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Extracellular calcium (Cao
2þ ) potently induces the growth arrest and differentiation of human epidermal

keratinocytes (HEKs). We report that Cao
2þ markedly upregulates the human alkaline ceramidase 1 (haCER1) in

HEKs; and its upregulation mediates the Cao
2þ -induced growth arrest and differentiation of HEKs. haCER1 is the

human ortholog of mouse alkaline ceramidase 1 that we previously identified. haCER1 catalyzed the hydrolysis
of very long-chain ceramides to generate sphingosine (SPH). This in vitro activity required Ca2þ . Ectopic
expression of haCER1 in HEKs decreased the levels of D-e-C24:1-ceramide and D-e-C24:0-ceramide but elevated
the levels of both SPH and its phosphate (S1P), whereas RNA interference-mediated knockdown of haCER1
caused the opposite effects on the levels of these sphingolipids in HEKs. Similar to haCER1 overexpression,
Cao

2þ increased the levels of SPH and S1P, and this was attenuated by haCER1 knockdown. haCER1 knockdown
also inhibited the Cao

2þ -induced growth arrest of HEKs and the Cao
2þ -induced expression of keratin 1 and

involucrin in HEKs. In addition, the acid ceramidase (AC) was also upregulated by Cao
2þ ; and its knockdown

attenuated the Cao
2þ -induced expression of keratin 1 and involucrin in HEKs. These results strongly suggest that

upregulation of haCER1 and AC mediates the Cao
2þ -induced growth arrest and differentiation of HEKs by

generating SPH and S1P.
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INTRODUCTION
The mammalian epidermis is mainly composed of keratino-
cytes and has four distinct cell layers, the basal, spinous and
granular layers, and stratum corneum (Watt, 1998). In the
basal layer, stem cells continuously generate proliferative

keratinocytes, referred to as transit amplifying cells (Watt,
1998; Alonso and Fuchs, 2003; Christiano, 2004). Upon
leaving the basal layer and migrating upwards into the
suprabasal layers, transit-amplifying cells cease proliferation
and initiate terminal differentiation (Watt, 1998).

Extracellular calcium (Cao
2þ ) plays an important role in

regulating the growth and differentiation of epidermal
keratinocytes (Bikle et al., 2004). Cao

2þ binds to the
calcium-sensing receptor, triggering an acute and then a
sustained increase in intracellular Ca2þ (Cai

2þ ), which, in
turn, activates or upregulates genes negative for cell
proliferation and those positive for differentiation (Tu et al.,
2004). In our previous study (Houben et al., 2006), we
demonstrated that in human epidermal keratinocytes (HEKs),
Cao

2þ upregulates the mRNA of the human ortholog (human
alkaline ceramidase 1 (haCER1)) of the mouse alkaline
ceramidase 1 (maCER1) that we recently cloned (Mao
et al., 2003). Similar to maCER1 mRNA, haCER1 mRNA is
much more abundant in the skin than in other tissues
(Houben et al., 2006). maCER1 catalyzes the hydrolysis of
ceramides to generate sphingosine (SPH), which, in turn, is
phosphorylated to form sphingosine-1-phosphate (S1P), in
cells (Mao et al., 2003).

Ceramide, SPH, and S1P are bioactive lipids that mediate
growth, differentiation, and apoptosis of various cell types
(Hannun and Obeid, 2002; Futerman and Hannun, 2004).
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These bioactive lipids are also implicated in growth arrest or
differentiation of HEKs. Ceramides have been shown to mediate
apoptosis of HEKs in response to vitamin D (Bektas et al., 2000),
tumor necrosis factor-a (Kouba et al., 2001), and UVB irradiation
(Uchida et al., 2003). An increased generation of dihydro-
sphingosine, a natural analog of SPH, has been shown to induce
apoptosis of keratinocytes (Tolleson et al., 1999). Ceramide has
also been implicated in the growth arrest of keratinocytes in
response to vitamin D (Geilen et al., 1996). Treatment with SPH
(Wakita et al., 1994) or S1P (Kim et al., 2004) has been shown to
inhibit the proliferation of keratinocytes. Treatment with phyto-
sphingosine (PHS), another natural analog of SPH, induces not
only growth arrest but also differentiation of keratinocytes (Kim
et al., 2006). These observations suggest that ceramide,
sphingoid bases (SPH, dihydrosphingosine, and PHS), and their
phosphates may play a role in growth arrest and/or differentia-
tion of keratinocytes. As a calcium-regulated enzyme that
controls the hydrolysis of ceramide to generate SPH and S1P,
haCER1 may play a role in the calcium-induced growth arrest
and differentiation of epidermal keratinocytes by regulating the
levels of ceramide, SPH, and S1P.

In this study, we report that the cloning, characterization,
and functional analysis of haCER1. We demonstrate that
haCER1 is expressed mainly in HEKs. haCER1 upregulation
increases the levels of SPH and S1P, whereas the RNA
interference-mediated knockdown of its expression has the
opposite effect. Similar to haCER1 upregulation, calcium also
increases the generation of both SPH and S1P; and this is
inhibited by haCER1 knockdown. haCER1 knockdown
inhibits the calcium-induced growth arrest of HEKs as well
as the calcium-induced expression of keratin 1 and invo-
lucrin. These results suggest that haCER1 (or maCER1) plays
an important role in mediating the calcium regulation of
growth and differentiation of epidermal keratinocytes by
controlling the generation of SPH and S1P.

