
MATHEMATICS 

POLAR GEOMETRY. IV 

BY 

F. D. VELDKAMP 

(Communicated by Prof. H. FREUDENTHAL at the meeting of October 31, 1959) 

IV. THE EMBEDDING OF AXIOMATIC POLAR GEOMETRY 

IN A PROJECTIVE SPACE 

l. In this chapter S will be a system that satisfies the axioms I-X 
of the preceding chapter. 

2. By ~* we. denote the set of all flat subsets X* of S with the 
following properties: 

l. If uES with r(u)>O, then there exists a v.;;;;u, r(v)>r(u)-1, 
such that v E X*. 

2. X* is a proper subset of S. 

~ will be a replica of~*; to each element X* E ~* there corresponds 
an element X E ~· 

For every point x of S we define an X* E ~* as the set of all elements 
u of S such that x v u exists; it can easily be verified that such a set has 
all the properties of the sets that belong to ~*. As x = y is equivalent to 
X*= Y* (where Y* corresponds to y in the same way as X* to x), we 
can identify any point x E S to the element X of ~ which corresponds 
to X* E ~*. Instead of saying that X* is the set of elements that are 
joined to xES we shall often say XES. 

3. LEMMA. If X* and Y* are arbitrary elements of ~* and X* C Y*, 
then X*= Y*. 

Proof: Let us suppose that Y* contains a point p that does not 
belong to X*. lfu>p, we can find a v<u of rank r(v)>r(u)-1 such that 
vEX*. p ¢X*, hence u=p+v. Both p and v E Y*, hence u E Y*. 

Hence x E Y* if x v p exists. Now we can reason in a way similar to 
the proof of III, 11 to show that all elements of S belong to Y*. This is 
in contradiction with the property of Y* to be a proper subset of S. 

4. In ~we are going to introduce a notion of dependence. Note that 
if p, q and r are points in S and P, Q and R respectively are the cor
responding elements of ~' r is dependent on p and q if, and only if, 
R* ::::>P* n Q*. 

Now we generalize this : 
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DEFINITION. If P, Q and Rare arbitrary elements of '-l5, then R is called 
dependent on P and Q if, and only if, R* ~ P* n Q*. 

It follows from section 3 that if P=Q, R is dependent on P and Q if, 
and only if, R=P. 

It is trivial that P and Q themselves depend on P and Q. 

5. PROPOSITION. If P, Q andRE '-l3, Q=!=R and R is dependent on P 
and Q, then P is dependent on Q and R. 

Proof: We know: R* ~ P* n Q* and we have to prove: P* ~ Q* nR*. 
Suppose this statement not to be true. Then there exists a point a E S 

such that a E Q* n R* but a ¢: P*. Then we shall prove Q* C R*, hence 
Q* =R*, which leads to a contradiction with the assumption Q=!=R. 

First we consider an arbitrary line l >a, l E Q*. There must be a point 
b<l, bE P*. Since a¢: P*, a=/=b. As bE P* n Q*, bE R*. Hence l E R*. 

Now let c be an arbitrary point E Q*. If c E P*, thencE P* n Q* and 
hence c E R*. Suppose c ¢: P*. 

If c v a exists, c E R* as we have just proved. 
Suppose c v a does not exist. Take a line l >a, l E Q*. On l we can 

find a point b such that b v c exists. We know that b E Q* n R* ; if more
over b ¢: P*, we can prove that c E R* in exactly the same way as we 
did above with a instead of b. 

Now suppose such a point b cannot be found, that is to say: if b E Q* 
and b v a and b v c exist, then b E P*. We can easily find two points b1 
and b2, both E Q*, such that bt v a and bt v c exist but b1 v b2 does not. 
By a similar reasoning as in III, II, part 2c., we conclude that in this 
case too c E R*. 

Hence Q* C R* as we intended to prove. 

6. DEFINITION. If P and Q E '-l3, the line P+Q is defined as the set 
of all elements of '-l3 that depend on P and Q. 

PROPOSITION. For every two elements of '-l3 there is one and only one 
line containing those elements. 

Proof: Let R and T be two different points on P+Q; by applying 
proposition 5 we conclude P+Q=R+T. 

In the sequel we shall often speak of points instead of elements of '-l3. 

7. LEMMA. Let P, Q and R be points of '-l3 such that R* ~ P* n Q* 
and P=!=Q. Let x be a point ES that is ER*, but x rf:P* n Q*. 

Then R* is the smallest flat subset of S that contains both P* n Q* and x. 

Proof: We may suppose, for instance, R=!=P. Let e be a flat subset 
of S such that e ~ P* n Q*, x E e and e C R*. 

Let y be an arbitrary point in R*. If x v y exists, it is E R*. There 
must exist a point z<x v y, z E P*. Then z E P* v R* and hence z E Q* 
(proposition 5). Hence z E e and X E e and therefore X v z E e. Hence y E e. 
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If x v y does not exist, a reasoning like that in III, 11, part 2b. and c., 
leads to R* C 0. Hence O=R*. 

8. PROPOSITION. Let x and y be points of S identified with X and 
Y E l.l!- Suppose that x v y exists. Then X+ Y is the set of all Z E l.l! cor
responding to the points z<x v y. (In this case we shall often write X v Y 
instead of X+ Y). 

