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SUMMARY

Emotional memories can persist for a lifetime but can
also undergo extinction. Althoughwe know about the
mechanisms involved in expression and extinction,
we know very little about the mechanisms that deter-
mine whether a specific memory would persist or
not. Here, we use partial reinforcement extinction
effect (PREE) to explore the neural mechanisms
that differentiate persistent from labile memories.
We recorded the simultaneous activity of neurons
in the amygdala and the dorsal anterior cingulate
cortex (dACC) while monkeys engaged in tone-odor
aversive conditioning. We report that under contin-
uous reinforcement schedule (ConS), activity in the
amygdala precedes behavioral response, whereas
under partial schedule (ParS), dACC activity pre-
cedes it. Moreover, we find that ParS induced
cross-regional pairwise correlations throughout the
entire acquisition session, and their magnitude and
precision predicted the later resistance to extinction.
Our results suggest that memory persistence
depends on distributed representations and, specif-
ically, resistance to extinction of aversive memories
is maintained by correlated amygdala-dACC activity.

INTRODUCTION

Extinction is a form of inhibitory learning that allows adap-

tive control of conditioned fear responses (Bouton, 1993;

Myers and Davis, 2007). Impaired fear extinction leads to malad-

aptive and persistent expression of fear in the absence of actual

threat and is hypothesized to underlie various mood and anxiety

disorders (Delgado et al., 2006; Milad et al., 2006; Myers and

Davis, 2007). Physiologically, aberrant activation of plasticity

mechanisms at the medial prefrontal cortex (mPFC)-amygdala

circuitry (Herry et al., 2010; Herry and Mons, 2004; Muigg

et al., 2008; Peters et al., 2010) and sustained activation of neu-

rons that mediate fear expression (Burgos-Robles et al., 2009;

Muigg et al., 2008) have been linked to deficits in extinction

learning. Yet the contribution of this neural circuitry to the forma-

tion of memories that are resistant to extinction remains largely

unknown. Specifically, whereas some memories undergo suc-

cessful extinction, other memories are harder to extinguish and
persist, and the neural mechanisms that differentiate the two

are unknown.

To experimentally manipulate resistance to extinction of two

otherwise similar aversive memories within the same animal,

we took advantage of the behavioral effect of probabilistic rein-

forcement. Probabilistic schedules can induce slower learning

rates, but the effect on the final memory is small (Haselgrove

et al., 2004; Leonard, 1975; Rescorla, 1999) and tunable (as

shown here). In contrast, the effect on extinction is dramatic

and memories that are acquired under probabilistic regime are

much harder to extinguish (Haselgrove et al., 2004; Leonard,

1975; Rescorla, 1999). This phenomenon, termed partial rein-

forcement extinction effect (PREE), provides a unique behavioral

tool that can shed light on the neural mechanisms that emerge

already during learning and later underlie resistance to extinc-

tion. Thus far, although widely used, PREE received little atten-

tion as a behavioral tool to explore resistance to extinction of

aversive memories.

The amygdala is directly related to enhancement of emotional

memories (Hamann et al., 1999; Herry et al., 2008; LeDoux, 2000;

Livneh and Paz, 2012; McGaugh, 2004; Pape and Pare, 2010;

Paz et al., 2006). The dACC, through its direct connections

with the amygdala (Ghashghaei et al., 2007; Pandya et al.,

1973; Stefanacci and Amaral, 2002), is thought to regulate

expression of learned fear responses (Klavir et al., 2012; Milad

et al., 2007), possibly in a similar way to the prelimbic cortex

(PL) in rodents (Sierra-Mercado et al., 2011; Vidal-Gonzalez

et al., 2006). In addition, the dACC is important for processing

of uncertainty (Alexander and Brown, 2011; Rushworth and

Behrens, 2008), and human studies suggest differential involve-

ment of dACC during continuous and partial reinforcement

schedules (Dunsmoor et al., 2007a; Hartley et al., 2011; Milad

et al., 2007). Finally, abnormal functionality of the dACC was

observed in anxiety disorders and linked to failure of extinction

(Milad et al., 2009; Pannu Hayes et al., 2009; Shin et al., 2011),

as in rats with hyperresponsiveness of PL neurons (Burgos-

Robles et al., 2009). We therefore hypothesized that differential

recruitment of the amygdala-dACC network during acquisition

under continuous (ConS) and partial (ParS) schedules could

underlie differential resistance to later extinction.

