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Abstract 

A hnearized imphcit fimte difference method for the Korteweg-de Vries equation is proposed and straightforwardly 
extended to the Kadomtsev-Petviashvili equation. We investigate the order of accuracy of the method and prove the 
method to be unconditionally hnearly stable. The numerical experiments for the Korteweg~te Vnes and the Kadomtsev- 
Petvlashvfll equations are car'ned out wtth various conditions. Numerical results for the collision of two lump type solitary 
wave solutions to the Kadomtsev-Petviashvlh equation are also reported. (~) ! 998 Elsevier Science B V. All rights reserved. 

Keywords Korteweg~de Vnes, Kadomtsev-Petvlashvlh; Llne-soliton; Lump type soliton; Lmearized implicit finite 
&fference method 

1. Introduction 

About a hundred years ago, Korteweg and de Vries [18] derived an equation equivalent to 

Ut +(3U2)x +Urxr=O ( t > 0 , - o o < x < o c )  (1.1) 

to describe approximately the slow evolution o f  long water waves o f  moderate amplitude as they 
propagate under the influence o f  gravity in one direction in shallow o f  uniform depth. In 1965, 
Zabusky and Kruskal discovered the concept o f  the solitons while studying the results o f  a numerical 
computation on the Kor teweg-de  Vries (KdV)  equation (1.1). Since then, there has been considerable 
interest in solitons and the related soliton equations. Analytical solutions are available for certain 
nonlinear evolution equations via the Inverse Scattering Transformation (IST) developed by Garder 
et al. [8]. However,  for some other nonlinear equations, no analytical solutions are known and 
numerical studies are essential in order to develop an understanding o f  the phenomena. 
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Fig 1. Lump solution of the KPI equation. 

The two-dimensional KdV, or Kadomtsev-Petviashvili (KP) equation 

Utx q- (3U2)xx + Uxr~x -- 30.2Uyy = 0  ( t > 0 ,  - - C ~ < x , y < c ~ )  (1.2) 

was first introduced by Kadomtsev and Petviashvili [15] in order to study the stability of  one- 
dimensional solitons against transverse perturbations. In the case of o -2= 1, Eq. (1.2) is usually 
called the KPI equation, whereas in the case of 0 .2 = - 1, the KPII equation. The KP equation is the 
two-dimensional generalization of  the KdV equation. It is shown that the choice of the sign of o .2 is 
critical with respect to the stability characteristics of  line-solitons. For the KPI equation, there exits 
a lump type soliton solution which decay as O(1/r:), r 2 =x2+ y2 when r---~ oo. This lump solution 
can be expressed as 

4 { - [ x  + 2y + 3(22 - ]12)t] 2 q-/t2(y q- 62Q 2 + 1 /#  2 } 
u(x,y,,)= (1.3) 

which is shown in Fig. 1 
It is worth noting that the lump solution takes both positive and negative values and the total 

mass of  this solitary wave, defined by 

f_~ /_~ u(x,y,t)dxdy (1.4) 

is identically zero. 
The KP equation, a soliton equation important from analytical and numerical point of  view, is 

one of the few known completely integrable equations in the multi-dimensional soliton equations. 
Thus in the last few years, considerable interest has been focused on the KP equation. 

On the basis of  the great success in the soliton theory, much efforts have been done to investi- 
gations of  soliton properties in multi-dimensional systems. Exact solutions describing interactions of  
quasi-one-dimensional solitons were obtained for systems with two or three spatial dimensions as a 
straightforward extension of the one-dimensional soliton. Spatially localized solitary wave solutions 
decaying in all directions are also obtained analytically for some multi-dimensional soliton equa- 
tions such as the KP equation. But the numerical solution of  the multi-dimensional soliton equations 
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cannot be', obtained straightforwardly from that of  one-dimensional case and often raises a difficult 
problem. Although several numerical schemes have been proposed for the KdV equation (see [5, 
11. 12, 22, 26, 27, 29]), the numerical analysis literature for the KP equation is extremely small. 
As far as we are aware of, only two kinds of  method are reported. These include: the explicit finite 
difference method proposed by Katsis [16]; the pseudo-spectral method developed by Fornberg and 
"~hitham (see [20, 28]). 

"['he purpose of  this paper is to develop a finite difference method for multi-dimensional soliton 
equations. We propose a linearized implicit method for the KdV equation and extend it to the KP 
equation successfully. 

!n Secuon 2 we propose a linearized implicit method for the KdV equation and extend it to the 
KP equation. Section 3 is devoted to the analysis of  these methods with respect to the accuracy, 
the stability and the numerical dispersion. After considerations on the numerical boundary conditions 
in Section 4, numerical experiments with various initial conditions for the KdV and KP equations 
are reported in Section 5. A good agreement is obtained while comparing the analytical and the 
numerical solutions. We investigate the interaction of  two localized solitary waves, which is still 
unknown analytically. In Section 6, we give a brief summary and further aspects in our future study. 