RESULTS
haCER1 is a bona fide alkaline ceramidase that preferentially
hydrolyzes ceramides with a very long-chain unsaturated
fatty acid

The coding sequence of haCER1 was cloned as described in
Materials and Methods. Protein sequence alignment revealed
that haCER1 is highly homologous to maCER1 (Figure 1a). To
confirm that haCER1 is a bona fide ceramidase, we expressed
the epitope-tagged haCER1 in a yeast mutant strain Dypc1-
Dydc1, which lacks any endogenous alkaline ceramidase
activity due to the deletion of the yeast alkaline ceramidases
(Mao et al., 2000). Western blot analysis demonstrated that
the Flag-tagged haCER1 was expressed in Dypc1Dydc1 cells
transformed with the haCER1 expression construct pYES2-
Flag-haCER1 but not with the empty vector pYES2-Flag
(Figure 1b). Microsomes prepared from yeast cells were
measured for ceramidase activity at pH 8.0 using ceramides,
dihydroceramides, and phytoceramides as substrates. Cer-
amidase activity was determined by the release of SPH,
dihydrosphingosine, and PHS from ceramides, dihydrocer-
amides, and phytoceramide, respectively. The results demon-
strated that the microsomes from Dypc1Dydc1 cells

transfected with pYES2-Flag-haCER1 exhibited high cerami-
dase activity towards D-e-C24:1-ceramide, slight activity on
D-e-C24:0-ceramide and D-e-C18-ceramide, but no ceramidase
activity on long- or medium-chain ceramides (D-e-C16-
ceramide and D-e-C14-ceramide), dihydroceramides (D-e-C24:1-
dihydroceramide, D-e-C24:0-ceramide, and D-e-C16-dihydro-
ceramide), or phytoceramides (D-ribo-C24:1-phytoceramide,
D-ribo-C24:0-phytoceramide, and D-ribo-C16-phytoceramide)
(Figure 1c). As expected, the microsomes from the cells
transfected with the vector pYES2-Flag exhibited no cerami-
dase activity on any of the ceramides, dihydroceramides, or
phytoceramides (data not shown), suggesting that haCER1 is a
bona fide ceramidase that prefers ceramides with a very long-
chain unsaturated fatty acid as substrates.

To determine the pH optimum of haCER1 for its in vitro
activity, we measured ceramidase activity in the haCER1
microsomes at various pHs with D-e-C24:1-ceramide as
substrate. The results showed that the microsomal ceramidase
activity was the highest around pH 8 (Figure 1d), suggesting
that haCER1 has an alkaline pH optimum.

We previously demonstrated that maCER1, the mouse
homolog of haCER1, is activated by calcium (Mao et al.,
2003). We thus investigated the effect of calcium on haCER1
activity. The haCER1 microsomes were assayed for ceramidase
activity on D-e-C24:1-ceramide in the presence of different
concentrations of calcium. The microsomes exhibited a slight
ceramidase activity in the absence of calcium. The micro-
somal ceramidase activity was markedly increased in the
presence of calcium, which exhibited the stimulatory effect at
as low as 10mM and generated the maximal effect at 1,000mM

(Figure 1e), suggesting that calcium also activates haCER1.

haCER1 expression in epidermal keratinocytes is regulated
by calcium and EGF

To better understand the physiological role of haCER1, we
investigated tissue-specific expression of haCER1 mRNA.
Northern blot analysis showed that a 1.5-kb haCER1 mRNA
was highly expressed in skin, but was only slightly expressed
or undetectable in other tissues (Figure 2a). Using semiquan-
titative reverse transcription-polymerase chain reaction
(RT-PCR), we found that haCER1 mRNA was expressed in
HEKs but not in dermal fibroblast cells (Figure 2b). Interest-
ingly, haCER1 mRNA was substantially downregulated to an
undetectable level in a spontaneously immortalized keratino-
cyte line, HaCaT cells, and an epidermoid carcinoma cell
line A431 (Figure 2b). These results suggest that haCER1
mRNA is expressed in normal HEKs, but is downregulated in
transformed or malignant keratinocytes.

We previously demonstrated that haCER1 mRNA is
upregulated during keratinocyte differentiation (Houben
et al., 2006). Thus, we investigated whether haCER1 expres-
sion in HEKs is upregulated by Cao

2þ . HEKs at 80% confluence
were treated for 24 hours with high-calcium (1.8 mM CaCl2) in
defined keratinocyte serum-free medium (D-KSFM) with or
without human keratinocyte growth supplement (HKGS).
Quantitative RT-PCR (qRT-PCR) revealed that the expression
of haCER1 mRNA was substantially upregulated by high
calcium in the absence of HKGS, and to a lesser extent, in the
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presence of HKGS (Figure 2c), suggesting that high calcium
upregulates haCER1 expression in HEKs.

