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A.bntracf- &Wing from a theorem on the distance matrix of a projectsve linear code, one intro- 
duces an axiomatic definition of a strongly regular normed space. It is then shown that ewery 
such normed space admits a representation by means of a projective code. As a particular case, 
this yields a or&o-one correspondence between two-weight projective codes over prime fields 
and some strongly regular caphs. 

5 1. Introduction 

The Hamming distance plays an important role in the study of linear 
codes, both for practical reasons, when codes are used for detecti,ng or 
correcting errors on a noisy channel, and for more theoretical reasons. 
For instance, as shown by MacWilliams [9], two linear codes are equiv- 
alent under generalized permutation on their coordinates, if and only if 
they are isomorphic as normed spaces, when the Hamming weight is 
taken as the norm. 

In this paper, we define the distance matrix of a code to be the ma- 
trix whose (i,j) entry is the Hamming distance between the it” and the 
it” code vectors. For some linear codes, called projective codes, it turns 
out that this matrix satisfies remarkable equations, very similar to those 
satisfied by. tire adjacency matrix of a strongly regular graph (cf. for in- 

stance Seidel [ 15 1). Taking these properties zis axioms, we introduce 
the concept of a strongly regular normed space, and we show that every 
such normed space is isomer hj.c to some projective code (when the 
Hamming weight is taken as the 1;c3rm). 
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Some classes of two-weight cyclic codes have bc en discovered by 
McElieee [ 121 and Delsarte and Goethals [ 61. However, no systematic 
investigation of such codes has yet been made. In $53 and 5 of the 

’ . 
present paper, we establish a one-to-one corresporidence between two- 
weight projective codes over prime fields and a large” class of strongly 
regular graphs; some results on thaz sub3;W ;-t will appear in a forthcoming 

paper. In fact, our derivation of strongly regular graphs from two-weight 
codes is simiIar, esyeciaitly in the binary case, to a method introduced by 
Goethals and Seidel [ 8 ]i f(Dr quasi-synnme tric designs. 

The folkwing notations are used throughout the text: the transpose 
of a matrix A is denoted by. 4 T ; the matrices In anld J, are the unit ma- 
trix and the all-one squ:ue matrix of order n, respectively. The additive 
ROUX> of a linear space Y is denoted by (I’, +). The notations for group 
characters are the same as in the author’s recent paper on Abelian codes 
El . 

g2. Hamming metric of linear cock% 

We first introduce some definitions. Let F = GF(Q) be the Galois field 
of q elements, where 
sional linear @ace of 

4 is a prime power, and let Fn denote the p2-dimen- 
all n-tuples over F. For a vector 

a = (a(i), a(2) . . . . . p+ ), a(‘) E F 3 

of Fv, and for an element h in F, we define N(X, a) as the number of 
coordinates a (i), 1 5 i 5 n., being equal to A. As usual, the number of 
nonzero coordinates 

kcalled the Mmming tveight of a. This function MjH has the classical 
properties of a norm. For future use, we now recall thlem: 

Let V be’ a linear space over F, and let M’ be a mapping from V into 
R’, the set 6f nonnegative real numbers. Then w is cal ed a nornj if it 
satisfies t,tae thr*ee following conditions: 
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(Al) (w(a) = 0) - (0 = bj, Va E I’, 
(0 w(U + t?) 5 w(a) + w(b), Va, b E V , 
(A-3) w(h) = w(a), Va E F7, h E F’, X %= 0. 

If k is a positive integer not exceeding M, we define an (n, k) lineur code 
over F to be a k-dimensional slabspace of Fn . The linear code C will be 
called a projective code if any.two’of its coordinates areSlinearly inde- 
pendent or, equivalently, if the minimum weight of the dual code of C 
is at least equal to three. A genlerator matrix for such a code is a k X n 
matrix, of rank k, whose columns correspond to yt distinct projective 
points in PG(k - 1, q). Hence k S n 5 (qk - I j/(p - 1) for any (n, k) 
projective code. 

. 