2. Linearized implicit methods for the KdV and KP equations 

First we introduce some usual finite difference operators and give some of their properties, which 
wall be cseful in constructing and analyzing our finite difference schemes. Suppose we wish to solve 
a partial differential equation with the dependent variable u ( x , y , t ) .  For convenience, let us assume 
that the spacing of the grid points in the x-direction is uniform, and given by Ax,  while the spacing of  
tl',,~ poinls in the y-direction, also uniform, by A y .  We approximate the grid value u ( lAx ,  m A y ,  n A t )  

by u n We define the central-difference operators as I,m" 

H~uT, m " " (2.1) Ul+ l ,  m - -  U l _ l . m ,  

6~Ul~.m = U" -- U" (2.2) 1+½,m I--½.rn' 

" n z U n n 
(~vUl.m Lm+½ - -  Ul, m- -½'  (2.3) 

(~2 un  n n n 
l,m (~x(fxUl.m) = --  2Ul, m q- n (2.4) = UI+I,  m Ul- - l .m~ 

'~  n (~-vU l. m " " n n n n O v ( b v U l ,  m )  = - -  2Ut. m q- (2.5) ~-  Ul .m+ I Ul .m- - l "  

Furthermore, we introduce higher differences as 

-4 ,  2 2 ,  , , " " " (2.6) 
OrUl ,  m = (~r(  ( ~ x U l . m ) =  UI+2, m - -  4U1+1,  m -'k 6ut, m - 4 U l _ l .  m --k U l _ 2 , m ,  

-2 , _ , , " " (2.7) Hxr~Ul,  m - -  Ul+2, m --  2Ul+l, m + 2Ut_t ,m - -  U l _ 2 ,  m. 



98 B.-F Fen q. T Mitsui / Journal oJ Computattonal and Apphed Mathemattcs 90 (1998) 95-116 

Thus partial derivatives are approximated through the finite difference operators as 

O~X I.m nruT"m ~2U ¢~2ulnm 
= 2Ax + O(Ax2 )" ~x 2 I.m - -  ( -~x)2 "~- O ( A x 2  )' 

~2U l,m 2 n l,m 2 n 
_ _  (~ v U l  m O3U _ _  - -  Hx6xUl, m q_ O ( A x 2 ) ,  

Oy 2 ( A y )  2 + O(Ay2), ~ x  3 2(Ax)------T 

¢~4 u (~4Ulnra 
,.,. - + O( Ax2 )" 

2.1. Linearized implicit methods f o r  the K d V  equation 

(2.8) 

o r  

utx + fxx + Ux~x = O, (2.9) 

where f = 3u 2. Through the Crank-Nicolson scheme as well as the central-difference formulas (2.1)-  
(2.7), we have 

mx z n+l 4 n /,/7+1) = tu, - uT) + p f Z ( f ;  + f ; + ' )  + r6~(u, + O, (2.10) 

w h e r e  p : A t / A x ,  r = A t / ( A x )  3, u T ~ u ( l A x ,  n A t ) , l : l ,  2 . . . .  . L .  T o  f i n d  u n+l = i.ull" n+ l ,  "2"n+l , . .  . , U~+I]T 

from u", a set of nonlinear algebraic equations has to be solved. To overcome this difficulty, a way 
linearizing the implicit scheme (2.10) is presented. The linearized form is obtained by using Taylor's 
expansion of f7 +t about the nth time-level. Thus we apply 

i.+, : i .  + (0j )"  
\ 0 t /  t \ 0 t 2 )  + "  

f f + l  : f 7  n n+l + D t A u  l + O(AtZ), (2.11) 

where D7 : ( O f / O u ) 7 : 6 u ~ '  and Au7 +1 : u ~  '+n -  u 7. From (2.11), the nonlinear part in (2.10) can be 
approximated as 

: r )nA.  n+l f~+~ + f7 (3u7) 2 + (3u7 +' )2 : 2f~ + ...., ~u, + O(At 2) 

-- 6uT+'u7 + O(At2). (2.12) 

Substituting (2.12) into (2.10) yields the following penta-diagonal system. 

n n+l hn n+l n n+l n n+l n n+l n 
atul_ 2 -}- t,.lUl_ 1 ~- etu t + cluz+ 1 + atut+ 2 : d  I. (2.13) 

Here the coefficients are calculated from u" through 

a 7 = r ,  b 7 = 6 p u 7 _  , - 4 r - l ,  c 7=6pu7+ , - 4 r + l ,  e 7 = 6 r - 1 2 p u  7 

Keeping a direct extension to the KP equation in mind, we discretlze the alternative form of the 
KdV equation proposed by Djidjeli et al. [4]: 
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and 

d 7 = uT+ , - uT_ ~ - r(uT+ 2 - 4u7+ , + 6u 7 - 4u7_ , + uT_:). 

The vector form of  Eq. (2.13) can be expressed as 

A . u n+l = d n, ( 2 . 1 4 )  

with 

H n + l ~  

]" u n +  I 
1 

u n + l  

¢ n + l  
L - - I  

. n + l  
. hi' L 

A __ 

a l l  a12 a13 

a21 a22 ". ' .  

a31 

0 • • 

0 

aLL 

and d" [ d ~ , d ~  . . . .  , T = , dL] . We have to compute the coefficient matrix A and solve the penta-diagonal 
system of  equations (2.14) at each time step. 