The results in Figure 2c indicate that HKGS inhibits the
high-calcium-induced upregulation of haCER1 mRNA. We
tested whether epidermal growth factor (EGF), a major
growth factor in HKGS, inhibited the high-calcium-induced
upregulation of haCER1 mRNA. HEKs were treated for
12 hours with EGF (20 ng/ml) in the presence of low calcium
(0.06 mM CaCl2) or high calcium. qRT-PCR analysis demons-
trated that EGF caused a decrease in the basal mRNA levels
of haCER1 and markedly inhibited the high-calcium-induced
upregulation of haCER1 mRNA (Figure 2c), suggesting that
growth factors inhibit the high-calcium-induced haCER1
expression in HEKs.

haCER1 is localized to the endoplasmic reticulum

To better understand the role of haCER1 in regulating
metabolism of ceramides and cellular responses in keratino-
cytes, we defined the cellular localization of haCER1 by
indirect immunofluorescent staining. We previously demons-
trated that maCER1 is localized to the endoplasmic reticulum
(ER) (Mao et al., 2003). To confirm whether haCER1 has the
same cellular localization, HaCaT keratinocytes transfected
with the haCER1 expression construct (pcDNA3-Flag-ha-
CER1) were co-stained by antibodies against the Flag tag and
calreticulin (an ER resident protein). Confocal microscopy
revealed that haCER1 was colocalized with calreticulin to the
perinuclear reticulum network (Figure 3), suggesting that
haCER1 is indeed an ER protein.
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Figure 1. haCER1 is a novel human alkaline ceramidase that prefers ceramide with a very long-chain unsaturated fatty acid as substrate. (a) Protein sequence

alignment between maCER1 and haCER1 was performed using the Clustal W method. Shaded were identical or similar amino acids between the two proteins.

(b) Microsomes (20mg proteins per lane) prepared from yeast cells transformed with pYES2-Flag (Vec) or pYES2-Flag-haCER1 (haCER1) were subjected to

Western blot analysis using the anti-Flag antibody (Sigma Inc.). (c) The above microsomes were assayed for ceramidase activity at pH 8.0 using different

ceramides. CER24:1, CER24:0, CER18:0, CER16:0, and CER14:0 represent D-e-C24:1, C24, C18, C16-ceramide, respectively. DHC24:1, DHC24:0, and DHC16:0

represent D-e-C24:1, C24, and C16-dihydroceramide, respectively. PHC24:1, PHC24:0, and PHC16:0 represent D-ribo-C24:1, C24, and C16-phytoceramide,

respectively. (d) The microsomes isolated from the haCER1-expressing cells were measured for ceramidase activity on D-e-C24:1-ceramide in 25 mM sodium

acetate (pH 5 or 6), Tris-HCl (pH 6.0–8.5), or glycine-NaOH (pH 8.5 and above) buffer. (e) The microsomes isolated from the haCER1-expressing cells were

measured for ceramidase activity on D-e-C24:1-ceramide in the presence of various concentrations of CaCl2. The data are the means7SD of three independent

experiments performed in duplicate or triplicate.
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haCER1 overexpression increases SPH and S1P but decreases
very-long chain ceramides in HEKs

haCER1 catalyzes the hydrolysis of ceramides in vitro; thus,
we determined the role of haCER1 in regulating the levels of
ceramides and their derivatives. HEKs were transfected with

the haCER1 expression construct pcDNA3-Flag-haCER1 or
the empty vector pcDNA3.1. Western blot analysis con-
firmed the expression of the recombinant haCER1 in HEKs
transfected with pcDNA3-Flag-haCER1, but not with
pcDNA3.1 (Figure 4a). In vitro activity assays showed that
haCER1 overexpression caused a 4-fold increase in alkaline
ceramidase activity towards D-e-C24:1-ceramide (Figure 4b).
Electrospray ionization mass spectrometric (ESI)/MS/MS
analysis revealed that haCER1 overexpression caused a
30.2 and 71.9% decrease in the levels of D-e-C24:0-ceramide
and D-e-C24:1-ceramide, respectively, in HEKs. Interestingly,
haCER1 expression caused 11.0 and 88.6% increases in the
levels of D-e-C16-ceramide and D-e-C14-ceramide, respec-
tively (Figure 4c). As ceramides can be converted to SPH,
which in turn is phosphorylated to generate S1P, we
determined the effect of haCER1 overexpression on the levels
of both SPH and S1P. ESI/MS/MS showed that haCER1
expression caused 431.7 and 441.7% increases in the levels
of SPH and S1P, respectively (Figure 4c). These results
suggest that haCER1 upregulation increases the levels of SPH,
S1P, and ceramides with a medium- or long-chain fatty acid
but decreases the levels of ceramides with a very long-chain
fatty acid, especially those with a very long-chain unsaturated
fatty acid.