RESULTS

We tested twomonkeys on a tone-odor conditioning task (Livneh

and Paz, 2010, 2012), with partial reinforcement schedule (ParS)

employed in randomly intermingled days with continuous rein-

forcement schedule (ConS). Each session included a habituation
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Figure 1. Resistance to Extinction after Partial Reinforcement in a Tone-Odor Conditioning Paradigm

(A) Experimental design: there were two types of sessions (intermingled across the recording period), either continuous reinforcement (ConS) or partial rein-

forcement (ParS) schedule. Both schedules reach behavioral plateau within a few trials andmaintain it for over 25 trials, resulting in a controlled period of memory

expression level. However, after acquisition with ConS, extinction training promotes rapid decline of fear, whereas after ParS the decline of fear is delayed.

(B) Trial design: a spontaneous breath onset elicits the conditioned stimulus (CS, a pure tone) and in paired trials, it implies that the onset of the following breath

would elicit release of unconditioned stimulus (US, aversive odor). The unconditioned response (UR) was evident by much shorter breaths (inhibition), and the

conditioned response (CR) was evident by augmented preparatory breath (real data example is shown).

(C) In sessions with ConS during acquisition (each CS is followed by a US), extinction was fast and complete and CR returned to habituation levels (left). In

sessions with ParS (right), extinction was very slow. Mean ± SEM from two representative sessions are shown.

(D) Each CR was normalized to the response to the tone during the preceding habituation stage, averaged over all available sessions (n = 25 for ConS; n = 25 for

ParS), and presented for different stages during the acquisition and extinction.

(E) CR (quantified as breath volume at 0–350 ms post-CS) was similar during acquisition (p > 0.1, interaction, two-way ANOVA) and also in the first trial of

extinction (p > 0.1, t test) but was significantly different from the second trial of extinction until the end (p < 0.01, condition main effect, two-way ANOVA; p < 0.05

for all post hoc t tests).

(F) Cumulative distribution of CR during the plateau stage of the acquisition (trials 11–30) indicates that the distribution of CR across trials was similar as well

(p > 0.1, K-S test).

(G) A memory-persistence index was computed by subtracting CR at the end of extinction (average over trials 11–20) from the CR at the end of acquisition (trials

11–30). The histogram for all sessions reveals a strong effect of condition on memory persistence (p < 0.001, t test; p < 0.05 for each animal separately, right two

histograms). Bars on top of the main histogram indicate mean ± SEM of the main distribution and for each animal separately.
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stage (unpaired presentations of a tone, the CS), an acquisition

stage (30 paired presentations of the CS followed by an aversive

odor, the US, in a trace-conditioning paradigm), and an extinc-

tion stage (unpaired CS). In ParS sessions, trials were reinforced

in a 2:1 ratio, with keeping the overall number of reinforced trials

equivalent for ParS and ConS. In preliminary sessions, we tuned

the reinforcement ratio to yield minimal difference between

memory expressions at the end of learning. The aim was to

obtain a plateau period at the end of learning, in which memory

expression levels are similar in ParS and ConS sessions, but

when similar extinction training later on would yield differential
134 Neuron 75, 133–142, July 12, 2012 ª2012 Elsevier Inc.
results. Hence, in this controlled plateau period, although

behavior appears similar, the underlying mechanisms of persis-

tent and more labile memories should be different (Figure 1A).

Partial Reinforcement Impairs Extinction of Aversive
Tone-Odor Associations
Memory expression level wasmeasured by themodulation in the

volume of the breath that follows the tone but precedes odor

release (Figures 1B and 1C). Such preparatory breath modula-

tion was apparent already after three acquisition trials (Figures

1D and 1E, p < 0.01, ANOVA). In line with our design, although



CBA Figure 2. Recording Sites and Single

Neuron Responses to the CS

(A) Single neurons were recorded simultaneously

from the right amygdala (n = 131) and dACC

(n = 172). Recording sites were reconstructed

based on MRI with calibrating electrodes (Fig-

ure S2) and shown here with lateral projection on

a midbrain scheme of the macaque brain.

(B) Single cell examples of different types of

responses to the CS during habituation (gray) and

the three stages of the acquisition (red-yellow

shades). Mean change in firing rate (PSTH) over-

laid on raster plots. First row, two amygdala neu-

rons; second row, two dACC neurons.

(C) Cells were classified responsive if their tone-evoked activity during acquisition was significantly different than their tone-evoked activity during habituation.

The number of overall responsive cells was not different across conditions and across regions (p > 0.1, interactions and main effects, two-way ANOVA).
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ParS had a slightly slower learning rate (Figure 1E, but not sig-

nificantly, p > 0.3, ANOVA), we observed similar expression

levels in ParS and ConS during the plateau phase (Figure 1C,

trials 4–30, p > 0.5, condition main effect, two-way ANOVA),

and these were also similarly distributed across trials (Figure 1F,

p > 0.1, K-S test). We also verified that the magnitude of the UR

was comparable, suggesting that the monkeys perceived the

odor to be similarly aversive in both conditions (p > 0.5, see

Figures S1A and S1B available online).

