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CLINICAL OBSERVATION

Recurrence quantification analysis on pulse morphological changes
in patients with coronary heart disease

Rui Guo, Yiqin Wang, Jianjun Yan, Hanxia Yan
aa

Rui Guo, Yiqin Wang, Hanxia Yan, Laboratory of Synthetic
Study on TCM Diagnostic Information, Shanghai University
of Traditional Chinese Medicine, Shanghai 201203, China
Jianjun Yan, Center for Mechatronics Engineering, East Chi-
na University of Science and Technology, Shanghai 200237,
China
Supported by Innovation Program of Shanghai Municipal
Education Commission (No. 11YZ71), the 3rd Shanghai
Leading Academic Discipline Project (No. S30302), and the
National Natural Science Foundation of China (No.
81173199)
Correspondence to: Prof. Yiqin Wang, Hanxia Yan, Labora-
tory of Synthetic Study on TCM Diagnostic Information,
Shanghai University of Traditional Chinese Medicine, Shang-
hai 201203, China. wangyiqin2380@sina.com
Telephone: +86-21-51322286
Accepted: July 10, 2012

Abstract
OBJECTIVE: To show that the pulse diagnosis used
in Traditional Chinese Medicine, combined with
nonlinear dynamic analysis, can help identify car-
diovascular diseases.

METHODS: Recurrence quantification analysis
(RQA) was used to study pulse morphological
changes in 37 inpatients with coronary heart dis-
ease (CHD) and 37 normal subjects (controls). An in-
dependent sample t-test detected significant differ-
ences in RQA measures of their pulses. A support
vector machine (SVM) classified the groups accord-
ing to their RQA measures. Classic time-domain pa-
rameters were used for comparison.

RESULTS: RQA measures can be divided into two
groups. One group of measures [ecurrence rate

(RR), determinism (DEL), average diagonal line
length (L), maximum length of diagonal structures
(Lmax), Shannon entropy of the frequency distribu-
tion of diagonal line lengths (ENTR), laminarity
(LAM), average length of vertical structures (TT),
maximum length of vertical structures (Vmax)]
showed significantly higher values for patients with
CHD than for normal subjects (P<0.05). The other
measures (RR_std, L_std, Lmax_std, TT_std,
Vmax_std) showed significantly lower values for
the CHD group than for normal subjects (P<0.05).
SVM classification accuracy was higher with RQA
measures: With RQA (16 parameters) accuracy was
at 88.21% , and with RQA(12 parameters) accuracy
was at 84.11% . In contrast, with classic time-do-
main (15 parameters) accuracy was 75.73% , and
with time-domain (7 parameters) accuracy was
74.70%.

CONCLUSION: Nonlinear dynamic methods such
as RQA can be used to study functional and struc-
tural changes in the pulse noninvasively. Pulse sig-
nals of individuals with CHD have greater regulari-
ty, determinism, and stability than normal subjects,
and their pulse morphology displays less variabili-
ty. RQA can distinguish the CHD pulse from the
healthy pulse with an accuracy of 88.21%, thereby
providing an early diagnosis of cardiovascular dis-
eases such as CHD.

© 2012 JTCM. All rights reserved.
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INTRODUCTION
The pulse diagnosis of Traditional Chinese Medicine
(TCM) is a noninvasive method that has been proven
to be clinically valid for more than 2000 years. The
pulse, usually felt by TCM doctors by placing their fin-
gers on the radial artery, can project information about
a variety of physiological and pathological conditions.
Modern medical research shows that the pulse contains
a great deal of information about the cardiovascular sys-
tem.1 Coronary heart disease (CHD), for example, can
disrupt the pumping function of heart, causing changes
in both structure and function of blood vessels, which
is reflected in pulse morphology. If the changes that are
linked to health and disease could be distinguished, it
is possible that the distinctions could be used to diag-
nose cardiovascular diseases at an early stage.
A number of researchers in China and other countries
have been assessing various methods and have reported
their findings on pulse analysis, time-domain analysis,
frequency-domain analysis, and time-frequency joint
analysis, among others.2-4 The traditional methods,
based on linear concepts, are restricted to system stabili-
ty. They are not particularly sensitive to changes in the
pathological state and are insufficient for characterizing
the complex dynamics of this nonlinear system. In con-
trast, nonlinear dynamic methods such as recurrence
quantification analysis (RQA) can obtain nonlinear in-
formation from the pulse that the traditional analysis
methods cannot. They have wide application for physi-
ological signals such as heart rate variability and electro-
encephalographic and electrocardiographic changes.
We employed RQA to analyze morphological changes
in the pulse at the wrist. Based on the assumption that
the cardiac control system is a nonlinear biological de-
terministic system, we observed pulse morphological
changes in patients with CHD and healthy subjects. In
addition, classifications were made by means of a sup-
port vector machine (SVM) with RQA measures and
using time-domain parameters for comparison.