haCER1 knockdown inhibits the calcium-induced generation
of SPH and S1P but not ceramides in HEKs

haCER1 overexpression increases the levels of SPH and S1P
and decreases the levels of very long-chain ceramides. We
investigated whether high calcium has a similar effect on the
levels of ceramide, SPH, and S1P in HEKs; and if so, whether
haCER1 knockdown blocks this effect. haCER1 expression in
HEKs was downregulated by RNA interference. qRT-PCR
analysis demonstrated that haCER1 expression was markedly
downregulated by a haCER1-specific small interfering RNA
(siRNA) (siCER1) compared with a control siRNA (siCON)
(Figure 5a). HEKs transfected with siCON or siCER1 were
grown in the presence of low calcium or high calcium. ESI/
MS/MS showed that high calcium increased the levels of
SPH, S1P, and all ceramide species; and haCER1 knockdown
significantly inhibited the high-calcium-induced generation
of SPH and S1P but not ceramides (Figure 5b). These results
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Figure 2. haCER1 mRNA is expressed in epidermal keratinocytes and its

expression is highly regulated by calcium and EGF. (a) Multiple tissue mRNA
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Figure 3. haCER1 is localized to the ER. haCER1 coding sequence was tagged with an epitope tag (Flag) sequence and cloned into pcDNA3.1 to form the

expression construct, pcDNA3-Flag-haCER1. This construct was transiently transfected into HaCaT cells and transfected cells were immunostained with

antibodies (1:200) against the Flag peptide and calreticulin (an ER marker). Following incubation with anti-rabbit IgG and mouse IgG antibodies (1:300)

conjugated with FITC and rhodamine, respectively, the immunostained cells were examined under a confocal laser-scanning microscope (LSM510, Zeiss).
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suggest that haCER1 upregulation is accountable for the
calcium-induced generation of SPH and S1P in HEKs.

haCER1 knockdown attenuates the calcium-induced growth
arrest and differentiation of HEKs

As haCER1 expression in HEKs is markedly upregulated by
high calcium, which potently induces growth arrest of HEKs,
we tested whether haCER1 upregulation mediates the
calcium-induced growth arrest of HEKs. HEKs grown in
D-KSFM were transfected with siCON or siCER1. 3-(4,
5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT) assays demonstrated that haCER1 knockdown slightly
increased the growth rate of HEKs and significantly attenu-
ated the high-calcium-induced decrease in the growth rate
of HEKs (Figure 6a). [3H]thymidine incorporation assays
showed that haCER1 knockdown slightly increased DNA
synthesis in HEKs and significantly attenuated the high-
calcium-induced inhibition of DNA synthesis (Figure 6b).
These results suggest that haCER1 upregulation indeed play a
role in the calcium-induced growth arrest of HEKs.

As high calcium also induces the differentiation of HEKs,
we tested whether haCER1 upregulation also mediates the
calcium-induced differentiation of HEKs. HEKs transfected
with siCON or siCER1 were treated with high-calcium.
Western blot analysis demonstrated that haCER1 knockdown

had no effect on the levels of keratin 1 or involucrin in HEKs
grown in the presence of low calcium (Figure 6c). However,
haCER1 knockdown inhibited the high-calcium-induced
expression of both keratin 1 and involucrin in HEKs (Figure 6c).
This suggests that haCER1 upregulation also a play role in the
calcium-induced differentiation of HEKs.

Knockdown of acid ceramidase inhibits the calcium-induced
differentiation of HEKs
We previously demonstrated that the expression of the acid
ceramidase (AC) is also upregulated during the calcium-
induced differentiation of HEKs (Houben et al., 2006). As
similar to haCER1, AC catalyzes the hydrolysis of ceramides,
we investigated whether AC also plays a role in the calcium-
induced growth arrest and differentiation of HEKs. qRT-PCR
analysis demonstrated that treatment of HEKs with high
calcium caused an 80% increase in the levels of AC mRNA
and neither HKGS nor EGF had any effect on the basal levels
of AC mRNA or the calcium upregulation of AC mRNA
(Figure 7a). RNA interference was performed to knock down
AC expression in HEKs. Western blot analysis showed that
transfection of HEKs with an AC-specific siRNA markedly
downregulated AC expression compared with transfection
with siCON (Figure 7b). MTT assays revealed that AC
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knockdown slightly decreased the growth rate of HEKs grown
in the presence of low or high calcium (Figure 7c). Western
blot analysis found that AC knockdown slightly inhibited the
calcium-induced expression of involucrin and keratin 1
(Figure 7d). These results suggest that AC upregulation plays
a role in mediating the calcium-induced differentiation of
HEKs without affecting the calcium-induced growth arrest.

DISCUSSION
haCER1 is the ortholog of the maCER1 that we identified
previously (Mao et al., 2003). haCER1 and maCER1 share an
88% sequence identity. Similar to maCER1, haCER1 is highly
expressed in skin. With RT-PCR, we further revealed that
haCER1 is expressed in HEKs but not in dermal fibroblast
cells, suggesting that haCER1 is an epidermis-specific
enzyme. We experimentally proved that haCER1 is a bona
fide ceramidase that prefers ceramides with a very long-chain
unsaturated fatty acid as substrates both in vitro and in cells.