In contrast and as expected from previous work on PREE,

extinction trials that followed ConS dropped already at the

second trial but remained high throughout the extinction training

that followed ParS acquisition (p < 0.001, two-way ANOVA

interaction effect; Figures 1C–1E). We computed a memory-

persistence index by subtracting the memory expression level

at the end of extinction (trials 11–20) from that at the end of

acquisition when behavior is at plateau (trials 11–30). Memory

persistence differed significantly across conditions and also

when tested separately for each animal (p < 0.05 for all compar-

isons, Figure 1G). To further validate that this is due to the

acquisition regime, we compared each CR to baseline inhales

from the intertrial intervals. There was no difference between

the session types during habituation (p > 0.1, t test, Figure S1C),

but CRs returned to baseline during ConS extinction and

remained elevated during ParS extinction (p < 0.01, two-way

ANOVA).

To conclude, although acquisition reached a similar plateau of

expression level, extinction was fast under ConS and very slow

under ParS (ranging from slow to none, as seen in the distribution

in Figure 1G).

Dissociation of Amygdala and dACC Roles in Mediating
Learned Fear Responses
To evaluate interactions in the amygdala-dACC pathway under

both conditions, we simultaneously recorded single-unit activity

from both regions (Figure 2A; amygdala: n = 131; dACC: n = 172;

Figures S2A and S2B, Table S1). Neural responses to the CS

were normalized and compared against tone responses at habit-

uation (Figure 2B), revealing that 26% of amygdala neurons and

29% of dACC neurons had significant acquired responses (both

higher than chance, p < 0.001, c2), and there was no interaction

or main effect of schedule or region (Figure 2C, p > 0.1 for all,
two-way ANOVA). In both the amygdala and the dACC, respon-

sive cells were homogeneously distributed within our recording

borders (Figure S2C, p > 0.2 for all, bootstrap analysis), sug-

gesting that they represent an activity pattern common in wide

parts of these two structures. In addition, there was no effect

of reinforcement schedule on neural responses to the US (Fig-

ures S2D and S2E, p > 0.1, two-way ANOVA).

We then inspected the temporal relationship between

neuronal and behavioral responses. To do so, we computed

trial-by-trial cross-correlations between the firing rate (FR) and

the breathing response at all delays from the CS (Figure S3A).

Significant bins above the diagonal in such a correlation matrix

indicate that changes in FR precede the behavioral response

and significant bins below the diagonal indicate that changes

in FR follow behavior. Although the overall number of significant

bins was not different between regions and schedules (p > 0.1,

two-way ANOVA, Figure S3B), inspection of individual matrices

revealed that amygdala neurons were more likely to fire before

behavior under ConS, whereas dACC neurons were more likely

to fire before behavior under ParS (Figure 3A), as also shown

by the proportions of significant bins above (Figure 3B, top)

and below (bottom) the diagonal (Figure 3B, p < 0.001, three-

way ANOVA, Figure S3C). To further validate this, we computed

the center of mass of the correlation for all neurons and its

distance from the diagonal, which provides a better estimation

for directionality because it takes into account the strength of

the correlations as well. This analysis indicated that amygdala

activity indeed precedes behavior under ConS, and dACC

activity precedes behavior under ParS (Figure 3C, p < 0.01,

two-way ANOVA, interaction of distance from diagonal with

brain region and schedule as factors, confirmed by post hoc

comparisons). Finally, we computed a directionality index (sum

of correlations above the diagonal minus sum of correlations

below the diagonal divided by total sum of all correlations),

revealing again the same pattern of temporal relationship

between neural activity and behavior (Figure 3D; p < 0.01, two-

way ANOVA). For robustness, we also repeated all analyses

using bootstrap methods for bin-wise significance (Figures

S3D and S3E) (Paz et al., 2006, 2009).

We conclude that there is a double dissociation in the roles of

the amygdala and the dACC in mediating acquired aversive

responses for partial and continuous reinforcement schedules.
Neuron 75, 133–142, July 12, 2012 ª2012 Elsevier Inc. 135
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BA Figure 3. Double Dissociation between

Behavior and Firing Rates for the Amygdala

and dACC during ConS and ParS

(A) Correlation matrices between the neural and

behavioral responses at different time lags from

the CS. Correlations show that neural activity

could either precede the behavioral response, if

most correlations are above themain diagonal (top

left and bottom right matrices), or follow behavioral

response, if most correlations are below the main

diagonal (top right and bottom left). Typical

examples from dACC (left column) and amygdala

(right column) during ParS (top row) or ConS

(bottom row) are shown, with positive significant

correlations in orange shades and negative cor-

relations in light blue shades. The center of mass

is indicated by a thick black dot. See Figures

S3A–S3C for construction of such correlations, full

matrices, and population summary.