METHODS

Material collection
The TCM pulse diagnosis refers to what the doctor
senses by palpating the examinee's radial artery with
his or her fingers. Simulating the actions of TCM doc-
tors, measurement equipment (cooperatively developed
by our research team and the Shanghai Asia-Pacific
Computer Co., Shanghai, China) was used to acquire
pulse recordings, which laid the foundation for an ob-
jective pulse analysis.
Pulse recordings used in this study were acquired from
74 volunteers for 60 s periods at a sampling rate of 720
Hz after they gave informed consent. Each subject was
asked to relax for more than 5 min before pulse acquisi-
tion. The volunteers, who were ascertained to have no

respiratory system or nervous system disorders, were di-
vided into two groups. Group 1 included 37 inpatients
with CHD aged (60±10) years from Longhua Hospital
(Shanghai, China) and Shuguang Hospital (Shanghai,
China), both affiliated with the Shanghai University of
TCM. Group 2 included 37 normal subjects aged (57±
4) years who were selected from among participants in
the "2010 Zhangjiang ball game competition for the el-
derly (Shanghai, China)", and who had no document-
ed history of a cardiovascular disorder.
The Scientific Research Section and Moral and Ethical
Committee at Putuo Hospital (affiliated with Shanghai
University of Traditional Chinese Medicine) approved
the study. Also, following acquisition of informed con-
sent, they approved all of the volunteers taking part in
this research project.

Extraction of the pulse signal
The pulse signal was analyzed using a recurrence plot
(RP). Phase space reconstruction, the basis for nonlin-
ear time series analysis, can be used to estimate the
characteristic properties of a dynamic system. Usually,
the phase space has to be reconstructed from the origi-
nal one-dimensional time series.5,6 A frequently used
method for reconstruction is the time-delay method.
For a one-dimensional time series, such as a pulse signal

of length M, a trajectory iX is reconstructed as

( )T
i mixixixX ))1((,),(),( tt -++= L . The

length of iX is t´--= )1(mMN , where the em-
bedding dimension m can be estimated with the meth-
od of false nearest neighbors,7,8 and the time delay t
can be estimated with the method of mutual informa-

tion.9 All of these time trajectories { }NiX i ,,2,1, L=
make up the m-dimension phase space orbits of the sys-
tem, as shown inFigure 1A,1C.
Recurrence is a fundamental property of dissipative dy-
namic systems. Eckmann et al. introduced a tool that
enables us to investigate the m-dimensional phase
space trajectory through a two-dimensional representa-
tion of its recurrences.10 This RP representation is
shown in Figure 1B,1D. Such an RP can be mathemati-
cally expressed as

( ) NjixxR jiiji ,,2,1,,, L
rv =--Q= e 1)

where N is the number of considered states, ix , ie is

a threshold distance, × is a norm, and ( )×Q is the
Heaviside function.
The phase space trajectories and their corresponding
RPs of a CHD patient and a normal subject with 1000
sampling points are shown in Figure 1. The diagonal
lines (angle ) in the two RPs mean that the evolution
of states is similar at different times, and the process
could be deterministic. There are more black dots in
Figure 1B than in Figure 1D, which shows that the
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pulse signal of this patient with CHD had greater regu-
larity and determinism than the healthy subject. The vi-
sual interpretation of RP requires some experience.
Hence, quantitative analysis of RP is highly desirable.