Proof: If z<x v y, it is trivial that Z EX+ Y. Suppose conversely 
ZEX+Y. 

Choose a point r E Z*, r ¢ X* n Y*. There is a point t < x v y such 
that tv r exists. Let T E l.l! correspond to t. Then T* :=l X* n Y* and 
r E T*. It follows from the preceding lemma that T* ::) Z*, hence T =Z 
(lemma 3). 

9. Now we are going to prove that if a line intersects two sides of a 
triangle (not at their common point), it also intersects the third side. But 
before doing so we shall prove a useful lemma. 

LEMMA. Let 0 be a subset of S with the following properties : 

1. If x and y E 0 and x v y exists, the latter is also in 0. 
2. There exist two points x andy in 0 such that x v y does not exist and 

every point of xy belongs to 0. 
3. If x E 0 and y<,x, then y E 0. 
4. If u ES with r(u)>O, then there exists a v<,u of rank r(v);;;.r(u)-1 

such that v E 0. 
Then 0 is flat and hence 0 = S or 0 E l.l! * (owing to property 4). 

Proof: We have only to show that if x' and y' are two points in 0 
such that x' v y' does not exist, every point of x'y' belongs to 0. 

The general case can easily be reduced to the case that xy and x'y' 
have a point in common (in the same way as in part b. of the proof of 
III, 9). So we may suppose x=x'. 

a. y v y' exists. 
Then y v y' E 0. Let z<y v y' be the point such that x v z exists; z E 0. 
If t' is an arbitrary point of x'y', then t' v z exists and intersects xy 

in a point t (III, 8). t E 0 and z E 0, hence t v z E 0 and consequently t' E 0. 

y 

z 

Fig. 7 Fig. 8 
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b. y v y' does not exist. If there is a point y" E () such that y v y" 
and y' v y" exist but x v y" does not, then we apply a. twice: to xy and 
xy" and then to xy" and xy'. 

c. y v y' does not exist and there is no point y" E () as in b. 
There are points Z1 and Z2 in () such that Zi v y and Zi v y' exist and 

Z1 v Z2 does not. Then Zi v x must exist because of the above hypothesis. 
Choose points h < y v Z1 and t2 < y' v z2, ti =1- Zi, such that t1 v t2 exists. 

Then x v ti does not exist. h and t2 are in e. Hence we can apply the line 
of reasoning of a. thrice: first we project xy onto xh, then xt1 onto xt2 
and finally xt2 onto xy'. This completes the proof. 

10. PROPOSITION. If A, B, 0, P and Q are points in ~, P E A+ B, 
Q EA+O, A¢ B+O, A ¢P+Q, then the line B+O intersects P+Q at 
a point R. 

Proof: For maximal elements u of S, we define the following subsets 
of S by induction: 

{1, u) contains all x.;;;;u with x E B* n 0* or x E P* n Q*. 

(2, u) contains all z.;;;;x v y where x and y E {1, u). 

If n;;;.2, then 

(n+1, u) contains all z.;;;;x vy where x E (n, u), y.;;;;u andy E (n, v) for 
some maximal v such that r(u A v) =i(S) -1. 

Notice that (n, u) C (n+ 1, u) for every nand that x E (n, u), x.;;;;v and 
r(u A v) = i(S)- k implies x E (n + k, v). 

Now we define 

R* = U ( n, u) where the union is taken over all n;;;. 1 and all maximal 
u ES. 

From the above remark it is clear that x v y E R* if x E R*, y E R* 
and x v y exists. 

From the definition of (n, u) it follows that y E R* if y.;;;;x such that 
X ER*. 

Now we observe that in B* n 0* there exist two points x andy such 
that x v y does not exist; but then all points of the imaginary line xy 

belong to B* n 0* and hence to R*. 

In the next sections we shall prove: 

{1} If u E S and r(u)>O, then there exists a v.;;;;u, r(v);;;.r(u)-1 such 
that v E R*. 

(2) R* =1-S. 

Hence we can apply the preceding lemma and conclude R* E ~*. 

Therefore there exists a point R E ~ such that R E B + 0 and R E P + Q; 
for R* :) B* n 0* and R* :) P* n Q*. This proves the proposition. 
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11. First we examine the sets (2, u). It is not hard to see that there 
must be a u' .;;;u such that u' E (2, u) and x.;;;u' for every x E (2, u). 
(We shall call u' the maximal element of (2, u); for any maximal xES, 
the maximal element of (2, x) is denoted by x'.) 

We distinguish four cases : 

IX. r(u')=i(S), i.e. u'=u. 

(3. r(u') =i(S) -1 and (1, u) contains an element of rank i(S) -1. 

y. r(u') = i(S) -1 and (1, u) does not contain any element of rank i(S) -1. 

b. r(u')=i(S)-2. Then u' EB* nO* and u' EP* fl Q* andforallx.;;;u 
such that x E B* fl 0* or x E P* fl Q* we have x.;;;u'. 