The distance matrix of a code C is the symmetric matrix D, of order 
v=qk,givenby I 

2 
I ’ D=[d,(u,b);a,bEC], 

where d, (a, b) = wH (a - b) is the Hamming distance between the code 
vectors a and b. . . 

Theorem 1. The distance matrix of/rzy +I, ii) projective code ol)er 
F = GF(q) sa-tisfies 

(2) DJ,, =mqkWtJu , 

(3) D2+Q k-ID = m(m + 1 )qk--“_Tu. 

withv=qk,m=n(q- 1). 

Proof. Let A be the v X n matrix over F whose rows are the vectors of a 
given (n, k) project.i.ve code C, and let B’ denotethe u >I( ~12 matrix 

(4) B = [A, cd/l, w2A, ..‘) cF2A] ) 

where c3 is a primitive root in F. 
For q = pe, p prime, e 2 1, we define $ to be a homomorphic map- 

ping from (F, -+), the additive group of F, onto the group of complex 
pth roots of unity, so that Q, is a nonprirrv ;+pal char-a&r of (F, +). It is 

well known that one has 
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(3 

(q,ifh=O, 

c #(al) = \ 
O!EF ’ O,ifX+O, 

for any X in F. 
We first show ihatthe column vectors of the matrix $(B) are ortha- 

gonal to each other, and to the all-one vector, over the field of complex 
numbers, i.e., 

(7) #(-BT)! u=O' 

where #(AT) is the matrix whose entries are the @-ilnages of the corr~s- 
pending entries of X. Indeed, for 1 <, i, j 5 UZ, the (i, j) entry.gii of the 9 
first member of (6) is equal to 

where b,,. is tthe (r. s) entry of B. Since C is assumed to be a projective, 
code, the columns of B are not zero, and are distirnct from each other. 
Qn the other hand, the rows of B form a linear sp;fce over F. Hence, for 
fixed indices i and j, 5 # j, it is easily seen that eac’l element of F appears 
v/q times among the differences bri -- b, i, I. 5 r <_ v. Ea. (6) then fol- 
lows from the property (5) of #. T’he p&of of (7) is very similar. 

?%xtp vie show that the distance matrix 0 of the code C is given by 

63) $@)(b(--BT)=mJ, - qD. 

Indeed, according to (4) and the definition of N(A; a\,. one has the fol- 
lowing expression for Ih,? (i, i) entry hij sf the first member of (8): 

, , 

where a,- is the ifh row of A, i.e., the it’ code vector of C. From (1) and 
(5), with N(O, a) = pz - wH (a), one readily obtains 
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h i,j=n(q- 1)-qW~(~i-"j)9 

which is equivalent to (8), with m = n(q - 1). 
Finally, the desired formulas (2) and (3) follow from (6), (7) and (8), 

by straightforward matrix calculatioll. 

A code C for which the Hamming weight wH (a) takes s + 1 distinct 

values, namely wo = 0, wl, w2, . . . . w,, is called an s-weight csde, and 

wq ) w@j - l *‘) W, are called the weights of C. Let Ni be the number of code 
vectors of weight wi in C; the following result is an immediate conse- 
quence of Theorem 1. 

Corollary 1. (Assmus and Mattson [ 11, Mat=Williams [ lo] , Plcss [ 13 ] ). 
The weight distribution of an wveigh t (n;, k) projective code satisfies 

s=N iwi 
= m&f-” ) 

i=l 

iv 1 iw;= m(m + l)qk-2 . 

i=l 

Proof. Use (2) and the equality between the diagonal elements in both 
members of (3). 

Let US denote by ML(k 4) any ((qk - l),‘(q - l), k) projective code 
over IT It can be shown that ML(k, q) is equivalent tlo the so called ma- 
ximal length FSR code (cf. Berlekamp [ 2) ). In fact, as shown by Mac- 
Williams [9] , ML@, q) can be defined, up to equivalence,, as the uniqlle 

l-weight projective code of dimension k over F, the yweight being 
k-l w1=q . 