Analysis of pulse data using recurrence
quantification analysis
Zbilut and Webber developed RQA, a tool that quanti-
fies structures in the RP11,12 and has become well
known, especially for physiological analyses. They de-
fined measures of complexity using recurrence point

density and diagonal structures in the RP. Gao defined
the new measures based on vertical structures.13,14 In
2004, Marwan and Meinke applied extended RQA to
physiological event-related potentials (EPRs).15 In our
study, we analyzed pulse morphological changes using
eight RQA measures: recurrence rate (RR), determin-
ism (DEL), average diagonal line length (L), maximum
length of diagonal structures (Lmax), Shannon entropy
of the frequency distribution of diagonal line lengths
(ENTR), laminarity (LAM), average length of vertical

Guo R et al. RQA on pulse morphological changes in patients with coronary heart disease
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Figure 1 Reconstructed phase spaces and corresponding recurrence plots (RPs) of a pulse signal from a patient with coronary
heart disease (CHD) and a healthy subject
A: segment of phase space trajectory of pulse data of a 60-year-old patient with CHD (m=3, τ=5, ε=0.2σ, where σ is variance of
the time series, y=x+τ, z=x+2*τ). B: RP corresponding to Figure A. C: segment of the phase space trajectory of a pulse waveform
from a 58-year-old healthy person (with embedding dimension m=3, time delay τ=5, and distance cutoff ε=0.2σ, where σ is the
variance of the time series). D: RP corresponding to (c).
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structures (TT), maximum length of vertical structures
(Vmax).
Pulse morphology refers to blood pressure, vascular re-
sistance, and artery compliance, among other factors
that are important parameters when assessing the car-
diovascular system. Pulse morphological change refers
to the alterations and variations in the morphology of
the pulse waveform.16 To analyze morphological chang-
es of the pulse, we need to segment the pulse wave-
form. The pulse waveform was segmented using a mov-
ing window with a size of 1000 sampling points. The
window moved forward by 300 sampling points each
time. We then computed RQA measures of each seg-
ment for each subject. Finally, we calculated the means
and standard deviations of all segments for each sub-
ject. We then obtained 16 RQA measures for each sub-
ject, characterizing the morphological change of each
pulse, including RR, DET, L, Lmax, ENTR, LAM,
TT, Vmax, RR_std, DET_std, L_std, Lmax_std, EN-
TR_std, LAM_std, TT_std, and Vmax_std. As a
group, we called them RQA (16).

Extraction of time-domain parameters for
comparison
The time-domain method is most commonly used in
TCM pulse waveform analysis and has many applica-
tions in clinical practice. The classic time-domain pa-
rameters, which are important physiological indexes
for assessing the cardiovascular system, are described
via some characteristic points on the pulse waveform,
as shown in Figures 2 and 3.17

We extracted 15 time-domain parameters—h1, h3, h4,
h5, t1, t4, t5, t, w, h3/h1, h4/h1, h5/h1, w/t, As, Ad—
and used them for comparisons, as shown in Figures 2

and 3. We called the group of parameters the time-do-
main (15).

Statistical analysis
Using SPSS 16.0 software (IBM, Armonk, NY, USA),
we found that the RQA measures and time-domain pa-
rameters of the pulse signals from the two groups were
in nearly normal distributions. Therefore, all of the da-
ta (RQA measures and time-domain parameters) were
analyzed by an independent sample t-test to detect any
significant differences between the two groups (CHD
patients and controls).