Note that there is always a v.;;; u such that v E B* fl 0* and r(v);;;. i(S)- 2 
and analogous for P* fl Q*. Moreover, that 

A* n B* n 0* =A* n P* n Q*. 

In the next section we shaH prove the existence of a u E S of type y; 
moreover, that R* has the propery mentioned as (1) in the preceding 
section. In sections 13 and 14 we shall finally show that if u is of type y, 
(n+1,u)=(n,u) for n;;;.2. Hence R*#S, as we required in (2) of the 
preceding section. 

12. We start with taking a point x EP*, ¢Q* (remember thatP#Q); 
let X be the element of ~ corresponding to x. 

If P* :::> X*, then P =X (lemma 3). In that case we can find a point 
yEP*, ¢Q*, y#x (e.g. on a line in P* passing through x); then P#Y 
and hence P* -p Y*. 

If P* -p X*, we take y=x. 
In both cases there exists a point in Y* that is not in P*. Hence 

we can find a UI E S of rank i(S) such that y < UI and Ut ¢= P*. 
Let VI<Ut be an element of P* of rank i(S)-1 and Wt<Ut an element 

of Q* of rank i(S) -1. Owing to the fact that y E P*, ¢= Q*, Vt # Wt. 
Hence r(VIAWI)=i(S)-2. Remark that if x.;;;ui and xEP*, then 

x.;;; VI; and similar for Q*. 
The same can be done with B* and 0* instead of P* and Q* in some 

maximal element u2 of S ; then we get v2 < u2 of rank i(S) - 1, v2 E B*, 
and w2 < u2 of rank i(S) -1, w2 E 0*, such that v2 .# w2. 

If u1#u2, we select a us of rank i(S) such that r(ui A us)=i(S)-1, 
r(u2 A us)=r(ul A u2)+ 1 and such that us~ VI A Wt. Now u1 ¢= P*, ¢= Q* 
and hence the same is true for us, for r(u1 A us) =i(S) -1. We can find 
vs<us and ws<us, of rank i(S) -1, vs E P* and ws E Q*. As vs A UI=VI A us 
and Ws A Ut=WI A us, Vs#Ws. Now we repeat this reasoning with us instead 
of UI, etc. 

Finally we come, for instance, to u4 of rank i(S) such that r(u4 A u2) = 
=i(S)-1 and such that there exist V4<u4, V4EP*, r(v4)=i(S)-1, and 

W4 <U4, W4 E Q*, r(w4) =i(S) -1, with V4 #W4. 
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If u4 A u2 ~ vz A Wz, we can reason as above to show that there exist 
v4*<u4,v4*EB*,r(v4*)=i(S)-1, and w4*<u4, w4* EO*, r(w4*)=i(S)-1, 
with v4*#w4*. 

If u4 A uz > vz A wz, we take us and us of rank i(S) in the way that 
r(u4Aus)=r(us A us)=r(us A uz)=i(S)-1, U4 A us~ V4 A w4, Us A Us~ Vs A 
A ws, us A uz ~ vz A Wz. In that case we have in Us similar Vs, ws, Vs *, Ws *, 
E P*, Q*, B* and 0* respectively, as we had in U4 in the case U4 A uz ~ VzA w2• 

So we have constructed a u E S of rank i(S) that must be of type y or !5; 
U=U4 or U=Us. 

If u is of type !5, we proceed as follows to construct an element of type y: 
Consider v.;;;;u, r(v)=i(S)-2, v E B* n 0* and v EP* n Q*. 
If there is a point x E B* n 0*, ¢ P* n Q*, such that x v v does not 

exist, then we take a w such that x<w, r(w)=i(S), r(uAw)=i(S)-1. 
It is very easy to show that w is of type y. 

If for every x E B* n 0*, ¢ P* n Q*, x v v exists, we choose such a 
point x. 

Select a point y E B* n 0* such that y vv does not exist; then yEP* n Q*. 
Take WI>Y such that r(wi)=i(S), r(WIA u)=i(S)-1. (Note that, in what 
follows, the characters WI and wz have not the same meaning as above). 
Then WI must be of type 15; for y E B* n 0* n P* n Q* and WI AvE B* n 
n 0* n P* n Q* is of rank i(S)- 3 and disjoint from y; the elements, for 
instance, of P* that are <WI are all contained in one of them, which is 
the join of y and the element EP* of rank i(S)-2 that is <WIA u. 

Now we select a point z < x v v, z :( v, such that z v y does not exist. 
Take wz > z of rank i(S) such that r(wz A WI)= i(S)- 1. As z E B* n 0* 
but ¢ P* n Q*, wz must be of type y. 

So we have constructed an element of S of type y. 

Finally we shall prove the property indicated as (1) in section 10. 
Let u be an arbitrary maximal element of S. If u is of type <X, {3 or y, 

r(u') ;,;;;.i(S) -1; so (2, u) contains an element < u of rank ;,;;;. i(S) -1 and 
so does R*. 

If u is of type !5, we can construct, as we did before, a maximal w2 E S 
that is of type y. It is easy to see that (3, WI) must contain an element 
of rank i(S) -1 and hence the same is true of (4, u). 

Hence there exists an element < u of rank ;,;;;. i(S) -1 that is E R*. 