(B) Percentage of significant bins above the

main diagonal (top) and below the main diagonal

(bottom) (p < 0.001, three-way ANOVA).

(C) The location of center of mass reveals the

double dissociation: dACC responses precede

behavior during ParS, and amygdala responses

precede behavior during ConS. Crosses are

mean ± SEM of center of mass from all sessions.

(D) Directionality index (‘‘sum of correlations above

the diagonal’’ minus ‘‘sum of correlations below

the diagonal’’ divided by ‘‘total sum of all correla-

tions’’) further supports the double dissociation,

indicating positive direction of dACC and amyg-

dala responses for ParS and ConS, respectively

(p < 0.01, two-way ANOVA and post hoc

comparisons).
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Synchronized Amygdala-dACC Activity Maintains
Memory during ParS
We next turned to examine the correlations between simulta-

neously recorded pairs of amygdala and dACC neurons (n =

483 pairs) and tested the hypothesis that altered correlation

patterns at acquisition underlie the delayed extinction. Correla-

tion matrices at all delays (in 25 ms bins) were computed for

each of ten trials from the habituation and the acquisition phases

and significance was assessed per bin (Figures 4 and S4) (Paz

et al., 2006). The mean number of significant bins was then

normalized by the distribution of significant bins in the shuffled

data of the corresponding pair, producing a correlation-factor

index. This did not differ during habituation between ConS and

ParS (p > 0.3, t test). During acquisition, we found that ConS

induced an early sharp increase in correlations that diminished

to habituation levels in parallel to reaching plateau level of

behavior. In contrast, ParS induced an increase that remained

high throughout the whole acquisition stage, even much after

behavioral plateau was achieved (Figures 5A and 5B), and this

dynamic was evident in the correlation-factor index (Figure 5C,

p < 0.001; interaction in two-way ANOVA). When the correlation

factor was inspected separately above and below the diagonal,

the same effects were observed (Figure 5C, insets, p < 0.05,

interaction in two-way ANOVA), suggesting that it is an overall

increase in reciprocal interactions between the two regions.

For robustness, we repeated the analyses using more conven-
136 Neuron 75, 133–142, July 12, 2012 ª2012 Elsevier Inc.
tional statistical tests to assess bin significance (Pearson statis-

tics) and revealed the same dynamics (Figure S5A, p < 0.001 in

two-way ANOVA). Notice that analyses are performed only on re-

inforced trials; hence, the number of preceding reinforced trials

is identical for each data point in the comparison between

ParS and ConS. Finally, in accordance with the distribution of

projections from dACC (area 24) to the amygdala (Stefanacci

and Amaral, 2002), we found more significant correlations at

medial penetrations to the amygdala than at lateral ones (Fig-

ure S5B; p < 0.01, main effect in two-way ANOVA).

Amygdala-dACC Synchrony Predicts Later Resistance
to Extinction
If the sustained correlations at the end of the acquisition

indeed support a more resistant memory, then their magnitude

should somehow predict the time it takes to extinguish. To test

this, we compared the mean correlation-factor index with the

memory-persistence index (as in Figure 1G) on an individual

session basis. We found a significant positive relationship indi-

cating that increased amygdala-dACC correlations at the end

of acquisition predict memory persistence (Figure 6A, r = 0.61,

p < 0.0002). This correlation was mostly due to ParS days (Fig-

ure 6A, top inset, r = 0.72; p < 0.002), in which memory persis-

tence was observed, and with marginal contribution from ConS

days (bottom inset, r = 0.46; p = 0.05) and was replicated

when the correlation-factor index was obtained using standard
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Figure 4. Amygdala-dACC Correlations during Acquisition: Pair Examples

(A) Pairs of amygdala-dACC neurons were recorded simultaneously at either ParS (top pair) or ConS (bottom pair) sessions during habituation (gray), acquisition

(red and orange), and early extinction (blue).

(B) Correlation matrices between the cells shown in (A) revealed enhanced correlation during late acquisition at ParS sessions, whereas in ConS sessions,

correlation was enhanced during early acquisition. Much smaller correlations were observed at either habituation or extinction. Corresponding PSTHs of the

dACC neuron (x axis) and the amygdala neuron (y axis) are shown.
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Pearson statistics (Figure S6A) and for each animal separately

(Figures S6C and S6D). This result cannot be attributed to

a higher number of co-occurrence of responsive cells in the

two regions because of the following: (1) we used shuffling tech-

niques to correct for this possibility; (2) it is not predicted by the

pattern of individual responsive cells (Figure S6B); and (3) more-

over, local intraregional pairwise correlations of either amygdala-

amygdala pairs (Figure 6B, top row) or dACC-dACC pairs (Fig-

ure 6B, bottom row) failed to differentiate the two conditions

and failed to explain the behavioral resistance to extinction.