2.2. L i n e a r i z e d  impl ic t t  m e t h o d s  f o r  the K P  equat ion  

Let us consider how to extend the previously proposed scheme of  KdV equation to the conservative 
form of  the KPI equation 

ut~ + f ~  + uxx.,~ - 3uvv = 0, ( 2 . 1 5 )  

where f denotes 3 u  2 in this case, too. 
An introduction of  the second order finite difference for the term uH, implies a finite difference 

method to the KP equation given by 

H .  n + l  n 2 n f n + l  ~ 4 n . n + l  "2 n . n + l  
rtUl, m -- Ul, m) q- p~v( f ] ,m + al, m l " ~  r(~r(Ul .m-~ Ul. m ) - -  3 q O v ( u / ,  m + Ul. m ) = 0 .  (2.16) 

where p = A t / A x ,  q = A t A x / ( A y )  2, r = A t / ( A x )  3, u/, m" . . . .  ~ u ( l A x ,  m A y ,  nA t ) ,  l = 1 , 2 ,  ,L ,  m =  

1 , 2 , . . . , M .  

Similar to the KdV case, the linearized form of  (2.16) is obtained through Taylor's expansion. 
. n + l  _ _  . n + l  That is, with the notations D "  =(Of/OU)Tm :6UT, m and Aul ,  m - - u / ,  m I.m , --UT.m, the  equation 

f ln+l  n I-~ n A n + l  ,m = f / , m  ~-Z'~l, mZJUl, m +O(At2) 

admits the calculation 

f /n+l n n 
,m q-  f l ,  m = 2f;,m -- "-'" " "+' + Z~t.m/lU/. m + O ( A t  2) __ .- .+ l  , - - o u l ,  m u/, m + O(At2). (2.17) 

Substitution of  (2.17) into (2.16) and some manipulations derive the following linear system of 
equations: 

n n + l  t n  n + l  n n + l  n n + l - -  n n + l  ~ n  n + l  - -  n n + l  n 
a/  mUl.m_l ~- OLmUI_2, m ~- Cl, mUl_l ,  m --~ gl, mUl, m -+- el, mUl+l,m q- Oi.mUl+2. m -]- a/,mUl,m+ ] : d l ,  m. (2.18) 
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The coefficients are given by 

11 = - 3q, blnm = r, al.m 

glnm : 6r  - 12pul~,m + 6q, 

and 

C11 11 I,m = 6puz--I, , ,  -- 4 r  -- 1, 

eT. m = 6puT+l. m -- 4 r  + 1, 

11 11 11 11 11 I1 I1 
dl .  m = Ul+l. m - Ul_l .  m - r(l.l/+2, m --  4Ul+l. m -~- 6ULm -- 4Ul_ l .  m -~- UT_e.m) 

_~_ 11 11 11 
3q(Ul,m+ j -- 2Uz, m + Ul, m_l ). 

The vector form of (2.18) is 

A • u 11+1 = d11, 

-u,(+J • 

u n +  1 
LI 

. n + l  
U n+l = t"/12 ~ .,4 = 

. n + l  

. lgLM . 

with 

a l l  a12 a13 

a21 a22 " ' .  

"• ,  • , •  
a31 

" , ,  " , .  

" , •  
am I 

0 • 

a i m  

" . •  • • •  

• • •  • • .  

• • ,  " • .  

• . •  • • •  

- 

"•° :~ 

" ,•  ~< 

(2.19) 

11 11 d11 iv The coefficient matrix A is a nonsymmetric band one and a very and d11 = [d~'l,...,dLi,dl2 . . . .  , LMJ • 

limited number of  its elements will be changed depending on the boundary conditions we adopt in 
the actual computation. 

3. Analyses of the methods 

3.1. O r d e r  o f  a c c u r a c y  

Theorem 1. The local truncation error  o f  l i n e a r i z e d  impl ic i t  m e t h o d  (2.13) to the K d V  e q u a t i o n  

is o f  O((Ax) 2 + (At):). 

Proof. Scheme (2.13) can be rewritten as 

n ~ ( u 7  +1 - uT)  c~ ¢2 ,e  n ~4 tu" u7 +1 
~ - x A t t  + ~ '  J '  + A t ( f t ) 7 )  + 2(~-~x)4, , + )=0.  (3.1) 

Suppose that the exact solution u(x, y )  of KdV Eq. (1.1) is substituted into the left-hand side of  the 
above equation• From Taylor's expansion 

u( lAx,(n + 1)At)--u(lAx, nAt) + Atut(lAx, nAt) + l (At)Zu,( lAx,  nAt) + O((At)  z) 
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and Eq. (2.8), we can derive 

(ut(lAx, nAt) 4- f~(lAx, nAt) 4- ux~(lAx, nAt))~ 4- ½At(ut(lAx, nAt) 4- f~(lAx, nAt) 

4-u~(lAx, nAt))t~ + O((Ax) 2 + (At) 2) = 0. (3.2) 

Because u(lAx, nat) is the exact solution of KdV Eq. (1.1), we obviously have 

ut(lAx, nat) + f~(lAx, nat) + Ux~x(IAx, nat) = 0. (3.3) 

From Eqs. (3.2) and (3.3), we conclude that the truncation error of  our linearized lmphmt method 
is of  O((At) 2 + (Ax)2). [] 

Theorem 2. The local truncation error of  the hnearized implicit method (2.18) to the KP equation 
is of  O((Ax) z 4- (At) 2, (Ay) 2 ) 

Proof. Scheme (2.18) for the KP equation can be rewritten as 

2 u ¢-"+1 _ u" 6~ t2c" 64 "~txl.Ul, m I.m) 4- 4- At(ft)7.m) 4- ~ ( U T . m  
2AxAt 2(Ax)Z~ Jt.,~ ( ) 

. n + l  +Ul,m) 
362, . , ,+1 

2(~y)d(Ui.m + ul, m ) = O. 