13. In this section we are going to prove : 
If u is of type y, then (3, u) = (2, u). Taking into account that A*::> 

::> P* n B* I) and hence P* ::> A* n B* and B* ::> P* n A* one can 
easily verify that we must have in u a situation such as indicated in the 
figure, which shows the case that u is a plane (r(u) = 3); in the general 
case we have subspaces of rank i(S) -1 instead of lines, etc.; then 

1 ) We have to prove proposition 10 only in the case that P oj:. B and Q oj:. C, 
the other cases being trivial. 
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_u~v-

Fig. 9 

A* n B* n 0* =A* n P* n Q* contains an element of rank i(S)- 3 that 
is < u. 

Now let v be such that r(v)=i(S) and r(u 11 v)=i(S)-1. 
First suppose v such that there is no w < u 11 v of rank i(S)- 2 that 

is E B* n P*, B* n 0*, 0* n Q* or P* n Q*. 
Then it is clear that v is of type y or b; in the latter case (2, v) does not 

add anything to (3, u). In the former one we proceed as follows: we 
define a projectivity n of u upon v by taking: n=identity on u 11 v, x"=x', 
y" = y' where x and y are points < u which belong to B* n P* and 
P* n Q* respectively and x' andy' are similar in v. It is not very difficult 
to verify that n maps elements of B* onto elements of B* and does 
similarly with 0*, P*, Q* and A*. 

But then u'" must be equal to v'. As n is the identity on u 11 v, 
u' 11 v=v' 11 u. Hence (2, v) cannot add anything to (3, u) that was not 
previously in (2, u). 

Fig. 10 
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Now let v be such that u A v ¢A* and that there is a w..;;;u A v of rank 
i(S)-2 such that w EP* n B*. 

We have only to consider the case that v is of type y, for otherwise 
(2, v) can add no points to (3, u) that are not previously in {2, u). We 
shall prove the existence of a projectivity n of u upon v that transforms 
elements of B* into elements of B* and similarly for 0*, P*, Q* and A* 
and that leaves v' Au pointwise invariant. As n leaves w and v' Au in
variant, it also leaves u A v invariant, as w =1- v' Au. It is clear that n 
must transform u' into v'. Hence u' A v is transformed into v' A u. But 
the latter is invariant under n (see the above characterisation of n), hence 
u' A v=v' Au. Hence again (2, v) does not add any new point to (3, u). 

To prove the existence of the required projectivity n we reason as 
follows: 

We choose maximal WI and w2 E S with the following properties: 

a. WI,2>V' AU. 

b. r(Wl AU)=r(WI AW2)=r(w2 AV)=i(S)-1. 

c. WI A u is in the general position such as described above, i.e. it 
does not contain elements ..;;;; u of B* n 0*, B* n P*, 0* n Q* or P* n Q* 
of rank i(S)- 2; the same is true of W2 A v. 

Then WI and w2 are of type y or (J; if they are both of type (), we may, 
moreover, suppose that they do not contain the same element of rank 
i(S)-2 of B* n 0* n P* n Q*. 

If, for instance, WI is of type y, then there is a projectivity of u upon 
WI transforming elements of B*, 0*, P*, Q* and A* respectively into 
similar elements that is the identity on u A WI and hence leaves invariant 
v' Au; this has been proved above. 

Now if w2 is also of type y, there exists a similar projectivity of WI 

upon w2 and of w2 upon v (for v was supposed to be of type y). Thus we 
find the projectivity of u upon v that we looked for. 

It is also possible that WI or w2 or both are of type (). Let us suppose, 
for instance, WI of type (J and w2 of type y. 

We choose a point x<wi, x ::$;; u A w1, x ::$;;WI A w2, x E B* n 0* n P* n 
n Q*. Then we project u A WI upon WI A w2 from x; this projection trans
forms elements of A*, B*, 0*, P* and Q* into similar elements and can 
hence be extended to a projectivity of u upon w2 of the same property. 

In the other possible cases we follow a similar line of reasoning. We 
find always a projectivity of u upon v with the required properties. 

The case u A v E A* is treated likewise. 
Finally we have to consider the case that u A v contains, for instance, 

the element ..;;;; u of B* n 0* of rank i(S)- 2. But then, again, {2, v) can 
add no points to (3, u) that were not already contained in {2, u). 

14. Mter we have proved in the preceding section that {2, u) = {3, u) 
if u is of type y, we shall now suppose 
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= (n, u) for every maximal u E S of type y, (n> 3), 

(n, u) = (n+ I, u) if u is of type y. 

Suppose VI maximal E S such that r(u 11. VI) =i(S) -I and such that there 
is no w.;;;u II. VI of rank i(S)-2 that is E B* n 0*, B* n P*, 0* n Q* 
or P* n Q*. 

Then VI must be of type y or o; in the former case (2, VI)= (n, vi). But 
we have seen in the preceding section that if x E (2, VI) and x.;;;u 11. V1, 

then x E (2, u). Hence (n, VI) does not add anything to (n+ 1, u) that is 
not in (n, u). 