Finally, we found that synchronized activity became more

adjacent (locked) to the CS during ParS (Figure 6C, p < 0.001,
B

A

Figure 5. Amygdala-dACC Correlations during Acquisition

Correlation matrices were computed for all available pairs of simultaneously reco

(A and B) Color-coded maps show the proportion of pairs with significant correlat

ConS (B). The corresponding cross-correlation, with the chance-level proportion

(C) During ConS, correlations sharply increased and then dropped back to baselin

throughout the acquisition, even much after behavior reached plateau. These dy

diagonal (bottom left inset) and below it (bottom right inset). See text for statistic
interaction in two-way ANOVA confirmed by post hoc,

p < 0.05), and the distance of the center of mass was negatively

correlated with memory persistence on ParS days (Figure 6D,

r =�0.62; p < 0.01), suggesting that the timing of the correlations

also contributes to memory persistence.

DISCUSSION

In this study, we demonstrate that resistance to extinction of

aversive memories can depend on the neural mechanisms that

are activated already when the memory is formed. Using partial

(ParS) and continuous (ConS) reinforcement, we were able to
C

rded dACC and amygdala neurons (n = 483) in different time lags from the CS.

ion at each bin in the different stages of the learning paradigm for ParS (A) and

marked by a dashed line, is shown at the top right of each panel.

e. In contrast, during ParS, correlations increased gradually and remained high

namics are the same when considering separately the correlations above the

s.
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Figure 6. Amygdala-dACC Synchronization during Acquisition

Predicts Later Resistance to Extinction

(A) Amygdala-dACC mean correlation-factor index at the end of each acqui-

sition session positively correlated with resistance to extinction in that session,
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repeatedly create two types ofmemory in the same animal (but in

different randomly alternating days)—one that undergoes

extinction within a few trials and one that undergoes extinction

much more slowly. This persistent expression of fear (resistance

to extinction) after ParS training implies that the tone-odor asso-

ciations were acquired differently under the different schedules.

We verified that memory expression levels were similar and

evenly distributed across trials before extinction started, giving

us a controlled time period in which we could observe these

differential mechanisms. We find that correlated and synchro-

nized amygdala-prefrontal activity supports and maintains the

memory under ParS condition, and the magnitude and precision

of these correlations reliably predict the later resistance to

extinction.

The amygdala is thought to be sufficient for acquisition of

simple fear associations, but it participates in mediating more

complex emotional memories as well (LeDoux, 2000; McGaugh,

2004). Direct sensory inputs that converge on single cells in the

amygdala and induce synaptic plasticity have been directly

related to acquisition of fear (Herry et al., 2008; Pape and Pare,

2010; Paré et al., 2004), and the rich repertoire of inputs to the

primate amygdala suggests that it is highly adapted for rapid

detection of sensory associations (Baxter and Murray, 2002;

Ghashghaei et al., 2007; McDonald, 1998; Stefanacci and

Amaral, 2002). However, it is less clear to what extent the amyg-

dala alone can support complex forms of learning (Bryden et al.,

2011; Holland and Gallagher, 2004; Li et al., 2011; Roesch et al.,

2010; Vazdarjanova and McGaugh, 1998) and specifically prob-

abilistic relationships as in partial reinforcement. The dACC has

been implicated with monitoring of behavior, attention, signaling

of error likelihood, and reinforcement volatility (Carter et al.,

1998; Rushworth and Behrens, 2008; Wallis and Kennerley,

2010) and can therefore bemore adept for learning complex rela-

tionships and contingencies. This is in line with our finding that
as measured by the persistence index (as in Figure 1G). This was so when

pooling ParS and ConS (p < 0.0002, r = 0.61) and for ParS alone (p < 0.002,

r = 0.72, top right inset) and less so for ConS (p = 0.05, r = 0.46. bottom right

inset). Notice this is a real prediction, because correlations were taken from the

end of the acquisition, before extinction begins.

(B) Intraregional correlations were computed in the same way as for interre-

gional correlations for all available pairs of amygdala-amygdala neurons

(n = 159, top row) and dACC-dACC neurons (n = 252, bottom row) that were

recorded simultaneously on separate electrodes. Although interesting

dynamics are observed, it did not differ across the reinforcement schedules

(left column; p > 0.2 for main effects and interaction, two-way ANOVA), and

there were no correlations between the proportion of significant bins and

memory persistence at either the amygdala-amygdala pairs or dACC-dACC

pairs (right columns, p > 0.1 for all Pearson coefficients, for each schedule and

region separately and combined).