For a subfield F’ = GF(q’) of F, with q = q”, let T bc al~ isomorphic 

mapping from the field F onto a code ML(t, q’), both considered as t- 
dimensional spaces over F’. Then, if C is an (n, k) linear code over FW let 

C’ = r(C) be the y-image of C, i.e., the set of vectors 

(~(a”‘) 3 r(d2)), . . . . *&‘n’)) , 
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where a is a code vector of C. It is easily seer1 that C’ is an (n’, k’) linebar 
code ever F’, with n’(q’ - 3i) = n(q - I), k’ = kt: Moreover, the weights 
wi of C’ are given lby 

w; = Wi(i’/q’ 3 i= 1, 2, . ..is. 

when wp, w2, . . . . tv, are the weights of C. It catI also be shown that C’ 
ti a projc. tive code over F’ whenever C is a projective code over F. In 
agreemer.t with thiis, the reader could verify that the distance matrix 
D’ = qD/q’ of C’ satisfies (2) and (3), where q and k are replaced by q’ 
and k’, respectively, whenever D itself satisfies (2) and (3). + 

.@. Graphs derived from tuvo-weight codes 

First, we recall a definition due to Seidel [ 15 ] for the strongly regu- 
lar graphs introduced by Bose [ 41. The adjacency matix of an undi- 
rected graph on t’ vertices (without 1~0~s and multiple edges) is the 
square matrix A, of order U, mrhose elements are ai,i = 0, and ~~,i = aj,i = 
- 1 or -El, for i # j, according as the i*h and ifh vertices are adjacent or 
not. The graph is called strong& regular if its adjacency matrix satisfies 
the two following equations: 

wbre pO is an integer, 1 - u C p. < u - 1, and pm , p2 are some real 
numbers. It hasbeen p;‘;Dved (cf. Seidel [ 151) that, except for graphs 
with p. = 0, pr ? -702 = ‘e u1/2 3 the eigenvalues pI and p2 of A are odd 
integers of different S&Y As usual, we assume p2 < 0 < pl. 

Let C be a 2-weight linear code of dimension k over 1, and let w1 , 

w2 be the weight3 of C, with q C w2. To C we associate a graph I’(C), 
CBII u = qk vertices, as follows. The vertices of the graph are identified 
with the cede vectors, and two vertices are taken as adjacent or not, ac- 
cording tc the Harnrning distance between the corresponding vectors 
being w 1 or w2. Tha: adjacency matrix A of 1I‘(C) is clearly given by 

w 
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(11.) (w2 - wzM = 20 - (q + W~)(JU - I,,), 

where D ,is the distance matrix of the co,de C. 

Theorem 2. Let C be a 2-weight (n, k) projective code over F. Then the 
associated graph I’((X, oyk u vmices, is strongly regular; the eigenvalues 
pi of its ad]acency matrix are given by 

(12) (9 - Wl )p() = 2mv/q - (WI + wz)(v --- 1) ) 

(13) (w2 - WI )Pi “WI 9w2 - (I -I-(-l)‘)v/q 9 !‘= 1, 2, 

withv=qk,m=n(q - 1). 

Proof. With the above values of pO, pl, p2, equations l(2) and (3) are 
transformed into (3) and ( lo), when A is defined by i 11). This is 
easiest verified by identification of the corresponding eigenvalues in 
both members of ( 11). Hence Theorem 2 is a consequence of Theorem 1. 

Corollary 2. Let C be a 2-weight projective code over F = CT(f), p 
prime. Then the weights of C are of the form 

(14) “1 =upt 9 w2 =(u+ !}pf, 

for suitable integers u and t, u > 1, t 2 0. 

Proof. From (U), with q =pe, Mre get (w2 - wl)(pl - ~2) = 2qk-‘, 
where the pi are the eigenvalues of the adjacency matrix of I’(C). Since 

i(Pj. - p7) is an integer, iv2 - w1 h.as to be a yower of p. Hence ( 14) 

~0110:~s from (13) with u =: i(pl - 1). 

