10 400). The
first column gives the preconditioner. The second column shows the density of the preconditioner. The third column
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Fig. 5. Matrix structure for a 5 × 5 grid.

Table 5
Robin, Description of the preconditioners (case N = 100)

Precond Den (%) Required space Precond × vector

ILU(0) 0.05 1.340E+00 1.024E−01
ILUt(10) 0.23 3.604E+00 4.981E−01
SPAI(0.1) 0.16 2.369E+00 3.586E−01
SPAI(0.4) 0.04 9.267E−01 1.065E−01

Table 6
Robin, Iterations of the iterative methods (case N = 100)

Name Iterations

BiCGstab-ILU(0) 210
BiCGstab-ILUt(10) 33
BiCGstab-SPAI(0.1) >1000
BiCGstab-SPAI(0.4) >1000

GMRES-ILU(0) >1000
GMRES-ILUt(10) 86
GMRES-SPAI(0.1) >1000
GMRES-SPAI(0.4) >1000

Table 7
Robin, Description of the preconditioners (case N = 200)

Precond Den (%) Required space Precond × vector

ILU(0) 0.01 5.273E+00 4.048E−01
ILUt(10) 0.06 1.438E+01 1.996E+00
SPAI(0.1) 0.04 9.467E+00 1.437E+00
SPAI(0.4) 0.01 3.608E+00 4.129E−01

shows the storage requirement (in Mbytes) for the preconditioner. The last column shows the operations (in Mflops)
needed to apply the preconditioner to a vector in the iterative method. In Table 5, we see that ILU(0) and SPAI(0.4)
are the preconditioners with the least density.

Table 6 shows the number of iterations required to achieve convergence of the iterative methods for N = 100. The
first column shows the preconditioned iterative method. The second column shows the number of iterations.

We observe that BiCGstab-ILUt(10) is the most effective method. Also, GMRES-ILUT(10) has good performance.
Table 7 shows the properties of the preconditioners for N = 200 (i.e., the dimension of the system is 40 800). The

first column gives the preconditioner. The second column shows the density of the preconditioner. The third column
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Table 8
Robin, Iterations of the iterative methods (case N = 200)

Name Iterations

BiCGstab-ILU(0) 434
BiCGstab-ILUt(10) 65
BiCGstab-SPAI(0.1) >1000
BiCGstab-SPAI(0.4) >1000

GMRES-ILU(0) >1000
GMRES-ILUt(10) 541
GMRES-SPAI(0.1) >1000
GMRES-SPAI(0.4) >1000

Table 9
Matrices description for the tests

Name N Dim NZ Den (%)

Test 1 400 161 600 804 800 0.0031
Test 2 800 643 200 3 209 600 0.0008

Table 10
Solver performance

Name Den (%) Required space Operations Precond × vector Iter

Test 1 0.0153 5.612E+01 4.777E+01 7.976E+00 210
Test 2 0.0039 2.245E+02 1.919E+02 3.195E+01 409

shows the storage requirement (in Mbytes) for the preconditioner. The last column shows the operations (in Mflops)
needed to apply the preconditioner to a vector in the iterative method.

In Table 7, we see the low density of the preconditioners. The preconditioner ILUt(10) has more density; it needed
about 14 MB of storage.

Table 8 shows the number of iterations needed to achieve convergence of the iterative methods for N = 200. The
first column shows the preconditioned iterative method. The second column shows the number of iterations. In this
case, BiCGstab-ILUt(10) and GMRES-ILUt(10) have the best performance.

In general, the numerical experiments have shown that the BiCGstab-ILUt has the best performance for our
examples of medium size. Moreover, we have built two tests with large sparse linear systems from Poisson equation
with Robin boundary condition. In Table 9, we show the matrices description associated with these large sparse linear
systems: N represents the number of cells, dim represents the matrix dimension, NZ represents the no nulls elements
and Den represents the matrix density.

To solve the large sparse linear systems shown in the Table 9, we use the BICGstab + ILU(10) method due to
the previous numerical results. In Table 10, we present the solver performance: Den is the preconditioner density,
Required Space is the Mbytes used for preconditioner storage, Operations is the amount of operations (in Mflops)
to build the preconditioner, Precond × vector is matrix–vector operations (in Mflops) to solve the triangular systems
in each iterations of the iterative method and Iter is the iterations of the BiCGstab to reach convergence.

The results obtained shows the good performance of the BiCGstab-ILU(10). The preconditioner density is low
with respect to dimension problems and the iterations of the iterative method are acceptable for our large sparse linear
systems.

5. Conclusions

In this work, we have done an experimental study about solving the large sparse linear systems arising from
a second-order 2D mimetic discretization method. This study was done using different iterative methods and
preconditioners. Our experiments showed that the BiCGstab preconditioned with ILUt had the best performance for
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our examples. Moreover, the preconditioner density is low with respect to dimension problems and the iterations of
the iterative method are acceptable.
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