(3.4) 

Substitution of the exact solution u(x, y,t) of  the KP Eq. (1.2) into the left-hand side of  the above 
equation, Taylor's expansion for u( lAx, mAy, (n + 1 )At) about point (lAx, mAy, nat) and applications 
of  Eqs. (2.8) gives, after rearrangement, 

utx(IAx, mAy, nAt)+ fx~(lAx, mAy, nAt)+ u .... (IAx, mAy, nAt) - 3uv~,(lAx, mAy, nAt) 

At 
+-f(ut~(lAx, mAy, nAt)+ fxx(lAx, mAy, nAt)+ u~xx(lAx, mAy, nAt) 

-3uyy(lAx, may, nAt))t + O((Ax) 2 + (At) z, (Ay) 2 ) = 0. 

Since the equation 

Utx(lAx, mAy, nAt)+ fx~(lAx, mAy, nAt)+ u .... (lAx, mAy, nAt) - 3u~,,,(lAx, mAy, nAt)= 0 

(3.5) 

holds, we can arrive at the conclusion that the linearized implicit scheme for the KP equation has 
the truncation error of  O((Ax) 2 + (At)2,(Ay)2). [] 

3.2 Linear stability analysis 

Let us investigate the linear stability of the schemes through the von Neumann method. Our means 
is first to freeze one variable in the nonlinear convective term, namely, UUx = Ou~ with 0 = max lul, 
then to employ the von Neumann analysis for the corresponding linear equation. Although an appli- 
cation of  the linear stability analysis to nonlinear equations cannot be rigorously justified, it is found 
to be effective in practice. 
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T h e o r e m  3. The lineari-ed implicit finite dfference methods for the KdV  and KP equations are 
unconditionally linearly stable. 

Proof.  First, we consider the linear stability of  the linearized implicit method for the KdV equation. 
Let 

u~' = ~"e '~; , f l=K,  AxE[ - r t ,  rt]. (3.6) 

Substituting (3.6) into (2.10) with the frozen velocity 0 ,  together with some manipulations, we have 

(~ - 1)(e '1~ - e -'/3) + 6pU(e  '/J + e- ' /~-2)(~ + 1) + r(e 2q~ - 4e '1~ - 4e -'/~ + e -2'1~ + 6)(~ + 1 ) = 0 .  

Thus, we can derive the amplification factor of  the method as 

1 - i ( t a n ( f l / 2 ) ) [ 6 p O  - 2 r ( 1  - c o s  f l ) ]  

= 1 + i ( t an( f l /2 ) ) [6pU - 2r(1 - cos fl)]" (3.7) 

For the linearized implicit method of  the KP equation, we replace uT, m with ~"e'~;e '~'", where 
f l= KxAx, y=K>Ay and fl,7 E [-rc,~]. Then after some calculations it can be shown that the ampli- 
fication factor for the method turns out to be 

1 - i [6pU( 1 - cos fl) - 2r( 1 - cos fl)2 _ 3q( 1 - cos 7)]/sin fl 

= 1 + i[6pU(1 - c o s f l ) -  2r(1 - cosfl)  2 - 3q(1 - cos~)] /s inf l"  (3.8) 

Summing up the above results, the amplification factor for these two methods can be expressed as 

1 - iA 
- 1 + i~ '  (3.9) 

where A is a real number. It is easy to see from (3.9) that 1~1 __- 1 for all fl,7; thus we can say that 
our methods for the KdV and KP equations are unconditionally linearly stable. [] 

3.3. Numerical dispersion 

For wave simulations, it is well known that approximations o f  spatial derivatives by the central 
differences may lead to a numerical dispersion. We examine the phase properties of  the implicit 
method (2.18) for the KP equation. Substituting a solution of  the type e~te '(~'~+~'>'~ into the frozen- 
coefficient KP equation, we have e = i ( -60~:~ + t¢ 3 + 3~c~/K~). Thus the exact amplification factor is 
given by 

G ~ -  u(x,t + At) _e~jt, 
u(x,t) 

which implies the analytic phase ~be of  the KP equation as 

. 3  ';' 49e = At(-60~:x + ~:~ + 3~c?,/K~). 

Recalling the definitions o f  fl, 7, P ,  q a n d  r ,  we obtain 

~)e = - 6 p U f f  + rfl 3 + 3q)'2/fl. 
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Obviously, the physical dispersion term is equal to r/~ 3. On the other hand, the numerical phase of 
this method is given by 

@ = t a n  -j ~ ( ~ - -  tan-  I - A  2 " (3.10) 

For small //, 7, Taylor's series expansion of A in (3.9) yields 

A= 3pO// + ( ~pO - l r )  //3 + l p O / / ,  _ .~,3q 2 _ q //,2 + _~),4 + 0(//6,),6///). 

Since we are treating the case with long waves and small At, we can assume IAI < 1. Again Taylor's 
series expansion reduces Eq. (3.10) into 

05 = --6pO//(r -- ½ PO + 18p303)//3 q- 3qTZ/// + (1458p50 s + ~9 p3 0 3 _ 9p202r _ ~_oPO)//s 

_(9p202 _ ½)q//72 _ ¼q),4///+ O(//6,),6///). (3.11) 

Hence, the phase error of the implicit method (2.18) is given by 

05 - 05e = (--½PO + 18p303)//3 + (1458p505 + 9p303 -- 9pZOZr-- ~-oPO)//5 
_ ( 9 p 2 0 2  _ ½ )q//},2 _ ¼q74///q_ 0( / /6 ,  ~,6///). 