The data present in this study strongly suggest that haCER1
plays a role in mediating the calcium-induced growth arrest
and differentiation of epidermal keratinocytes. First, we
demonstrated that haCER1 was activated and upregulated
by high-calcium, a potent inducer of growth arrest, and
differentiation of epidermal keratinocytes, but was down-
regulated by EGF, which promotes the proliferation of HEKs.
Second, the RNA interference-mediated downregulation of
haCER1 inhibited the calcium-induced growth arrest of HEKs
as well as the calcium-induced expression of keratin 1 and
involucrin in HEKs. The role of haCER1 in mediating the

differentiation of keratinocytes is further supported by our
previous studies showing that haCER1 mRNA is much
more abundant in the suprabasal layers with differentiated
keratinocytes than in the basal layer with proliferating
keratinocytes; and the levels of haCER1 mRNA are increased
more than 100-fold in HEKs in the advanced stage of
differentiation (Houben et al., 2006).

haCER1 upregulation mediates the calcium-induced
growth arrest and differentiation of HEKs probably by
generating SPH and S1P. This is supported by several lines
of evidence. First, similar to high-calcium treatment, the
ectopic expression of haCER1 increased the levels of SPH and
S1P in HEKs. Second, haCER1 knockdown inhibited the
calcium-induced generation of SPH and S1P and the
calcium-induced growth arrest and differentiation of HEKs.
Third, SPH (Wakita et al., 1994), its analogs dihydro-
sphingosine (Tolleson et al., 1999) and PHS (Kim et al.,
2006), and S1P (Kim et al., 2004) have been shown to induce
growth arrest or differentiation of keratinocytes.

High-calcium treatment also increased the levels of D-e-
C14-ceramide, D-e-C16-ceramide, D-e-C24:0-ceramide, and
D-e-C24:1-ceramide in HEKs, but haCER1 knockdown failed
to inhibit the calcium-induced generation of these ceramides,
suggesting that haCER1 upregulation is not accountable for
the calcium-induced generation of ceramides. Ectopic
expression of haCER1 caused a decrease in the levels of
very long-chain ceramides (D-e-C24:0-ceramide and D-e-C24:1-
ceramide) in HEKs grown in the presence of low calcium,
whereas the high-calcium-induced upregulation of haCER1
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failed to do so, suggesting that high calcium not only
upregulates haCER1 but also increases substrates of haCER1.
Ceramides, as discussed earlier, have been implicated in the
growth arrest of keratinocytes in response to vitamin D.
Currently, it remains unclear whether the calcium-induced
generation of ceramides plays a role in the growth arrest and
differentiation of HEKs. However, it is certain that the
calcium-induced generation of ceramides provides haCER1
with unlimited substrates. Therefore, the generation of very
long-chain ceramides at least plays an indirect role in the
haCER1-mediated cellular responses in HEKs by serving as
the precursor of SPH and S1P. This is supported by our recent
studies showing that overexpression of haCER2, the homolog
of haCER1, enhances the generation of SPH from the
hydrolysis of very long-chain ceramides, leading to the
growth arrest of HeLa cells (Xu et al., 2006).

Our previous studies demonstrated that in addition to
haCER1, HEKs express four other ceramidases including the
AC (Houben et al., 2006). We showed that high calcium also
moderately upregulates the mRNA levels of AC, although to a
lesser extent (Houben et al., 2006). This finding is confirmed
in this study. The calcium co-upregulation of AC and haCER1
indicates that AC and haCER1 may have a similar role in the
calcium-mediated growth arrest or differentiation of HEKs.
Indeed, AC knockdown also inhibited the calcium-induced
expression of keratin 1 or involucrin in HEKs, although with a
lesser potency than haCER1 knockdown. It has been shown
that AC upregulation increases the levels of SPH but not S1P
(Monick et al., 2004). We demonstrated that AC over-
expression caused an increase in the levels of both SPH and
S1P in HeLa cells (unpublished data). These results suggest
that AC upregulation mediates the calcium-induced differ-
entiation of HEKs probably by generating SPH and S1P as
well. This further supports that haCER1 mediates the calcium-
induced differentiation of HEKs through generating SPH and/
or S1P.

Although haCER1 and AC have a similar role in mediating
the calcium-induced differentiation of HEKs, they differ in
regulating the growth of HEKs. We demonstrated that haCER1
knockdown promoted the proliferation of HEKs and attenu-
ated the calcium-induced growth arrest of HEKs, whereas AC
knockdown failed to do so. Consistently, we found that the
calcium-induced upregulation of haCER1 but not AC was
inhibited by the growth factor EGF. The different role of
haCER1 and AC in regulating cell growth may be related to
their cellular localizations, because haCER1 and AC are
localized to the ER and lysosomes, respectively.

Our studies suggest that an inhibition or downregulation of
haCER1 could lead to aberrant growth and differentiation of
keratinocytes, which have been shown to be associated with
many skin diseases, including psoriasis. Interestingly, the
haCER1 gene (19p13.3) is localized in a psoriasis suscept-
ibility locus, PSORS6 (19p13) (Hensen et al., 2003). It is
interesting to know whether haCER1 dysregulation is
implicated in psoriasis and other skin diseases.

In conclusion, our studies demonstrated that the expres-
sion of haCER1 and AC is upregulated by Cao

2þ . Cao
2þ binds

to its receptor calcium-sensing receptor and elevates the

levels of Cai
2þ , which, in turn, activates the preexisting

haCER1 and upregulates haCER1 and AC. The upregulation
of haCER1 and AC enhances the hydrolysis of ceramides that
are increased by calcium, augmenting the generation of SPH
and S1P, which induce the growth arrest and differentiation
of keratinocytes.

MATERIALS AND METHODS
Lipid preparation

D-erythro-SPH, D-erythro-dihydrosphingosine, and D-ribo-PHS were

purchased from Avanti Polar-Lipids Inc. (Alabaster, AL). Ceramides

used in this study were synthesized in the Lipidomics Core at the

Medical University of South Carolina (MUSC) as described (Usta

et al., 2001).