Example 1. Let y1 be an integer, 2 <_ n <= q - 1, and let X,, A,, . . . . A, be 

PI distinct nonzero elements of F. We take the matrix 



54 Ph. Lklsarte, Weights of hear* ~~&fS 

as a gmeratm matrix for an (n, 2) code C over F. Obviously, C is a 20 
weight projective code, with up1 = n - 1, w2, = YE. Using Theorem 2, we 

get the following values for the parameters of the associated strongly 
regular graph I”(C) on u = y2 vertices: 

PO=@--l)(q+l--2n), pl=2n-X, p2=2(n--(6)-l. 

In fact, r(C) is a Latin square iqaph L,(q) of order 4 (cf. Bose [4] and 
Mesnez [ f I ] ). 

Example 2. Let C be the (11, 5) ternary Golay code, i.e., the “unique” 
( li 1, 5) cock over G!?(3) having the weights w1 =: 6, w2 = 9 only (cf. 
PIess [ 14])_ Since C is a projective code, Theorem 2 produCt:s a strongly 
regular graplh, on L‘ == 243 vertices, wh.ose parameMs are 

p(=?) = --22 * p1 = 5 , p2 = em-49 . 

Xn fact, I’(C) is close!ily related to anol;her graph, on the same number of. 
vertices, recently dc:tived by Berlekamp et al. [ 31 from the (1 I , 6) Ter- 
nary Golay code. This relationship is a particular case of 3 nice duality 
existing amorig graplh$ associated with 2-weight projective codes; it will 
be examined h a fozhcoming paper. 

We conclude this section with two remarks: 

Remark 1. For a 2-weight linear code C over F, the graph I’(@‘) assc~- 

ciated to the image C’ = y(c) of C osrer F’ is exactly the same 3s l?(C), 

for every subfield F’ of I?. Hence considering linear codes over prime 
fields implies no loss of generality in our construcction of graphs from 
2-weight codes. 

Remark 2. On she other hand, .‘thle additive group of an (n, k) linear cotle 
o’u’er GFCpe), ~1 prime, is isomorphic to the elementary Abelian p-grou]:) 
c:‘, of order u = ,p@. Therefore, a strongly regular graph on u vertices 
c~arumt: be the associated graph of some Sweight Linear code unless the 
zl;z-:orphism group of thje graph contains a regular subgroup isomer- 
phictoG,. Hn 55oft is paper, it will be shown l&at, in gene,raJ tt?is is!, 
dso a 5;ufficient condition. 
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54. Strongly regular normjed spaws 

Let V be a linear space of dimension k 2 I over F = GF(q). We make 
V a normed linear space by defining a norm w over V, i.e., a mapping 
fi rbrn Y into R’, satisfying the classical axioms (Al ), (A2), (A3). In ana- 
logy to thb: concept of a strongly regular graph, the normed space will 
?X called strong& regular if the norm satisfies the following two condi- 
tions 

{A4) c w(a - b) = rs Va E V, 
bEV 

W) c w(a-c)w(b--c)+sw(a-b)=t, Va,bE V, 
CEV 

where r, s and t are some fixed positive real numbers. 
An arbitrary choice of one of these parameters implies no loss of 

generality in the problem, since it merely fixes the ‘“scale” of the norm; 
here we set s = q k-1 On the other hand, adding up both members of 
(As), for B running through V, we get ~(r + s) = tqk, from (A4). Hence, 
one can write 

(15) r = mvlq, s = v/q,: t=m(m+ l)v/q”, 

with v = I VI = qk, for some positive number m. In that standard form, 
the parameter y1= m/(q - 1) will be called the lerpth of’ the normed 
space, which will now be denoted by <V, w, n). 

With the definition (15) of y, s, d, eqs. (2) and (3) are the matrix 
form of (A4) and (A5), respectively (for w = WH y V = C). Hence Theo- 
rem 1 can be reformulated as follows: 

T$heorem 3. Let c be an (n, k) projectizre code over F, and let wH de- 
note the ffammifig Weight. Then (c, wH, n) is a! strongly regular normed 

space over F. 