Now suppose that VI is of type o and that we have maximal v2, ... , vk 

such that r(vi, Vi+I) =i(S) -1, v2, ... , Vk-2 and Vk-I are of type o and vk 

is of type y. 
If there is any i < k -I such that Vi 11. Vi +I> w of rank i(S)- 2, 

w E B* n 0* n P* n Q*, then we can add some maximal vi, I, ... , Vi, 1 such 
that r( Vi 11. Vi, I)= r( Vi, I 11. Vi, 2) = . . . = r( Vt, 1 11. Vi +I)= i(S)- I and such that 
neither vi 11. Vi, I, Vi,I 11. vi, 2, ..• , nor vi,l 11. Vi +I has a similar property as 
Vi 11. Vt+l· Hence we may suppose about VI, ... , vk: for every i < k- 1, 

vi 11. Vi+I does not contain an element of B* n 0* n P* n Q* of rank 
i(S)- 2. 

Then we can select points Xi < Vi (i = I, ... , k - I) such that 
Xi E B* n 0* n P* n Q*, Xi ~Vi-I 11. vi and Xi ~vi 11. Vi+l· We project 
Vi-I 11. Vi upon Vi 11. vi+l from Xi. Note that we take vo = u. Thus we get a 
projectivity of u 11. VI upon Vk-I 11. vk that transforms elements of A*, B*, 
0*, P* and Q* respectively into similar elements; this application can 
be extended to a projectivity n of u upon vk of the same property. It is 
not hard to verify that n maps u' upon vk'. 

Now we know that (n +I- k, vk) = (2, vk), as Vk is of type y. The only 
-1 

points that (n+ 1-k, vk) can add to (n+ I,u) must hence be.;;; (vk' 1\Vk-I)" ; 

but this is u' 11. VI and therefore ( n + 1 - k, vk) does not add anything to 
(n+ I, u) that was not already in (n, u). 

Another situation that we have to consider is the one where VI, ... , vk 

arc as above with the only difference that Vk is of type ex, {3 or o. The 
form-:e one can be reduced to the case we have just treated and in the 
latter two cases (n+ I-k, vk) does not add anything to (n+ I, u) that 
was not previously in (n, u). 

The cases that u 11. VI is not quite as we supposed at the beginning of 
this section can be treated in a similar way as in section I3. 

Hence (n +I, u) = (n, u), which had to be proved. 
This achieves the proof of proposition I 0. 

I5. Now we consider the smallest subset ~, of '.l5 with the property: 
If X and Y are two points of S, then every point Z E X+ Y belongs 

to '.l5'. (Here the points of S are considered as elements of '.l5; cf. section 2.) 
We shall prove : 
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PROPOSITION. If P and Q are elements of ~' and R E P+Q, then R 
is also in ~'. 

Proof: 

a. P E S, Q E S. Then R E ~' owing to the definition. 

b. pES, Q ¢S. 

p 
\ 
\ I('?' 

\ I I 
I I 

---~--r----a, a, I Gz 
\ I 
\ I 
\ I 
\ I 
\ I 
\I 
~R 

Fig. 11 

There exist points Q1 and Q2, both E S, such that Q E Q1 + Q2. We 
may suppose P ¢ Q1 + Q2, for otherwise· the proof is trivial. Hence there 
exists a point X E S such that X v P and X v Q2 exist but X v Q1 does 
not. Let Y be the point E X v Q2 such that Y v Q1 exists. Let R1 be the 
intersection of the lines Q1 v Y and Q +X and R2 that of P v X and 
R + R1, then R E R1 + R2 where R1 and R2 are points of S (because of 8). 

c. P ¢S, Q ¢S. 

Then P E P1 + P2 and Q E Q1 + Q2 where the points P, and Q, belong 
to S. 

On the line R + P1 there must be a point X such that X+ P 2 contains 
a point Y E Q1 + Q2 (follows from proposition 10). From b. it follows 
that X E xl + x2 where xl and x2 belong to s. But then R E Rl + R2 
where R1 and R2 E S, as follows again from b. 

This completes the proof. 

16. PROPOSITION. If P is an arbitrary element of ~' and Q a point 
E S, Q ¢ P*, then there exists a point RES, R=!=Q, R E P+Q. 

Proof: The case PES is trivial. So we suppose P ¢ S. 
On account of the definition of ~' we can find two different points 

Q1 and R1 inS such that P E Q1 +R1. If Q E Q1 +R1, nothing remains to 
be proved. 

If Q ¢ Q1 + R1 but, for instance, Q v Q1 exists, then we consider the 
36 Series A 
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point X <Q v Q1 such that X v R1 exists. As Q ¢ P*, Q=t=X. Hence the 
line P + Q intersects X v R1 in a point R =1= Q. Owing to proposition 8 
RES. 

If neither Q v Q1 nor Q v R1 exists, we take a point X E S such that 
X v Q1 and X v R1 exist but X v Q does not. (Bear in mind that Q ¢Q1 + R1.) 
Then we can find different points Q2 < Q1 v X and R2 < R1 v X such that 
Q v Q2 exists and P E Q2 + R2. Then we proceed as above with Q2 and R2 
in stead of Q1 and R1. 