Cell culture

HEKs (Cascade Biologics Inc.) were cultured in D-KSFM with HKGS

(Cascade Biologics Inc., Portland, OR). HaCaT keratinocytes

provided by Dr Norbert E Fusenig (German Cancer Research Center,

Heidelberg, Germany) and A431 cells (American Type Culture

Collection, ATCC) were cultured in Eagle’s Minimum Essential

Medium supplemented with 10% fetal bovine serum. Dermal

fibroblast cells in human neonatal foreskin were provided by Dr

Maria Trojanowska (MUSC) and were cultured in DMEM containing

10% fetal bovine serum. Fetal bovine serum and all media were from

Invitrogen Inc. (Carlsbad, CA).

Cloning of haCER1

A Blast search of the NCBI GenBank with the maCER1 protein

sequence as a query revealed a human expressed sequence tag with

an accession number of BG698821 that encodes a polypeptide

highly homologous to maCER1. Compared with the maCER1

sequence, this polypeptide lacks the N-terminal sequence. Thus,

rapid amplification of cDNA ends (50-RACE) was performed to

obtain the N-terminal-coding sequence as described (Mao et al.,

2003). The first round PCR was conducted with human neonatal skin

keratinocyte cDNA as a template using the adaptor primer AP1 (BD

Biosciences Inc., San Jose, CA) and a gene specific primer 50-

CAGTAGCGGACTTTGAGGGTTTC-30. The second round PCR was

performed with the first round PCR products as a template using the

adaptor primer AP2 and a nested gene-specific primer 50-TGAG

GGTTTCACCTGGCATCTC-30. The single resulting 50-RACE product

was cloned into a vector pCR2.1 (Invitrogen Inc.). DNA sequencing

revealed the translation initiation site (ATG) in the extended

expressed sequence tag. The full-length open reading frame was

amplified from the skin keratinocyte cDNA using the primers 50-GG

ATCCATGCCTAGCATCTTCGCCTATCAGAG-30/50-GAATTCTCAG

CAGTCCTTGTCATCACCC-30 and cloned into a PCR cloning vector

pCR2.1 (Invitrogen Inc.). The open reading frame was subsequently

cloned to a yeast expression vector pYES2-Flag to generate the yeast

expression construct pYES2-Flag-haCER1. The coding sequence for

the Flag-tagged haCER1 was subcloned from pYES2-Flag-haCER1 to

a mammalian expression vector pcDNA3.1-Zeo (Invitrogen Inc.) to

generate a mammalian expression construct pcDNA3-Flag-haCER1.

Both expression constructs were verified by DNA sequencing.

The coding sequence and protein sequence of haCER1 have been

submitted to the GenBank under the accession number of

AF347024.
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Semi-quantitative RT-PCR analysis
Total RNA was isolated from various cell types using an RNeasy kit

(Qiagen, Valencia, CA) according to the manufacturer’s instructions.

Five microgram total RNA from each cell sample was reversely

transcribed into cDNA as described (Mao et al., 2003). One-tenth of

the transcribed cDNA was subjected to PCR analysis for the levels of

haCER1 mRNA under the condition of one cycle of 941C for

30 seconds, 30 cycles of 941C for 20 seconds, 601C for 30 seconds,

721C for 50 seconds, and one cycle of 721C for 5 minutes. PCR

analysis for the levels of glyceraldehyde 3 phosphate dehydrogenase

(G3PDH) mRNA was performed under the same conditions but with

one-thirtieth of the transcribed cDNA. The PCR primer sets used

were 50-TGGACTGGTGTGAGAGCAACTTC-30/50-TCAGCAGTCC

TTG TCATCACCC-30 (haCER1) and 50-TGAAGGTCGGAGTACACG

GATTTGGT-30/50-CATGTGGGCCATGAGGTCCACCAC-30

(G3PDH). PCR products were verified by DNA sequencing.

qRT-PCR analysis

Real-time PCR was performed on an iCycler system (BioRad Inc.,

Hercules, CA) using primers 50-GCCTAGACTCTTCGCCTATCAG-30/

50-GGAAGTTGCTCTCACACCAGT-30, haCER1; 50-TGATGCTTGAC

AAGGCACCA-30/50-GGCAATTTTTCATCCACCACC-30, AC; and 50-

CAATGTTCGGTGCAATTCAGAG-30/50-GGATCCCATTCCTACCACT

GTG-30, b-actin. Standard reaction volume was 25 ml, including

12.5ml of iQTM SYBR Green Supermix (Bio-Rad), 10 ml of cDNA

template, and 2.5 ml of a primer mixture. The initial PCR step was

3 minutes at 951C, followed by 40 cycles of a 10 seconds melting at

951C and a 45 seconds annealing/extension at 601C. The final step

was 1 minute incubation at 601C. All reactions were performed in

triplicate. Real time RT-PCR results were analyzed using Q-Gene

software, which expresses data as mean normalized expression

(Muller et al., 2002). Mean normalized expression is directly

proportional to the amount of mRNA of the target gene (haCER1)

relative to the amount of mRNA of the reference gene (b-actin).