The rest of this section is essentially devoted to the proof of a con- 
verse of Theorem 3, asserting that any “abstract” strongly regular nor- 
med space admits an associated code C isomorphic to it, when the Ham- 
ming weight is taken as the norm.. 



meorem 41. Let ( VY, .w, n) ble a st.~~gly regulJur normed space of /eWth 
n and dimmsim k over F. ThePi n is an- integer, with k 5 n 5 0~’ - I)/ 

(q - l), and thtmz ex&s an (n, k) projective code C over I? SUCK that 
the nmmd spalees ( V, IW, n)- and (C, wH , n) are ismurphic l’o each 
ot&r. ; 

Eefore we proceed to the proof, we% need some ma&al on the cm= 
respondence between Fk and the elementary Abelian p-group GV of or-. 
der o = q‘*, with1 4 = pe, p prime. The characters of the group G, are the 
homomc4r@e mappings I# f’rom G, isto, the group CP of complex pth 
roots of unity. It is well known that the characters can be numbered 
with the elements; x of G, in such a way that 9,(y) = $,(x):, Vx,y E G,. 
A:s in [S] li we adopt the notation of a symmetric inner product, that is 

(x, y) = l&(y), . vx,y E G” . 

Lemma 1 a Let @ be a fixed homomorphism from (F, +) onto C”. Then, 
for every &xnorphism‘ .L from G, onto (Fk, +), there exists one and . 

only one isomorphism M, from G, onto (Fk , +), such that 

(16) NY) = W(x)MT(Y)) 9 MY-,, 

where MT(y) is the transpos.?of therow vector M(y) in F”. 

Proof. Let N be any isomorphism from G, onto (Fk, a). Then the map- 
ping 11/ defined by . 

dw =: #ww~T (Y)) , XEG,) 

is a character of G, T for every y in G, . We denote :his elraraciter by . 
1,6(x) = (x; A(y)) since it only depends on y: it is readij y seer? that A is 
an automorphism of G, . Hence the mapping M given by M(& y)) = N(y) 

is an isomorphism from G, onto (Fk, +) that satisfies I’ 16). Finally, the 
queness of results from the i’azt that ) = #(We) C:an,rlOt h&-J 

fbr all- vectors LP in 1:’ unless b = c. 
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Definition lr Let w be a primitive root in E, and let L be an isomor- 
phism from G, onto (Fk, +). To L we associate the automorphism S 
of C, defined by 

WI L(S(x)) = cdL,.r) ) VXEG,. 

Obviously, 9-l is the identity and the subsets of transitivity of G,,‘&} 
for the group generated by S have cardinal@ q - 1. They’have the form 

{x, S(x), s*(x), . . . . w*(x)} ) 

and are called the S-classes of G,. (There are (qk - l)/(q - 1) such S- 
classes and their L-images are the projective points of PG(k - 9, 4)) 

Definition 2. Let A and AT be two automorphisms of G, satisfying 

(18) (x, A(y)> = (y, AT(x)> , Vx,yEG,. 

Then AT ic called the transpose of A. It is well kr,own that each auto- 
mophism admits exactly one transpose. Morewer, according to ( 1 Q3 
one has (ATIT =A. 

Lemma 2. Let (L, IV) be a pair of isomorphisms (jkom C, onto (1c”, ,t)) 

satisfying (16). Then ( 17) is equivalent to 

(19) MST(y)3 = 63Mf;9 9 VYEG, 9 

and C,\( J } can be divided into disjoint ST-classes of order q --. I as well 
as into S-classes. 

Proof. This is an easy consequerlce of Lemma I anti :he definition (18) 
of the transpose. 