(C) Interregional correlation matrices were divided into arched subdivisions

with equal distances from the CS (origin of axes), as shown in the inset. The

proportion of significant bins was calculated for each subdivision and each

phase of the acquisition. In ParS days, this proportion increases with acqui-

sition (three-way ANOVA interaction, p < 0.0001, confirmed by post hoc

comparisons), whereas in ConS days, proportion in all arches diminishes

gradually (data not shown).

(D) Distance of the center of mass of the correlation matrices from the CS

presentation negatively correlates and predicts the persistence index for ParS

sessions (p < 0.01, r = �0.62).
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activity in the dACC precedes the behavioral response at ParS,

whereas neural activity in the amygdala precedes behavior

during ConS, although the behavioral response itself was indis-

tinguishable in both conditions.

The synchronized discharge of both regions spiked at the

beginning of learning but dropped back to baseline within

a few trials of ConS. One option is that amygdala-dACC interac-

tions are required for the initial learning phase, but not for the

maintenance of the memory once it is formed and synaptic

changes are made downstream. Another option is that the

dACC takes an active part by default but then lowers its commu-

nication with the amygdala when it realizes that it is not required

for the simple associations. This can be achieved by feedback

reports about correct behavior. In sharp contrast to ConS, the

amygdala-dACC synchronized activity maintained during ParS,

even much after behavioral plateau was obtained and was

similar for ConS and ParS (trials 4–30). This finding suggests

that these correlations are required for active maintenance of

the memory under ParS. This is further supported by the fact

that the magnitude of these correlations at the end of learning,

and their locking to CS, were a reliable predictor for the difficulty

(length) of the following extinction training.

Why should amygdala-dACC correlations make the memory

harder to extinguish? Extinction is a new learning that was shown

to be mediated by subregions of the medial prefrontal cortex

(mPFC). This includes the rodent infralimbic cortex (IL) (Milad

and Quirk, 2002; Sierra-Mercado et al., 2011) and the primate

vmPFC (Phelps et al., 2004). These regions exhibit opposite acti-

vation patterns to that of the amygdala and are activated during

extinction recall, whereas the amygdala is inhibited. The primate

dACC was shown to have the opposite effect on fear expression

and extinction (Dunsmoor et al., 2007b; Milad et al., 2007),

similar to the rodent prelimbic cortex (PL) (Sierra-Mercado

et al., 2011; Vidal-Gonzalez et al., 2006), and promotes fear in

general (Burgos-Robles et al., 2009). Hence, these are probably

two competing pathways with opposite effects. If the memory is

maintained primarily in synaptic changes in the amygdala and

further downstream (Ciocchi et al., 2010; Duvarci et al., 2011),

then the vmPFC pathway would have an easier job of inhibiting

it. However, if the memory is actively maintained by the amyg-

dala-dACC pathway, then the vmPFC pathway would have

a much harder job and it would take longer to ‘‘undo.’’ In addi-

tion, prolonged and enhanced interregional correlations could

strengthen synaptic mechanisms and plasticity and induce

cellular and molecular changes that were described in this

timeframe of dozens of minutes (our acquisition stage lasts for

about 30min). Complementing this, increased coupling between

amygdala and/or hippocampal prefrontal circuits has been

shown to parallel differences in extinction and consolidation of

emotional memories (Adhikari et al., 2010; Lesting et al., 2011;

Narayanan et al., 2011; Paz et al., 2007; Popa et al., 2010;

Sangha et al., 2009).

It was recently shown that there is a shift of balance between

the amygdala and the mPFC for learning of extinction versus its

relearning. Specifically, learning to inhibit fear for the first time

requires NMDA receptors in the amygdala (Laurent et al.,

2008), whereas relearning extinction involves NMDA receptors

in the mPFC (Laurent and Westbrook, 2008). Our paradigm
involves daily acquisition and extinction of aversive memories,

and hence all of our experiment was conducted in a relearning

scenario. Nevertheless, we were able to continuously obtain

a difference between ConS and ParS sessions along the whole

recording period, and we verified that our main results (resis-

tence to extinction in ParS and fast extinction in ConS, as in

Figure S1C; the dissociation between early and late acquisition

in amygdala-dACC neural correlations, as in Figure 5C; and the

prediction of resistance to extinction by cross-regional correla-

tions, as in Figure 6A) were significant when tested separately

for early recording days (the first half) and for late recording

days (the second half) and were not significantly different

between early and late sessions. An interesting possibility there-

fore is that the distinction between first-time learning and

relearning applies to the difference between ConS and ParS.