Northern blot analysis

Northern blot analysis was performed as described (Mao et al.,

2001). Briefly, the haCER1 coding sequence amplified by PCR was

radiolabeled by [32P]-dCTP using a random priming kit (Amersham,

Piscataway, NJ). The radiolabeled DNA probe was hybridized to a

multiple human tissue mRNA blot (BD Biosciences Inc.). After being

stripped of the haCER1 probe, the mRNA blot was hybridized with a

radioactive b-actin probe (BD Bioscience).

haCER1 expression in yeast cells
The Flag-tagged haCER1 was expressed in yeast cells as described

(Mao et al., 2001). Briefly, the expression construct pYES2-Flag-

haCER1 or the empty vector pYES2-Flag was transformed into the

yeast strain Dypc1Dydc1. Expression of the Flag-tagged haCER1 was

induced by 2% galactose. Microsomes were prepared and were

subjected to Western blot analysis and ceramidase activity assays.

haCER1 expression in mammalian cells

The expression construct pcDNA3-Flag-haCER1 or the empty vector

pcDNA3.1 was transfected into HEKs using Lipofectamine and PLUS

reagents (Invitrogen) according to the instructions of the manufac-

turers. Expression of the Flag-haCER1 was confirmed by Western blot

analysis using an anti-Flag tag antibody (Sigma).

Protein concentration determination
Protein concentrations were determined with BSA as a standard

using a BCA protein determination kit (Pierce Inc., Rockford, IL)

according to the manufacturer’s instructions.

Western blot analysis

Western blot analysis was performed as described (Hu et al., 2005).

Ceramidase activity assay

Ceramidase activity was determined by the release of sphingoid

bases (SPH, dihydrosphingosine, or PHS) from ceramides, dihydro-

ceramide, or phytoceramides. Briefly, 20 ml of microsomes (1 mg/ml

proteins) in an assay buffer (25 mM Tris-HCl, pH 8.0, containing

5 mM CaCl2) was mixed with 20 ml of substrate in the assay buffer

containing 0.3% Triton X-100, and the mixture was incubated at

371C for 30 minutes. The reactions were stopped by extraction with

chloroform and methanol. Sphingoid bases were determined by high

performance liquid chromatography (HPLC) with D-e-C17-SPH as an

internal standard as described (Usta et al., 2001).

Immunocytochemistry

Cells were co-stained with antibodies against the Flag peptide

(1:200) and calreticulin (1:200), followed by anti-rabbit and mouse

IgG antibodies (1:200) conjugated with rhodamine and FITC,

respectively, as described (Mao et al., 2001). The immunostained

cells were examined under a confocal laser-scanning microscope

(Carl Zeiss, Inc., Thornwood, NY).

ESI/MS/MS lipid analysis

ESI/MS/MS analysis of sphingolipids was performed on a Thermo

Finnigan TSQ 7000 triple quadrupole mass spectrometer, operating

in a Multiple Reaction Monitoring (MRM)-positive ionization mode

as described (Bielawski et al., 2006). Levels of sphingolipids were

normalized to total phosphate, which was determined as described

(Van Veldhoven and Bell, 1988).

siRNA transfection

An siCON (UAAGGUAUGAAGAGAUACUU/GUAUCUCUUCAUA

GCCUUAUU); a siCER1, siCER1 (GGCCUGUUCUCCAUGUA

UUUUU/AAUACAUGGAGAACAGGCCUU); and an AC-specific

siRNA (AAAAUCAACCUAUCCUCCUUCUU/GAAGGAGGAUAG

GUUGAUUUU) were chemically synthesized in Dharmacon

(Lafayette, CO). HEKs cells were transfected with each siRNA at a

concentration of 10 nM using Lipofectamine and PLUS reagents

(Invitrogen Inc.) according to the manufacturer’s instructions.

MTT assay

Viable cells were determined using an in vitro toxicology assay kit

based on MTT (Sigma Inc.) according to the manufacturer’s

instructions.

[3H]Thymidine incorporation assay

Thymidine incorporation assays were performed as described (Rao

and Otto, 1992). After being labeled with [3H]thymidine (1mCi/ml)

for 6 hours, the cells were washed three times with the ice-cold

phosphate-buffered saline, incubated in 5% trichloroacetic acid at

371C for 20 minutes, and then washed twice with 100% ethanol. The

ethanol insoluble DNA was dissolved in 1% SDS and 0.3 N NaOH,
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and incorporation of [3H]thymidine into DNA was determined by

scintillation counting.

Statistical analysis

Student’s t-test was applied for statistical analysis. Data were

presented as mean7SD. Statistically significant differences were

reported as *Po0.05, **Po0.01, ***Po0.001.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This work was supported by the National Institutes of Health grants
R01CA104834 (CM) and P20RR017677 (CM) and VA merit award (LMO).