Proof of Theorem 4. Let E be an isomorphism from Fk onto V, and L 
an isomorphism from G, onto (Fk, +I The code @ will be defined by 

means of its generator matrix K, in such a manner as to make the follow- 

ing diagram 
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commutative, i.e., 

(21) WH (L(x)K) = p(x) , VXEG,) 

with ~J(_x) = w(Ek(x)). The reasoning is rather long and is divided in fcur 
parts: 

(i). Considering g = Zx&x) as an element in the group algebra RG, 
of the group C, ow the field R of real numbers, and using (15) with 
rryl = Jz(q - 1), one can write (&4), (AS) as 

(2% p2 +pqk-l = tc, , 

respectively, where uU stands for 
We now calculate the characters 

the sum of all elements of G, over R. 

of p E RG,, in the field of complex mznbers. By the well=kntJwn pro- 
perties t;f group characters, we get both equations 

(25) (1,/J: -: fifq - 1 )qk-’ $ 

cm (y, p)(q”-’ + (y, p)) = 0 ) Vyf 1, 

from (22) and (23’1, respectively. Indeed, ()I, oU > is’ equal to u or to zero, 
according 3:s y is equd to 1 (the unit of G,S or not. Let us c:xamine the 
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inversion formula for group characters, i.e., 

(27) /J(x) = v-l z_ 6X, y-1 }(y, p) 
[ 

’ . 

Y EGU 1 
According to (26), one has (JJ, p) = Q or --qkW1 , for y + 1. Hence (cf. 
also (25)), eq. (27) becomes 

(28) p(x) = q-l 
C 

n(q - 1 Z - C (x, y-9 , 

YEH 1 
where H is the set of elements;v in G,\ (I} with (y, @ # 0. In particular, 
for x = 1, (26) yields qp( 1) = m(q - 1) - IWI. Since p( 1) = w(0) = 0, by 
(Al), this implies n(q - I) = IHI. 

(ii). On the other hand, let G) be a primitive root in K &fining $ by 
(27), one verifies, using (A3), that P@(X)) = P(X), for any x in G,. 
Wlerefore, one has 

ST(Y), p) = c (Y, P(X) = (Y, cc) 9 ‘0 E G, 7 

XEG" 

by (18) and (24). Hence (cf. Lemma 2) (y, p> is constant over each ST- 
class of G,, so H must be the union of some of these classes. Therefore, 
the length n = IHl/(q - I) of the normed space must 'be a positive inte- 
ger, less than or equal to (qk - 1 )/(q - 1). 

(i!i). Next, noting that y -l belongs to the same ST-class v as y, one 
can write (28) as follows 

(219) p(x) =q-l 
[ 

n(q - 1) - 2.Z rJ CC, 2) , 
_jjG ZEjj 1 

wi-lere Hdenotes the set off ST-classes17 in H. Remembering the defini- 
tion of an S-class, and using Lemma l,, one has 

(30) 

4-2 q-2 

z (X, 2) = c (S’(x),y) = c t#l(u’L(u)M’(y)) , 
z e-7 i=o i=O 
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for a suitable isomorphim Bf from G, onto (Fk, +). Frm (5) it f’dhw 
that the third member of (30) is equal to 4 - 1 or -1 according as 
L,lx)MT(y) is zem or not, so (30) yields 

c : {x, z)=q -- t - q lL(x)M’(y) I ) 

ZEjj 

where IX] *a 0 or 1, ;accorti.ing as X equals zero or not, in &R Substituting 
this in (29~~ one obtains 

?l 

(31) g(X) = E IL(X)MT(yi)l 5 

where (vl ,y2, . ..p y,) denotes any set of ivt elements of G, obtained by 
taking exactly one elenxnt in each ST-class 7 of HI. 

(iv). FinaNy, we define c’ to be the linear code of length RZ over F ge- 
nerated by the k )\ n matrix 

Since (3 1) is equivalent to (2 l), diagram (20) is commutative and it 
only remains to be shown that C is actually a projective code of dimen- 
sion k. This is an easy consequence of (Al) and Lemma 2; the details 
are omitted. 

Remrk 3. Property (A2) haa, cot been used in the proof of Theorem 4: 
so it can be omitted as an 1x10~1 for strongly regular normed spaces. fn 
fait, (A2) becomes a cons;,lquexe of Fheorem 4,, since & Hamming 
weight fi’H satisfies it. 