Assume that the small wave numbers in the x-direction and y-direction are of the same order. Then, 
the main numerical dispersion terms are ( -  ½ pO + 18p3 0 3)//3, (9p2 0 2 i -5)q/ /72 and ¼q74///, which 
implies that the ratio of numerical dispersion due to our scheme to the physical dispersion of  KP 
equation is of order 

O((-- l  p O  q- 18p303)/r) + 0((9p202 ' - 5)q/r) + O(¼q/r) 

= O ( A x  2, At 2, Ax4/Ay 2, At2Ax2/Ay 2 ). (3.12) 

In the actual computations, we take Ax and Ay to be of the same order. Accordingly, the ratio 
becomes to O(Ax2, At 2) and the numerical dispersion due to the scheme (2.18) does not exceed the 
physical dispersion. 

4. Numerical boundary conditions and their analysis 

Since we adopt a finite difference scheme, we have to take a finite domain of numerical compu- 
tations. Henceforth, our scheme requires additional boundary conditions, which is called numerical 
boundary conditions The present section is devoted to their analysis. 

4 1. The employed numerical boundary conditions 

For the KdV equation, we make the boundary conditions at the both end points on the x-axis. 
In the following numerical calculations, the problem is solved on a finite domain R, whose grid 
values u(lAx, nAt) are approximated by u 7, l =  1,2 . . . . .  L. At the both end points of  R we impose 
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Y 

i -1 ,2  

1-1,1 

i - l ,O  • 

t W a v e  f r o n t  
I 

/ 
g 

i ,2 t i+ 
g 

g 

i ,~ t B i+  

g 
t 

d h 

i,O i + l , O  

B o u n d a r y  

I t  

X 

Fng 2 Discrete grid points near the boundary m x-y  plane 

the numerical derivaUves u, and Ux~ should vanish. Hence, introducing artificial grid points for 
l = - 1 , 0 , L  + 1 and L + 2, we take the following boundary conditions: 

u" , ,z , , z, (4.1) --1 ~--- HO ~-- U I "  UL+2 ~ -  UL+I ~ UL" 

For the KP equation, a proper artificial boundary condition to truncate the infinite physical domain 
into a finite computational domain is required. However, we restrict ourselves to give the condition 
in the special cases of  one line-soliton motion and the lump type solitary wave, through an estimation 
of  the boundary behaviour of  the solutions. On a rectangular computational domain in the xy-plane, 
as shown in Fig. 2, the grid points are denoted with ( l , m )  as in Section 2.2. 

For the lump type solitary waves, we take the boundary of  the rectangle sufficiently far from 
the center of  the solitary waves. Then, since the lump solitary waves decays in O(1/ r  2) as r ~ cx~ 
(r  2 z x  2 ÷ y2), the numerical derivatwes u~ and u~ are set to zero along the boundary line. That is, 
introducing artificial indices l - - - 1 , 0 , L  + 1 and L + 2 ,  for each n and m (m = 1,... ,M),  we impose 

n _ _  n n n n n 

U 1~ m - -  lgO. m ~ Ul.m~ UL+2.m ~ HL+I.  m ---- UL. m.  (4.2) 

Similarly, introducing artificial indices m = 0, M + 1 and approximating the numerical first derivative 
uv as zero along the boundary line, we impose for each n and l (l = 1 , . . . ,L)  

" " " " (4.3) Ill. 0 ~ UI.I~ U l . M + I  ~ HI. M .  

For the one line-soliton, we take the rectangular boundary parallel to y-axis sufficiently far from 
the center-line of  line-sohton. The same boundary conditions as above can be taken for each n and 
m. Along the boundary parallel to the x-axis, we take advantage of  the global property of  the wave 
front for an estimation for numerical boundary conditions by means of  interpolation. 

As shown in Fig. 2, suppose that the wave front has an angle with the x-axis. The value at the 
grid-point (i, 0) is equal to the value of  the point B, which can be estimated by means of  the first- 
order or the second-order polynomial interpolation based on the set of  grid-points (i, 0) and (i + 1,0) 
or of  ( i -  1,0), (i, 0) and (i + 1, 0), respectively. 
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4.2. StabfliO' checkin9 

In general, for hyperbolic differential equations of higher dimensions there is no effective method 
for checking influences of  numerical boundary conditions on the stability of  finite difference schemes. 
Below we will prove that for the KdV equation the implicit boundary condition (4.1) does not 
deteriorate the overall stability of the scheme (2.13) via the so-called GKSO theory, which can be 
found in, e.g., [10, 25]. However, for the KP equation, although we cannot yet attain a theoretical 
proof, the numerical results show that the above numerical boundary conditions are not introducing 
any additional limitations on the time step for stabdity. 