17. PRoPOSITION. On every line in $' there are at least three points. 

Proof: Consider a line P+Q. It is not very difficult to find a point 
t E S that is neither in P* nor in Q*. Let t be identified with T E $'. From 
proposition 16 it follows that there are points P1 and Q1 E S such that 

From proposition 10 it follows that P + Q and P1 + Q1 have a point R 
in common. It may easily be verified that R=t=P and R=t=Q. This proves 
the proposition. 

18. From propositions 6, 10, 15 and 17 it follows that $' is a pro
jective space. (See G. BmKHOFF [2], pg. ll6.) 

We define a flat in $' as a set of points that contains with any two 
points P and Q the line P+Q. It follows from proposition 8 that the 
elements of S can be considered as flats in $'. 

It is clear that the intersection of S with a flat in $' is a flat subset 
of S. Now we apply axiom VIII (see III, 12). Let X1, ... , Xp be a set of 
points such that S is the only flat subset that contains them all. Let V 
be the smallest flat in $' that contains X1. ... , Xp. Then every point of 
S must belong to V. Hence V contains all points of $'. 

If X E $', the symbol X will also denote the flat consisting of the 
element X only. Flats in $' will be denoted by great Italic characters. 

The partially ordered (by inclusion) set of all flats of$' will be called 
P; the inclusion will be denoted by < . 

The smallest flat containing two flats U and V is called U + V; their 
intersection is also a flat and will be called U II V. Analogous for an 
arbitrary number of flats: ! u or n u. 

Every element of S can be identified in a unique way with an element 
of P. If x and y are E S such that x v y exists and they are identified 
with X and Y in P respectively, then we shall often write X v Y in stead 
of X+Y. 

The maximal element of P will be called A. A has finite rank n, as 
we saw above. 

19. Now we shall introduce a polarity a in the space P such that S 
will be the set of strictly isotropic subspaces with respect to a or, in the 
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case that the space P is represented by a linear space over a field of 
characteristic 2, is contained in such a set. 

If P is a point, pa is defined as the smallest flat that contains P*. 
If V is a flat, we define ya = n pa where the intersection is taken over 

all points P <. V. 
Finally oa =A. 

The proof that a is a polarity and that S is (part of) the polar geometry 
corresponding to a will be given in the next sections. 

20. LEMMA. If Pis a point, r (Pa);;;.n-1 (where n is the rank of P). 

Proof: Suppose r(Pa)<n-1. We choose a point Q ES, Q 4;Pa and 
then a flat H;;;.Q+Pa of rank n-1. 

The elements XES such that X ,;;;.H form a flat subset() of S; () E ~*. 
() :> P* and Q E (), Q i P*, hence () "*- P*. But this is a contradiction 

with lemma 3. 
Hence r(Pa) ;;;.n-1. 

21. LEMMA. If P is a point of S, then r(Pa) =n-1. 

Proof: We shall prove that every point in pa depends on two points 
in P*. From this it follows that X< pa, X E S, implies: X E P*. As 
P* "*- S, pa cannot be equal to A; hence r (Pa) = n- 1. 

It suffices to prove: if both Q and R depend on two points in P* and 
T < Q + R, then T depends on two points in P*. 

a. Q E P*, R E P*: trivial case. 
b. Q EP*, RiP*. 

Then R < R1 + R2 where the points R1 and R2 belong to P*. 
In this case R 4; P v Q; hence there exists a point X E P* n Q*, 

Xi R*. Applying proposition 16 we find a pointY E S, Y *-X, Y <X +R. 
p ERl* n R2*, hence pER*. Therefore p EX* n R*, hence p E Y*. 

pES, so yEP*. 
As T<Q+X+Y, the line T+Y meets QvX in a point Z. Hence 

T<Y +Z where Y and Z EP~. 

--~------~--------------7z a., IX ,/ 
\ I // 
\ I // 
\ I ....... / 
\I _...... Rz // 

_..R-1{--- / 
..... -- I\ // 

R, I \ / 
I \ / 

I ~/ 
I /'.T 

I / \ 
I / 

.1/ 
/Y 

Fig. 12 



546 

c. The general case can be reduced to b. in the same way as in 15, c. 

22. PROPOSITION. If Pis an arbitrary point of P, r(P")=n-1. 

Proof. In view of lemmas 20 and 21 we have only to prove: r(P") < 
.;;;n-lifP¢S. 

Take points A, B, 0 and D in S such that P =(A+ B) n (0 +D) 
and such that A v 0 and B v D exist and have a point Q in common. 

\ 

I 
I 

D 

\ 
\ I 
P'j 
I \ 

I \ 

B 

Fig. 13 

Then P* :>A* n B* and P* :> 0* n D*. 

Q. 

As A* n B* ¢ 0* n D*, there is a point E A* n B* that is not 
E 0* n D*. It follows from lemma 7 that P* is the smallest flat subset 
of S that contains both A* n B* and 0* n D*. 