Due to the uncertainty of the CS-US contingency, the associa-

tion might need to be relearned within a session, and hence

the mPFC might be more involved during ParS, as was in-

deed observed here. Humans are usually well experienced

with anxiety-evoking stimuli and with emotional regulation of it.

From this perspective, relearning of fear and its extinction might

be an adequate model for anxiety-related disorders.

Indeed, unlike naive rats used inmany studies, human patients

are almost always exposed to the stimulus before it becomes

associated with fear (e.g., the twin towers as a workplace before

9/11, the personal car before the crash, etc.). These exposures

can be thought of as unreinforced trials. When such a context

or stimulus suddenly and surprisingly becomes unsafe, much

uncertainty is involved and the dACC plays a more active role.

According to this model, early extinction might be similar to

late acquisition under ParS, because they cannot be distin-

guished statistically. This might suggest that reducing the

strength of dACC outputs to the amygdala or related structures

during early extinction may improve efficacy of the extinction

process (or reduce efficacy of the original fear memory) and

perhaps prevent later spontaneous recovery. This is in line with

recent results from our laboratory, showing that low-frequency

stimulation in the dACC of monkeys during extinction learning

can depress the region and diminish spontaneous recovery of

aversive associations when measured 24 hr later (Klavir et al.,

2012).

Although several studies have explored variability across

animals in the extinction process itself, little is known about the

neural changes that occur already during acquisition and that

could make a specific memory more resistant to extinction.

Here we describe one such mechanism. Full (100%) contin-

gencies are rare in real life and partial reinforcement could there-

fore serve as a realistic model for anxiety disorders and PTSD

and improve translatability (Milad and Quirk, 2012). Surprise

and attention signals were identified in single neurons of the

amygdala (Belova et al., 2007; Li et al., 2011; Roesch et al.,

2010) and the dACC (Bryden et al., 2011; Hayden et al., 2011)

(albeit with different characteristics). Such signals occur during

partial reinforcement and can initiate and maintain the sustained

synchronized activity across the two regions as we describe

here. This underlyingmechanism could in turnmake the aversive

memory more resistant to extinction, as observed in clinical

cases.
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EXPERIMENTAL PROCEDURES

Animals

Two male macaca fascicularis (4–7 kg) were implanted with a recording

chamber (27 3 27 mm) above the right amygdala and dACC under full anes-

thesia and aseptic conditions. All surgical and experimental procedures

were approved and conducted in accordance with the regulations of the

Weizmann Institute Animal Care and Use Committee (IACUC), following NIH

regulations and with AAALAC accreditation. Food, water, and enrichments

(e.g., fruits and play instruments) were available ad libitum during the whole

period, except before medical procedures.

MRI-Based Electrode Positioning

Anatomical scans were acquired before, during, and after the recording

period. Images were acquired on a 3-Tesla MRI scanner (MAGNETOM Trio,

Siemens) with a CP knee coil (Siemens). T1-weighted and three-dimensional

(3D) gradient-echo (MPRAGE) pulse sequence was acquired with repetition

time (TR) of 2,500 ms, echo time (TE) of 3.36 ms, 8� flip angle, and two aver-

ages. Images were acquired in the sagittal plane, 192 3 192 matrix and 0.83

mm or 0.63 mm resolution. A scan was performed before surgery and used

to align and guide the positioning of the chamber on the skull for each indi-

vidual animal (by relative location of the amygdala and anatomical markers

of the interaural line and the anterior commissure). After surgery, we performed

another scan with two electrodes directed toward the amygdala and the

dACC, and two to three observers separately inspected the images and calcu-

lated the anterior-posterior and lateral-medial borders of the amygdala and

dACC relative to each of the electrode penetrations. The depth of the regions

was calculated from the dura surface.

Recordings

Each day, three to six microelectrodes (0.6–1.2 MU glass/narylene-coated

tungsten, Alpha Omega or We-Sense) were lowered inside a metal guide

(Gauge 25xxtw, OD: 0.51 mm, ID: 0.41 mm, Cadence) into the brain using

a head tower and electrode-positioning system (Alpha Omega). The guide

was lowered to penetrate and cross the dura and stopped at 2–5 mm in the

cortex. Electrodes were then moved independently into the amygdala and

the dACC (we performed four to seven mapping sessions in each animal by

moving slowly and identifying electrophysiological markers of firing properties

tracking the known anatomical pathway into the amygdala). Electrode signals

were preamplified, 0.3–6 kHz band-pass filtered, and sampled at 25 kHz, and

online spike sorting was performed using a template-based algorithm (Alpha

Lab Pro, Alpha Omega). We allowed 30min for the tissue and signal to stabilize

before starting acquisition and behavioral protocol. At the end of the recording

period, offline spike sorting was performed for all sessions to improve unit

isolation (offline sorter, Plexon).