The GKSO theory can be applied to our case as follows. We begin with the frozen-velocity 
scheme corresponding to (2.13) via the discrete Laplace transform 

At ~-, z_nbln r,,(z)- " 

which forms the resolvent equation as 

z -  1 -6pO(fit+l --2tll+lll-1)+r(~ll+2 - 4ht+t ÷ 6 f i l -  4fi/-1 + fi/-2) 

z + 1 fi/~l - -  U / - 1  

Replacing fit by K l for l >~ 0, we obtain the equation 

r(~ - 1 ) 4  _ 6pOt~(~" - 1 ) 2  _ _ _  
z - I  

z + l  

(4.4) 

= 8ro  3 - 12pOo(1 - ~ 2 )  _ 2~(1 - 0 ) 2 )  

which stands for the equation for K with the parameter z. The GKSO theory suggests that the stabihty 
depends on the root of  (4.5) with the magnitude less than or equal to unity. However, its left-hand 
side has the factor x -  1 regardless of  z. It is a natural consequence of the linear stability analysis 
given in Section 3.2. Thus, putting 9(K) as the left-hand side divided by K -  1, we are to count the 
number of roots whose magnitude is less than or equal to unity for 

g(~c; ~) = r(• - 1 )3 _ 6pOK(~c - 1 ) - Oc(~ + 1 ) = 0. 

Introducing 

G(co)  - (1 - 0))30 \ 1 - - - f ~ '  

g ( h ' ) = r ( ~ - -  1) 3 - - 6 p O K ( ~ -  1 ) -  - -  
Z- -1  

z + l  
K(K+ 1)=0 .  (4.6) 

Due to the employed Laplace transformation, the case of Izl > 1 should be analyzed. The M6bius 
transformation ( z -  1)/(z + 1) maps the outer region of the unit disk {z; [z I > 1} into the fight-hand 
side of  the complex plane. Hence we replace ( z -  l) /(z + 1) by ~ with ~ > 0  in (4.6). 

The question is now to discriminate the number of roots [h- t ~< 1 of the equation 

(4.7) 

x(K 2 - 1 )=0 ,  (4.5) 
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and noting that the transformation co = ( K -  1 )/(to-k- 1 ) maps the unit circle ]~:] = 1 to the imaginary 
axis of the o-plane, we can readily deduce that g has no roots of  ]K] = 1 under the condition ~ > 0 .  

Next, we check the number of  roots with the magnitude less than unity. Generally speaking, it 
can be carried out through repeated Schur transforms for g as a polynomial of  ~. However, since the 
identity g(0; ~ ) = - g * ( 0 ;  ~) where g*(K; ()  means the reciprocal polynomial of  g, the usual criterion 
for the Schur polynomial does not work. We apply, therefore, a technique of e-perturbation (e.g. 
[19], pp. 203-204).  That is, for sufficiently small positive e, the root distribution of g coincides 
with that of the perturbed one given by 

~(tc; ~) ~ g(tc; ~) + eg(O; ~). (4.8) 

Thus, repeated Schur transformations for .~ give the sequence of polynomials gl, (]2 and (J3 of degree 
of  2, 1 and 0, respectively, with respect to K. Recalling R ~ > 0 ,  we can see ~1(0)>0 ,~2(0)<0  and 
g3 > 0  for sufficiently small positive e. Consequently we conclude that g0c; ~) has two roots inside of 
the unit disk for ~ > 0  (Theorem (42.1) of [19]). We denote them by ~:l(z) and tc2(z) by looking 
back ~ to z. 

We can discriminate the following cases. 
Case 1: When tq(z) and tc~(z) are distinct, substitution of  the type of solution fi;=~lK1(Z); + 

~2~:2(Z); into the implicit boundary condition (4.1) yields 

which cannot be satisfied unless either ~q(z)-- 1 or K2(z ) = 1. 
Case 2: When ~l(z)--~:2(z), the type of solution fi; = (~ l  + ~ 2 l ) t ¢ l ( z )  ! implies the identities 

(~ ,  - ~ 2 ) K , ( z )  -1 = ~1 = (~1 + ~ 2 ) K l ( z ) ,  

which cannot be satisfied unless K~(z)2 = 1. 
Henceforth we can assert that none of the solutions mentioned above exist under our assumptions. 

Therefore we have 

Theorem 4. The implicit method (2.13) for the KdV equation wtth boundary conditions (4.1) is 
linearly stable 

5. Numerical experiments 

To illustrate the effectiveness of our linearized implicit difference methods, we will give several 
numerical examples. 

5.1. KdV equation 

Numerical computation for the KdV equation has been repeated in many literature. However, we 
will describe only two cases to show the powerfulness of the method. 
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Fig 3 Numencal solution of single sohton using scheme (2 13) with Ax = 0.2 and At= 0.05. 

5.1.1. Single soliton case 
We computed solutions of the KdV equation (2.9) subject to the following conditions: the initial 

condition 

u(x, 0) = 2t¢ 2 sech2(x(x - x0)) (0 ~<x ~< 30) 

and the boundary condition (4.1). Eq. (2.9) with (5.1) has the theoretical solution 

u(x, t) = 2x 2 sech2(tc(x - 4x2t - Xo)). 

(5.1) 

(5.2) 

Eq. (5.2) represents a single soliton moving in the positive x-direction. 
The parameters were taken to be x = 1.0, x0 = 7.0 for the numerical experiment. Fig. 3 shows the 

numerical solution for 0~<x~<30 and 0~<t~<4.0. 