Hence X .;;;A" n B" +0" n D" if X E P*. 
Therefore P" <A" n B" + 0" n D". 
A and BE S and A =1= B. From the proof of lemma 21 it follows that 

A* contains a basis of A" and similar for B. Hence A" =1= B". As r(A") = 
=r(B")=n-1, r(A" n B")<n-2. Similarly r(O" n D")<n-2. 
It is easy to verify that A* n B* n Q* = 0* n D* n Q*. We shall 

prove that A* n B* n Q* contains a basis of A" n B" n Q" and similar 
for 0" n D" n Q". Hence A" n B" n Q"=O" n D" n Q". As the latter flat 
has rank ;;;.n-3, A" n B" and 0" n D" have a flat of rank ;;;.n-3 in 
common. Therefore r (A" n B" + 0" n D"),;;;; n- 1, hence r (P"),;;;; n- 1, 
which had to be proved. 

We have still to show that A* n B* n Q* contains a basis of A" n B" n Q". 
Keep in mind that A, B and Q E S, A¢ B*, Q :( A+B. 

A, 
Bz 

'-. 
/ 

/ 
'-. / '- X ..-->< 

/ 
...._ 

' 
Bi Az 

A 
Fig. 14 
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Let X be a point, X .;;;;A an Ban ca. 
X,;;;; A .. , hence X< A1 + Az where A1 and Az are points in A* (See the 

proof of lemma 21). 
We can find a point B1<A v A1, B1 E B*. As A¢ B*, Bn"A. Hence 

a point Bz <A v A 2 exists such that X< B1 + Bz. X< Ba and B1 <B .. , 
hence Bz<Ba; Bz also E S, hence Bz E B* (see proof of lemma 21). 
Hence B1 and Bz EA * n B*. 

One can easily prove the existence of a point Y E S such that B1 v Y 
and Bz v Y exist and are E A* n B*. 

If we can find a point Q1 E Q*, Q1 < B1 v Y, Q1 i=- Y, we apply an analogous 
reasoning as in the case of B1 and Bz to find Qz E A* n B* n Q* such 
that X <Ql +Qz. 

I 

B, 

\ 

\ I 
\ I 
x\( 
I \ 

I \ 
I 

Fig. 15 

y 

If such a point Q1 does not exist, Y E A* n B* n Q*, for there must 
exist a point E Q* on the line B1 v Y. 

As Q* "jJ A* n B*, we can find a point Z E A* n B*, Z ¢ Q*. 

y 

Fig. 16 

Let Bt' < Bt v Y be such a point that Bt' v Z exists. Then B/ v Z E 

EA* n B*. 
Take X'= (X+ Y) n (B1' + Bz'). 
Then we can find points Q1 and Qz E A* n B* n Q*, Qt< B/ +Z, 

such that X'< Q1 + Q2 (see above), for Z ¢ Q*. 
Then X <Ql +Qz+ Y where Q1, Qz are Y belong to A* n B* n Q*. 

23. LEMMA. Let P be an arbitrary point and Q a point E S, Q < pa, 
Then Q EP*. 
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Proof: If Q rf=P*, the elements of S which are <,P" would form a 
flat subset that contains P* and a point Q ¢= P*, hence all the elements 
of S. This would imply P"=A, which is not true. 

24. LEMMA. If P, Q and R are points, P<Q+R, Q E P* andRES, 
then PES. 

Proof: We may suppose P#Q. Then Q* cf- P* (see lemma 3). Choose 
a line L E S through Q, L ¢= P*. Let Q' <L be the point such that Q' v R 
exists. Then Q' E Q* n R*, hence Q' E P*. 

As L ¢= P*, Q' =Q. But then Q v R exists and P<Q v R, hence PES. 

25. PROPOSITION. If P and Q are points and P<Q", then Q<P". 

Proof: We may suppose P#Q. 

a. P E Q*. 

We choose a point Q1 E P*, Q1 ¢= Q*. There is a point Q2 < Q1 + Q, 
Q2 E S, Q2 # Q1 (proposition 16). If Q2 v P exists, Q1 and Q2 E P* and 
hence Q<P". 

p 

I 
p' I 

IR 

I 
I ______ _J ___ _ 

a, Q G.z 

Fig. 17 

If Q2 v P does not exist, we take the point P' < P v Q1 such that P' v Q2 

exists. Then P + Q intersects P' v Q2 at a point R E S different from P. 
Applying lemma 24 we see that Q E S. 

P E Q* implies: P v Q exists; hence Q E P*. 

b. Prj=Q*. 

From proposition 16 and lemma 23 we infer the existence of points 
P1 and Pz, both E Q*, such that P < P1 + P2. We may suppose Q q; P1 + P 2. 
Now choose a point Ql E Pl* n P2*, Ql rt Q*. As Q E Pl" n P2" (follows 
from a.), we can find a point Q2EP1*nP2*, Q2#Qr, such that 
Q < Q1 + Q2 (proposition 16 and lemma 23). Qi E P1 * n P2* implies 
Qt EP*. Hence Q<P". 