Classification method
Since the 1960s, Vapnik and his group have achieved a
series of advancements in the field of machine learning
of finite samples and constructed an integrated theory
known as the support vector machine (SVM).18 In our
study, RQA measures and time-domain parameters
were entered into the SVM classifier to distinguish be-
tween pulses of the patients with CHD and those of
the controls. Classification was performed with
LIBSVM tools19 with the supporting vector machine
C-SVM, and the radial kernel function. A good meth-
od for evaluating classification performance is the
10-fold cross examination, in which each group is di-
vided into 10 subsets that are approximately equal in
size. Nine folds are used for training and the last fold
for evaluation. This process is repeated 10 times, leav-
ing a single, different fold for evaluation each time.
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Figure 2 Height and time parameters of a typical cycle pulse
h1: height of the percussion wave; h3: height of the tidal
wave; h4: height of the dicrotic notch; t4: time between the
starting point of the pulse chart and the dicrotic notch; t5:
time between the dicrotic notch and the ending point of
the pulse chart; t: time between the starting point and the
ending point; w: width of the percussion wave at its
one-third height position.
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Figure 3 Area parameters of a typical cycle pulse
Ps: systolic pressure; Pd: diastolic pressure; t4: contraction
phase; t5: diastolic phase. As: area of the contraction phase;
Ad: area of the diastolic phase.
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RESULTS
Comparison of RQA measures
We computed the RQA(16) of the two groups using
the Matlab Toolbox (developed for application of recur-
rence through the internet—available at: http://tocsy.
pik-potsdam.de/; accessed August 4, 2011) and statisti-
cally analyzed RQA measures using an independent
sample t-test. We found 12 RQA measures with signifi-
cant differences (P<0.05) between the CHD patients
and the normal subjects, as shown in Table 1. The mea-
sures included the RR, DEL, L, ENIR, LAM, TT,
Vmax, RR_std, L_std, Lmax_std, TT_std,Vmax_std.
We called this grouping the RQA (12).
Table 1 shows that RR, DEL, L, ENIR, LAM, TT, and
Vmax are significantly higher in the CHD group than
in the control group (P<0.05). In addition, PR_std,
L_std, Lmax_std, TT_std, and Vmax_std are signifi-
cantly lower in the CHD group than in the healthy
group (P<0.05).

Comparison of time-domain parameters
We statistically analyzed time-domain parameters using
an independent sample t-test and found several
time-domain parameters with significant differences
(P<0.05) between the CHD patients and the controls,
as shown in Table 2.

Table 2 indicates that there are seven time-domain pa-
rameters—h1, h3, t5, t, h4/h1, w/t, As—with signifi-
cant differences. We call this group of time-domain pa-
rameters Time-domain (7). They are used for classifica-
tion purposes.

Classification results with RQA measures and
time-domain parameters
To show that RQA measures can distinguish the pulses
of those with the CHD from the pulses of healthy per-
sons, we computed the classification accuracy rate
based on SVM with RQA measures. We used time-do-
main parameters for comparison. The classification ac-
curacy is higher with RQA measures (84.11% and
88.21% ) than with classic time-domain parameters
(75.73% , 74.70% ). Although the measures RQA(12)
of the two groups are significantly different, the classifi-
cation accuracy with RQA (12) is not the highest. The
highest accuracy, 88.21%, occurred when all RQA mea-
sures, in RQA (16), was used for recognition. The
same occurred for the time-domain parameters, where
the accuracy with time-domain (15) was higher than
that with time-domain (7). Therefore, the classification
accuracy is highest when all RQA measures or time-do-
main parameters of pulse are used, as they include
more abundant information than when only the pa-
rameters with significant differences are used.

DISCUSSION
Modern medical research shows that the arterial pulse
is generated by contraction of the heart. Left ventricu-
lar contraction causes blood to flow into the aorta
through the aortic valve. Thus, the pulse is affected not
only by the condition of the heart but also by parame-
ters such as blood pressure, vascular resistance, and arte-
rial compliance, among others. This means that the
pulse contains extensive information about the cardio-
vascular system.1 Diseases such as CHD can disrupt the
pumping function of the heart, causing changes in
both structure and function of blood vessels, which in

Table 1 RQA measures with significant differences by inde-
pendent sample t- test

RQA measures

RR

DEI

L

ENTR

LAM

TT

Vmax

RR_std

L_std

Lmax_std

TT_std

Vmax_std

CHD patients

0.1166±0.021a

0.9990±0.0004a

44.618±10.256a

4.464±0.194a

0.9988±0.0004a

25.925±4.188a

92.988±17.512a

0.013±0.005a

6.131±2.136a

16.590±3.800a

2.905±1.075a

17.517±10.454a

Normal subjects

0.092±0.001

0.9980±0.0003

35.502±7.868

4.262±0.199

0.9981±0.0006

20.084±3.232

67.473±12.250

0.010±0.004

5.016±1.736

14.150±3.563

2.076±0.895

9.391±4.632

Notes: RR: recurrence rate; DEL: determinism; L: average diago-
nal line length; Lmax: maximum length of diagonal structures;
ENTR: shannon entropy of the frequency distribution of diago-
nal line lengths; LAM: laminarity; TT: average length of vertical
structures; Vmax: maximum length of vertical structures; RQA:
recurrence quantification analysis; CHD:coronary heart disease;
aP<0.05: significantly different from that of the normal subjects

Table 2 Time-domain parameters with significant differenc-
es by an independent sample t-test

Note: CHD:coronary heart disease; aP<0.05, significantly
different from that of the normal subjects.