Remark; 4. According io a theorem of MacWilliarns [ 91 on the equival- 
ence between linear codes, Theorems 3 and 4 establish z Gne-to-one cor- 
respondence between the classes of nonisomczphic strongly regular 

ed ~p~~~~s of length yt nd $mension k over F, and the classes of 
iva!ent (~2, k) rojecti;~ codes over ,F. 
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$j 5. Two-weig t codes derived fuom graphs 

We first show that, in some cases, (A3) is a redundant a:-.;iom for 
strongly regular lNJiTIlltXi spaces;. 

Lerranna 3. Let V be a k-dimensional linear space over GF(p), p prime, 
and let w be a mappirig from V into the nonnegative rational nzpmsers, 
sathfying (Al), (A4) l,zrnd (AS). Then (V, w, n) is a strongly regular 
normed space. 

Proof. According to Remark 3, we only need to show that w satisfies 
(A3). To that end, let us use the first part (depending on (A I), (A4) 
and (AS) only) of the proof of Theorem 4.. The right hand member of 
(28) belongs to th.e cyclotomic field Zp of pfh roots of unity and, for 
an integer i, 1 < i <_ p - I7 we readily get 

@j(x) = (P(xi)) 3 ‘V’XE G, ., 

where /l&x) denotes the ifh conjugate of P(X) in Zp l Since p(x) is assu- 
rn~:.I to be rational, one must have pi(X) =: P(X); whence I = p(x) or, 
equivalently, 

w(a) = w(ia) , Va-E V, l<_i<_p-1. 

This is identical to (A3) for the prime field F= GF(p), a,nd the lemma 
is proveld. 

We now go back to strongly regular graphs and 2-weight codes. The 
following result is the converse of Theorem 2. 

Theorem 5. Let r be a strongly regular graph on v = p” I’ertkes, ,FI prirljc, 
whose adjacency matrix has integral’ eigenvalues pO , p I , p2 wit/z ,p I > 1. 

~~s.wmw the automorphism group of I? con&ins a regular stsbgrcup iso- 
morpkic to the elemeE;r tary A beliar p-group (7,. Then r is the cSs8&7tcC 

graph of some 2-weight (n, jlr) projective code, whose length rt a& tt/;a E,s~~ 
weights wi are givert bjv 



(33) (Pr - P&q = (PI + (-l)‘)VlP 9 i4,2. 

Proof. Let V be a k-dimensional linear space over the prime field 
F = GF(p). Since G, is isomorphic to (V, +), i’: is possible to number 
the vertices of I* with the elements of Y in such a way that vertex Q 
becomes adiacent to ub if and only if ‘~‘(3__~ is adjacent to 00 9 Ma, b E v. 

Indeed, thir simply means HIat. the additive w up of V,. acting as a reg- 
ular permutation group on the vertices, transforms the graph l? into it- 
s&f. 

Next, for the positive numbers wi given by (33), :3ne defines a map- 
ping w from V into the nonnegative rational numbers as follovVs: one 
sets w(O) = 8, and w(a) = w1 m w2 according as Us is adjacent to u. or 
not, for a E V, tct # 0. In other words, w is defined in such a manner that 
the matrix 

134) D = [w(a - b); a, b E V] 

satisfies (I 1 I5 wlhen A is the adjacency matrix of the given graph l? 
From eqq_ CC;) and (10) of a strongly regular graph, it easily ,follows that , 

L) satisfiey (2) and (3) or, equivalently, (A4) and (AS), with y = 17, if ~1, 
wr and w2 are given by (32) and (33). Therefore, according to 
Lemma 3, c’ V, w, n) is a strongly regular normed space over P’. 

Finally, bv Theorem 4, the length rz is an integer and there exists a 
2-weight fn,k) projective code C over F whose distance matrix is (34). 
This means that the given graph r is the associated graph of C, so the 
theorem is proved. 