5.1.2. Soliton interaction 
The interaction of  two solitons is also studied. The boundary conditions are the same as above 

and the initial condition is given by 

2 

u(x,O) =2~--~ ~:~ sechZ(~c,(x - x,))  (0~<x~<30), (5.3) 
/=1 

in which tq = 1.0, K 2 = l / V / ' 2 ,  X 1 = 7.0 and x2 ---- 12.0. The numerical solution is shown in Fig. 4. 
One soliton with larger amplitude 2K~ is placed initially at x~, while another with amplitude 2x~ at 
x2. As is well known, a soliton with large amplitude has a greater velocity than another with smaller 
amplitude. Consequently, as time increases, the larger soliton catches up with the smaller one until 
the smaller one is in the process of being absorbed, i.e., having lost its solitary wave identity. The 
overlapping process continues while the larger soliton has overtaken the smaller one. Eventually, the 
interaction has completed to make the larger soliton separated completely from the smaller one. 
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Fig. 4 Numerical solunon of two sohton interaction usmg scheme (2 13) with Ax = 0.2 and At = 0.05 

5.2. KP equation 

The KP equaUon is numerically solved with our method (2.18). In particular, a collision phe- 
nomenon of  two lump-type solitons shows an attractive result. 

5.2.1. One line-soliton 
We computed solutions of  the KPI equation subject to the following initial conditions 

u(x, y, 0)--2t¢ z sech2{~c[x + 2y -x0 ]}  (5.4) 

and the boundary conditions as discussed in Section 4.1. The equation with (5.4) has the theoretical 
solution 

u(x, y, t) = 2K 2 sech2{x[x + 2y - ( 4 K  2 - -  32 z)t - x0]}, (5.5) 

which represents one line-soliton propagating with the velocity 4x 2 - 322 in the direction with the 
angle of  t a n - l ( - 2 )  -1 to the positive x-axis. 

The parameters were taken to be K = 1.0, 2 = -  l/v/-2 and x0 = 6.0 for the experiment, which was 
carried out on the domain [0, 20] x [0, 10]. The errors in the L~-norm and two of the conservatwe 
quantities Ii = f f  u(x, y) dx dy and I2 = ½ f f  u2(x, y) dx dy are computed and compared. Table 1 
exhibits the results. Here, L~ = max [fit,m- ut,,,I, where fit.m and ut,,, are the numerical and the exact 
solutions, respectively, at the grid point (l,m). E1 =(71 -I~)/I~ and E2 =( /2  - I2) / I2  indicate the 
relative errors of  the approximate values in the conserved quantities. Here [~ and 72 stand for the 
counterparts of  I~ and 12, respectively, by the approximate solution of  the KP equation. Simpson's 
rule was employed for the numerical quadrature of  the integrals. 

We assume that Table 1 shows an obedience of  the conservation laws in the KP equation nu- 
merically. The profiles in Figs. 5 and 6 show the initial condition and the numerical solution at 
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Table 1 
Errors m the norm and the conservatwe quantities for the hneanzed lmphclt method (2.18) 

109 

Ax Ay At t L~ E1 E2 

0 
0 
0 
0 
0 
0 
0 
0.1 
0.2 
02 
0.2 
02 
02 
0.2 
02 
0.2 

0.1 0.05 1.0 0 0029 - 0  0019 -0.0033 
0.1 0 05 2 0 0.0028 --0 0066 -0.0072 
0.1 0 1 1.0 0 0090 0.0077 - 0  0185 
0 1 0 1 2.0 0.0088 -00228 -0.0311 
0 2 0.05 1.0 0.0050 -0.0019 - 0  0025 
0 2 0.05 2.0 0.0052 -0.0062 -0.0056 
0 2 0 1 1.0 0 0148 -0.0075 - 0  0176 
0.2 0 1 2.0 0.0188 - 0  0229 -0.0299 
0 1 0.05 1 0 0.0068 -0.0028 --0.0011 
0 1 0.05 2 0 0 0090 -0.0008 --0.0054 
0 1 0 1 1.0 0.0127 -0.0089 -0.0153 
0 1 0.1 2.0 0 0132 -0.0183 -0.0227 
0 2 0 05 1 0 0.0120 --0.0028 0.0018 
0 2 0.05 2.0 0 0134 - 0  0004 0 0072 
0.2 0 1 1 0 0 0205 --0 0087 - 0  0144 
0 2 0 1 2.0 0 0239 - 0  0182 -0.0213 

U 

2 

15  

1 

0.5 

1 0 0  

5 , v  
0 x 

20  

Fig 5. lnitlal condition of Eq (5 4) 

t ime t----2.0 (wi th  second-order  p o l y n o m i a l  in terpola t ion  b o u n d a r y  condi t ion) ,  respect ively.  A good 

ag reemen t  can  be seen be tween  the numer ica l  and the theoret ical  solut ions.  

5.2.2. Two line-soliton interaction 

The in terac t ion  o f  two l ine-so l i tons  were also invest igated.  We  take the ini t ial  cond i t ion  

2 

u(x, y, O) = 2 Z K2sech2 { tc,[x + )~,Y -- Xo,,]} 
t = l  

(5 .6)  
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l oo  
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0 x 

Fig. 6. Numerical solution o f  one hne-sohton at rime t = 2 0 (dx = 0.2, Ay = 0 2, At = 0 05) 

and the exact boundary condition. We carried out the computation on the domain [0, 30] × [0, 3]. The 
initial condition (5.6) corresponds to two line-solitons, each with amplitude 2x~ placed initially at 
x =-x0,, and moving with velocity v, = 4x 2 -322 along the x-axis (i = 1,2). With a proper selection of 
the parameters, we can have positive and negative velocities to imply a collision of two line-soliton 
on the x - y  plane. 