Time-domain
parameters

h1

h3

t5

t

h4/h1

w/t

As

CHD patients

19.075±7.084a

14.702±5.054a

0.534±0.123a

0.888±0.171a

0.420±0.098a

0.228±0.047a

3108.682±1171.332a

Normal subjects

14.378±4.204

11.642±3.307

0.456±0.098

0.795±0.138

0.485±0.094

0.255±0.032

2339.767±768.201
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turn is reflected in pulse wave morphology. If these
changes are linked to health and disease and the exam-
iner can distinguished the differences, it may be possi-
ble to diagnose cardiovascular diseases at an early stage.
The pulse signal is nonlinear, which is mainly caused
by, for example, nonlinear excitation of the heart, non-
linearity of the vascular system geometry and mechani-
cal properties, and nonlinearity of vessel movement.20

Thus, nonlinear analysis of the pulse signal of CHD
patients and normal subjects can help quantitative and
qualitative analysis of pathological and physiological
conditions.
The RP is a visual representation of nonlinear proper-
ties of deterministic dynamic systems. RQA is a tool
that quantifies RP. In this study, we used RQA to ana-
lyze morphological changes in pulse signals for a group
of patients with CHD and a group of healthy persons
(controls). Various RQA measures representing differ-
ent nonlinear dynamic characteristics were assessed.
RR is a measure of density of recurrence, and a high
RR indicates the presence of a strong cyclical process.
DEL is a measure of the determinism of the system,
which is the same as L. The higher their values, the
stronger is the determinism of the system. The measure
ENTR reflects the complexity of the deterministic
structure in the system. The measures LAM, TT, and
Vmax mark a time interval during which a state does
not change or changes very slowly. Therefore, the high-
er their values, the more stable is the system.
By comparing RQA measures of the pulse morphologi-
cal changes between the two groups, we found that
these changes can be divided into two groups, as
shown in Table 1. For one group of RQA parameters
(RR, DET, L, ENTR, LAM, TT, Vmax), the values
were higher in the CHD patients than in the healthy
controls. Based on the physical significance of this
group of parameters, we speculate that the pulse is
more regular and stable in patients with CHD than in
normal subjects. The cardiovascular system is closely
connected with the pulse, which is consistent with the
discovery in many studies that a cardiovascular system
in a pathological state is usually more stable than in
healthy individuals.21,22 The values of another group of
parameters (PR_std, L_std, Lmax_std, TT_std, Vmax_
std) were lower in the CHD patients than in the con-
trols, suggesting that the pulse morphology of patients
with CHD has less variability. Therefore, we speculate
that CHD patients have less ability to regulate their
cardiovascular system than do healthy subjects. Based
on this study, we identified physiological and patholog-
ical conditions that can be associated with pulse mor-
phological changes characterized by RQA measures in
the two groups. All of the RQA measures discussed in
this article help us to better understand the nonlinear
dynamic characteristics of the pulse signal system of
CHD patients and normal subjects.
To demonstrate that RQA measures can distinguish the

pulse of a CHD patient from that of a normal subject,
we used an SVM to classify RQA measures and
time-domain parameters. Time-domain parameters
were chosen for comparison because the method is rela-
tively mature, and these parameters are known to be
clinically effective. Experimental results showed that
the RQA measures can differentiate the CHD group
from the healthy group with higher accuracy [(88.21%
with RQA(16), 84.11% with RQA(12)], which is high-
er than that achieved using the classic time-domain pa-
rameters (75.73%, 74.70%). Although linear methods,
such as the classic time-domain analysis, have won ac-
ceptance in objective studies of the pulse, nonlinear dy-
namic methods such as RQA have shown potential for
distinguishing pulses of patients with CHD from those
of healthy persons. However, more data are required
for further evaluation of the accuracy, specificity, and
sensitivity of classification.
Our study confirmed that a nonlinear dynamic meth-
od such as RQA has the potential to study functional
and structural changes in the pulse noninvasively and
can help with early screening for cardiovascular disease.
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