Behavior

Monkeys were seated in a chair with a custom-made nasal mask attached to

their nose (Livneh and Paz, 2010). The mask was attached to two pressure

sensors with different sensitivity range (1/4’’ and 1’’ H2O pressure range,

AllSensors) that enable real-time detection of breath onset. Experimental

sessions initiated by a habituation session of ten presentations of the CS

(a pure tone chosen randomly from 1,000–2,400 Hz, delivered through an

Adam5 speaker, ADAM Audio GmbH). The acquisition session that followed

included 30 trials of CS paired with an aversive odor (3 s; 1:20 solution of pro-

pionic acid distilled in mineral oil; Sigma-Aldrich). Propionic acid stimulates

olfactory and trigeminal receptors at the nose and is highly aversive to humans

and monkeys. CS was triggered by breath onsets, and odor (US) was released

at the following breath onset (but not before 1 s elapsed). On ParS days, an

additional 15 presentations of unpaired CS were intermingled with the paired

CSs; hence, the overall number of reinforced trials was equal in ParS andConS

days. In ConS days, sham trials (neither CS nor US) were implanted into the

paradigm to maintain equal total length of the acquisition stage. Twenty

unpaired CSs were presented to the monkey in order to extinguish the

acquired association between the CS and the US. We used immediate extinc-

tion because spontaneous recovery is evident after immediate extinction, indi-

cating that the memory is inhibited rather than erased. Breath volumes were
140 Neuron 75, 133–142, July 12, 2012 ª2012 Elsevier Inc.
computed as the area under the curve 0–350 ms from breath onset and

normalized by the habituation breath volume. US, i.e., responses to the odor

(Figure S1), were computed 100–900 ms postodor release.

Data Analysis

Firing rates (FR) were computed with a rectangular 300 ms window that was

advanced at 25 ms steps. We computed the neuron-evoked responses for

the CS and the US at nonoverlapping bins during 0–500 ms post-CS. We

computed the spontaneous breath-evoked response of the neurons at habit-

uation and acquisition and stimuli-evoked responses were normalized by

subtracting the mean spontaneous breath-evoked responses and dividing

by the standard deviation. Stimuli-evoked responses were identified as signif-

icant if they significantly change and increase the magnitude of their response

to the CS from the habituation response (p < 0.05, two-tail Wilcoxon test). Only

neurons that fired in at least five out of the 40 trials (30 acquisition, 10 habitu-

ation) were included for further analyses (Table S1).

To evaluate correlation between single neuron activity and the behavioral

response, we correlated the FR matrix of the neuron response at 0–900 ms

with the matrix of momentary pressure at the nose as 0–900 ms post-CS

presentations using the following equation:

CorrðFRi ;BRTjÞ =
CovðFRi;BRTjÞ

sisj

where FRi is the firing rate of the neuron at time i post-CS, and BRTj is pressure

at the nose at time j post-CS. Bins of the correlation matrix were identified as

significant at p < 0.05 and only if significant bins formed at least a 23 2 cluster

(actual p value is therefore 0.054 = 0.00000625). We further characterized the

center of mass of significant bins in eachmatrix and its distance from the diag-

onal. In addition, directionality index, di, was computed as di = (a-b)/(a+b),

where a is the squared summed correlation above the diagonal and b is the

squared summed correlation below the diagonal. di range was between �1

and 1, where 1 indicates dominance of correlations that precede the behav-

ioral response and �1 indicates dominance of correlations that followed the

behavioral response.

To evaluate neuronal interaction between dACC and amygdala neurons, we

computed correlation matrices between all available pairs of dACC and amyg-

dala neurons. Correlations were computed for each of ten trials at habituation

and acquisition.We used shuffling techniques to assess statistical significance

(Aertsen et al., 1989; Paz et al., 2006, 2009). We shuffled the order of the trials

100 times and computed for each bin the distribution of the squared correlation

(i.e., the percentage of explained variance) at the shuffled condition. Bins with

squared correlation that exceeded 95% of the shuffled distribution were iden-

tified as significant, but only if they were part of a cluster of at least 23 2 signif-

icant bins. Similar results were obtained when conventional significance tests

of correlation were employed. Lastly, to assess the overall strength of each

correlation matrix, the overall number of significant bins was normalized by

the mean and the standard deviation of the significant bins in the shuffled

matrices, creating unbiased correlation-factor index that can be averaged

across multiple matrices (i.e., pairs of amygdala-dACC neurons).

SUPPLEMENTAL INFORMATION
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