The parameters /£1 ~ 1.0, /¢2 ~ 1/X/~,  '~'1 ~ - l/x/3, '~'2 z - 1 . 0 ,  and x0,1 = 6 . 0 , x 0 , 2 - -  11.0 were taken 
for the numerical experiment from t = 0 to t = 4.5 allowing a collision to take place. The initial 
condition (5.6) is plotted in Fig. 7, which shows two wave pulses, with the larger on the left. 
As indicated above, the larger line-soliton on the left moves with a velocity 3.0 to the positive 
x-direction and the smaller one on the right moves with a velocity 1.0 to the negative x-direction. 
Consequently, as time goes on, these two line-solitons get close and collide with each other. Fig. 8 
shows the profile at t = 3.0. 

By t = 4.5, the two line-solitons have separated completely and restored their original shape. This 
is seen in Fig. 9. 

5.2.3. Lump type soliton 
The lump type initial conditions used for the KPI equation is 

u ( x , y , O ) = 4 { _ ( x  _Xo)2 + ~2(y _ yo)2 + 1/kt2} 
{ ( x -  Xo) 2 + ~ 2 ( y _  yo)2 + 1/p2} 2" 

(5.7) 

We adopt the boundary conditions (4.2) and (4.3) as discussed above. We computed in a rectangle 
[0, 20] x [0, 20] with the parameters /~2= 1.0,x0 = 10.0, Y0 = 10.0. 

According to (1.3), this lump type pulse will move to the positive x-direction with velocity 3/t 2. 
Fig. 10 shows the initial condition of  (5.7), while Figs. 10 and 11 give the numerical solution at 

1 and t = 1.0, respectively. Stable propagation of the lump type solitary wave was observed times t = 
without any deformation. 
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9. Numerical solution of two hne-sohton interaction at t = 4  5. 
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Fig. 10 Profile of  the lump type sohtary wave in Eq (5 7) 
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F~g. 12. Numerical solution of  the lump type sohtary wave at time t = 1.0. 
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Fig. 13 Profile o f  two lump type pulses at rime t = 0 

Collision of two lump type solitary waves was also examined in the same way. We adopt the 
following initial conditions: 

2 
u(x,  v , 0 ) = 4  ~ {-(x__- x0,,)_2_+_ #2(y~_ y0.,____)_2 _+_ 1//~ 2_____ ~ 

" ,=1 { ( X - - X 0 . , )  2 + / . / 2 ( y _ y 0 . , ) 2  q_. 1 / / / 2 }  2 
(5.8) 

with the parameters: Xo.l = 10.0,x0,2 = 18.0, y0,1 =Yo.2 = 10.0,#~ = 1.5, /1~ =0.75.  This is shown In 
Fig. 13. Recalling the lump type solitary wave solution of  KPI equation in (1.3), the higher lump 
type soliton on the left will move with the velocity 4.5 in the positive x-direction, while the lower 

9 Hence, as time goes on, there will be one on the right moving in the same direction with velocity ~. 
a collision between two pulses. Because the pulse centers of  the two localized pulses are situated on 
the same line with y = const., Kawahara called this kind of  collision as "direct collision" [14]. Figs. 
14-16 show the contour curves of the colliding pulses. It is very amazing that the pulses undergo 
"inelastic collision", i.e., they interact with each other and after the collision the amplitudes of pulses 
become almost equal, and the pulses move in the opposite direction along the y-axis, while keeping 
the total momentum be zero as before. The tipples observed in the figures have not yet reasonably 
explained. In the future, we are to pursue it numerically as well as analytically. 

6. Summary and further aspects 

A hnearized implicit finite difference method, based on the technique developed by Djidjeli, et al. 
[4], for the KdV equation was proposed. Moreover, the main work in the present paper is a direct 
and successful extension of this scheme to the KP equation. Analysis was carried out to the linearized 
implicit scheme for the both equations. It yielded the following merits. 

(i) The order of  accuracy was established as O ( ( A t )  2 + (Ax) 2) and O((At) 2 + (Ax) 2, (Ay) 2) for the 
KdV and KP equations, respectively. 

(ii) Unconditional linear stability was proven. 
(iii) Numerical dispersion was shown to be sufficiently small. 
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F]g. 15. Contour curve of  two pulses at time t - - 2  0 (numerical solution). 
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We carried out m a n y  numerical  computat ions with various initial conditions, most  o f  which are 
based on the analytical results via the inverse scattering transformation (IST).  Numerical  boundary 
conditions were proposed and partially justified through a theoretical analysis. The numerical  re- 
sults were consistent with the theory and gave a good agreement  to the analytical solutions. As a 
conclusion, our methods for the KdV and KP equations are effective. By  applying our scheme to 

the KP equation, the collision o f  two lump type solitary pulses, whose behavior  is still analytically 
unknown,  was attained. This numerical  experiment  shows the powerfulness  o f  the numerical  means 

in the study o f  nonlinear soliton equations. The two lump type solitary waves  were observed to 

undergo "inelastic collision", keeping the total m o m e n t u m  conserved. The reason why the two lump 

pulses behave so is an interesting topic we are to pursue for. 
A future work  is expected to find a proper  numerical boundary conditions for the general case 

and to extend the linearized implicit method to the Zakharov-Kuzne t sov  (ZK)  equation, the Benney 

equation and other mult i -dimensional  soliton equations with nonlinear convective term. 
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