26. PROPOSITION. If P1, ... , Pk are points, then (P1 + ... +Pk)"= 
=P1" n ... n Pk"· 

Proof: We shall prove that 

P">Pt" n P2u if P<,P1 +P2 (P, P1 and P2 points). 
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From this it follows by induction that 
P.;;,P1 + ... +Pk implies P";;;.P1" n ... n Pk" and this proves the 

assertion if we take account of the definition of a (see section 19). 
Now suppose P.;;,P1 +P2. 
Then P* ") P1* n P2*. 
Making use of proposition 16 and lemma 23 one can prove that every 

point =!=P1, =!=P2 of P1" n P2" depends on at most three points of 
P1 * n P 2* in a way analogous to that of the end of section 22 where it 
was proved that A* n B* n Q* contains a basis of A" n B" n Q". Diffi
culties arise if, for instance, P1 <P1" n P2"· Then choose a point X E P1* n 
n P2* such that P 2 ~ P1 +X and next a point Y <P1 +X, Y =!=X, =1=P1. 
As Y <P1" n P2", it depends upon at most three points of P1* n P2*· As 
X EP1* n P2*, P1 depends on at most four points of P1* n P2*. 

So P1 * n P2* contains a basis of P1" n P2"· But then it follows from 

which had to be proved. 

27. PROPOSITION. G is a polarity. 

Proof: (a'). For every V E P, V" is uniquely defined. See section 19. 
(b'). If V,;;;;;, W, then V";;;. W". Follows from the definition of a. 
To prove the converse it suffices to show that a2 = 1. 
From proposition 25 it follows that V,;;;;;, V"". 
Now choose a W such that V EB W =A. (Bear in mind that A is the 

maximal element of P.) From proposition 26 it follows that r( V");;;;. n
- r( V). Suppose r( V") > n- r(V). 

As r(W");;;.n-r(W), we find 

r( V") + r( W") > n- r( V) + n- r( W) = n. 

From proposition 26 again it follows that V" n W" =A". 
A.;;,A"", hence A""=A. Hence A"=O, for if a point P.;;,A", we should 

have A""<P"=!=A. 
Hence V" n W" = 0. But then it is impossible that r( V") + r( W") > n. 

So we see that 

r( V") = n- r( V). 

Hence r(V"")=r(V) and this implies V""= V, i.e. a2=1. 
(c'). To every Z E P there exists an X such that X" =Z. For take 

X=Z". 
So we see that a is a duality. As we have already proved that a2= 1, 

a is a polarity. 
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28. PROPOSITION. If XES, then X <,X". 

Proof: If Pis a point ES, then PEP* and hence P<Pa. 
If X =P1 + ... +P1c E S, where P1, ... , P1c are points, then PiE P/ for 

every i and j and hence Pt<P/. 
Therefore X"=P1a n ... n P1ca>p1 + ... +P1c=X. 

29. The maximal elements of S are projective spaces of rank ;;;. 3; 
hence they can be represented by linear spaces over a field F. As the 
characteristic of F does not depend on the special choice of F, we can 
define: 

characteristic of S = characteristic of F. 

Now we shall prove : 

PROPOSITION. If Sis of characteristic * 2, XES if, and only if, X <,X". 

Proof: "only if" has been proved in proposition 28. 
"if": 
It suffices to prove: if Pis a point and P<:;P", then PES. 
For suppose X=P1+ ... +P1c and X<:;X". Then P1+ ... +P1c< 

<Plan ... n plea· Pi<::Pt implies PtE s. Then Pt<Pl implies piE P/ 
(lemma 23), i.e. Pi v Pi exists. Hence P1 v ... v P1c exists, i.e. X E S. 

So we suppose P < pa, P a point. 
There exist points Q and R E S such that P < Q + R. Hence it suffices 

to show: 
If there are two different points of S on a line L, every isotropic point 

on Lis in S. 
Taking account of proposition III, 9 it is readily seen that we have 

to prove the above assertion for one such line L only; realize that if two 
points ofS are conjugated with respect to a, they are joined inS (lemma 23). 

Suppose P represented as the lattice of subspaces of the linear space 
A and a represented by the semi-bilinear form f that is supposed to be 
hermitian or skew-symmetric. 

Now choose four independent points X=lf, y=~~:, U=IJ: and V=IJ: such that 
X=lf + Y#• X#+ U=IJ:, Y# + V=IJ: and U=IJ: + V=IJ: belong to S but X=IJ: + V=IJ: and Y# + U=IJ: 

do not. 

Fig. lt; 
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Take x, u, y and v such that l(x, v) = l(u, y) =I; this is possible, because 
x#+v# is not inS, hence l(x, v)*O (lemma 23), and the same for u andy. 

l(x+u, y+v)=0+1+1+0=2*0. 

Hence (x+u)#+(y+v)# ¢S; we choose L equal to this line. 
Now suppose Z#<L, Z#<z*. 

Z= (x+u) +A.(y+v). 

H I is a hermitian £X-form, then 

l(z, z)=2(A.+A."')=O. 

Hence A.+A."'=O. 

Z#< (x+A.y)#+ (u+A.v)#=M. 

l(x+A.y, u+A.v)=A.+A."'=O. Hence (x+A.y)# and (u+A.v)#, which are 
E S, are joined in S. Therefore ME S. As z#<M, Z# E S. 

If I is skew-symmetric, the proof is even simpler: 
l(x+A.y, u+A.v)= -A.+A.=O. Hence M ES and therefore Z# ES. 
This completes the proof. 
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