IXema.rk 5, The restrictions o:n the eigenvalues in the assumptions of 
Theorem 5 only exclude graphs of one of the following two types: the 
ladder graphs, for which p1 = 1 (cf. Seidel I 15]), and the graphs with 
v = p", k 5 1 (mock 2), p. = G, pl z --p2 = d’2. Graphs of the second 
type are knovrjrn to exist if an’d only if p z I (mod 4j; cf. for iinstance 
Goethals and Seidel [ 7). 
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We cmclude with an illustration of Theorem 5. Goethals and Seidel 
@I recently derived a strongly regular grap:tl T on u = 2048 vertices 
from the Golay (24, 12) ‘binary code, The eigenvalues of the adjacency 
matrix of r are 

PO = 529, p1 = s7, p2 =-All. 

Moreover, the automorphism group of T’ contains a regular subgroup 
isomorphic to G,. Hence, aczording to Theorem 5, there exists a 2- 
weight projective code C over W(2) whose associated graph is F(c) = r. 
Using (32) and (33) with p = 2, one obtains the following values for the . 

parameters of C 

1-2 = 276 , k= 11, WI = 128, w* = 144. 

The reader familiar with the Golay code wih easily find a “direct” con- 
struction for such a code. 

Acknowledgment 

The author is very grateful to J.J. Seidel who mentioned referenzcs 
on strongly regular graphs and suggested constructing two-weight codes 
from graphs. 

References 

[ l] E.F. Assmus and H.F. Mattson, Error-correcting codes: an axiomatic approcch, Inform. 
Control 6 (3963) 315-330. 

[ 21 E.R. Berlekamp, Algebraic coding theory (McGraw Hill, New York., 1968). 
[ 31 E.R. Berlekamp, J.H. van Lint and J.J. Seidel, A strongly regular graph derived from the 

perfect ternary Golay code, :in: R.C. Bose Anniversary Volume, to be published. 
(41 R,C. Bose, Strongly regular graphs, partial geometries and partia.lIy balanced designs, 

Pacific J. Math. 13 (1963) 389-4119. 
[5] P. Delsarte, Automorphisms of Abelian codes, Philips Res, Rept, 25 (1970) 389-403. 
[6] P. Delsarte a:ld J.M. Goethals, Irreducible cyclic codes of even &mension, in: R.C. Bose arrrd 

T.A. Dowllings, eds., Combinatorial mathematics and its applications (Univ. of North Carob- 
na Press, Chapel Hill, N. Car., 1970) 100-l 13. 

[7j J.M. Goeth& and J.J. Seidel, Orthogonal matrices wrth zero diagonal, Can. J. Math. 19 
(1967) IOOl-1010. 



64 Phi Delsd?te, Wi?&?m uf lineiw cud~s 

!rS J f&f. Goethal~ and I.J. SeideI, S+ron#\y reguku graphs derived from combin: Itorial designs, 
Can, 3. Math. 22 (197g) 597-614. 

[‘;I13 F.J. MacWiis, Erro~-co~ect@ codes fctr multiple-level transmission, Bell Cyst. Tech. 
J. 40 (1961) 2811-308, 

IlO) F,J. MacWillia~~s, A theorem eon the distribution of weights in a systematic code, Sell 
Syst. Tech, J. 42 (1963) 79-94. 

. [ 11) R.J. McEtiece, A class of two-weight codes, Jet Propulsion Lab. Space Progr. Sum. 3 7-4 1, 
VoL IV, 264-266. 

( 1.21 D.lK Mesner, A new family af partially bahced incomplete block designs with some 
Latin square design properties, AMI. Math, Statistics 38 (l967) 571-581. 

[I 31 Y, Pless, Power momentMentitie~ oni weight distribution in error-correcting codes, Inform. 
Co&o1 6 (1963) 147-152, 

[14] V. mess, On the uniqraeness of the Golay codes, J. Combinatorial Theory 5 (1968) 21% 
228. 

I 15 1 LJ. Seib aP Strongly regular graphs 0f.t a-type and of triangular type, indag. Math. 29 
(1967) 158-196. 