REFERENCES

Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci
USA 100:11830–5

Bektas M, Orfanos CE, Geilen CC (2000) Different vitamin D analogues
induce sphingomyelin hydrolysis and apoptosis in the human keratino-
cyte cell line HaCaT. Cell Mol Biol (Noisy-le-grand) 46:111–9

Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous
quantitative analysis of bioactive sphingolipids by high-performance
liquid chromatography-tandem mass spectrometry. Methods 39:82–91

Bikle DD, Oda Y, Xie Z (2004) Calcium and 1,25(OH)2D: interacting drivers
of epidermal differentiation. J Steroid Biochem Mol Biol 89–90:355–60

Christiano AM (2004) Epithelial stem cells: stepping out of their niche.
Cell 118:530–2

Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids.
EMBO Rep 5:777–82

Geilen CC, Bektas M, Wieder T, Orfanos CE (1996) The vitamin D3 analogue,
calcipotriol, induces sphingomyelin hydrolysis in human keratinocytes.
FEBS Lett 378:88–92

Hannun YA, Obeid LM (2002) The Ceramide-centric Universe of Lipid-
mediated Cell Regulation: Stress Encounters of the Lipid Kind. J Biol
Chem 277:25847–50

Hensen P, Windemuth C, Huffmeier U, Ruschendorf F, Stadelmann A, Hoppe
V et al. (2003) Association scan of the novel psoriasis susceptibility
region on chromosome 19: evidence for both susceptible and protective
loci. Exp Dermatol 12:490–6

Houben E, Holleran WM, Yaginuma T, Mao C, Obeid LM, Rogiers V et al.
(2006) Differentiation-associated expression of ceramidase isoforms in
cultured keratinocytes and epidermis. J Lipid Res 47:1063–70

Hu W, Xu R, Zhang G, Jin J, Szulc ZM, Bielawski J et al. (2005) Golgi
fragmentation is associated with ceramide-induced cellular effects. Mol
Biol Cell 12:12

Kim DS, Kim SY, Kleuser B, Schafer-Korting M, Kim KH, Park KC (2004)
Sphingosine-1-phosphate inhibits human keratinocyte proliferation via
Akt/protein kinase B inactivation. Cell Signal 16:89–95

Kim S, Hong I, Hwang JS, Choi JK, Rho HS, Kim DH et al. (2006)
Phytosphingosine stimulates the differentiation of human keratinocytes
and inhibits TPA-induced inflammatory epidermal hyperplasia in hair-
less mouse skin. Mol Med 12:17–24

Kouba DJ, Nakano H, Nishiyama T, Kang J, Uitto J, Mauviel A (2001) Tumor
necrosis factor-alpha induces distinctive NF-kappa B signaling within
human dermal fibroblasts. J Biol Chem 276:6214–24

Mao C, Xu R, Bielawska A, Szulc ZM, Obeid LM (2000) Cloning and
characterization of a Saccharomyces cerevisiae alkaline ceramidase with
specificity for dihydroceramide. J Biol Chem 275:31369–78

Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning
and characterization of a novel human alkaline ceramidase: a
mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem
276:26577–88

Mao C, Xu R, Szulc ZM, Bielawski J, Becker KP, Bielawska A et al. (2003)
Cloning and characterization of a mouse endoplasmic reticulum alkaline
ceramidase: an enzyme that preferentially regulates metabolism of very
long chain ceramides. J Biol Chem 278:31184–91

Monick MM, Mallampalli RK, Bradford M, McCoy D, Gross TJ, Flaherty DM
et al. (2004) Cooperative prosurvival activity by ERK and Akt in human
alveolar macrophages is dependent on high levels of acid ceramidase
activity. J Immunol 173:123–35

Muller P, Janovjak H, Miserez A, Dobbie Z (2002) Processing of gene
expression data generated by quantitative real time RT-PCR. BioTechni-
ques 32:1372–9

Rao J, Otto WR (1992) Fluorimetric DNA assay for cell growth estimation.
Anal Biochem 207:186–92

Tolleson WH, Couch LH, Melchior WB Jr, Jenkins GR, Muskhelishvili M,
Muskhelishvili L et al. (1999) Fumonisin B1 induces apoptosis in
cultured human keratinocytes through sphinganine accumulation and
ceramide depletion. Int J Oncol 14:833–43

Tu CL, Oda Y, Komuves L, Bikle DD (2004) The role of the calcium-sensing
receptor in epidermal differentiation. Cell Calcium 35:265–73

Uchida Y, Nardo AD, Collins V, Elias PM, Holleran WM (2003) De novo
ceramide synthesis participates in the ultraviolet B irradiation-induced
apoptosis in undifferentiated cultured human keratinocytes. J Invest
Dermatol 120:662–9

Usta J, El Bawab S, Roddy P, Szulc ZM, Yusuf Hannun A, Bielawska A (2001)
Structural requirements of ceramide and sphingosine based inhibitors of
mitochondrial ceramidase. Biochemistry 40:9657–68

Van Veldhoven PP, Bell RM (1988) Effect of harvesting methods, growth
conditions and growth phase on diacylglycerol levels in cultured
human adherent cells. Biochim Biophys Acta – Lipids Lipid Metab
959:185–96

Wakita H, Tokura Y, Yagi H, Nishimura K, Furukawa F, Takigawa M (1994)
Keratinocyte differentiation is induced by cell-permeant ceramides and
its proliferation is promoted by sphingosine. Arch Dermatol Res
286:350–4

Watt FM (1998) Epidermal stem cells: markers, patterning and the control of
stem cell fate. Philos Trans R Soc Lond B Biol Sci 353:831–7

Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z et al. (2006) Golgi alkaline
ceramidase regulates cell proliferation and survival by controlling levels
of sphingosine and S1P. FASEB J 20:1813–25

www.jidonline.org 397

W Sun et al.
Alkaline Ceramidase 1 and AC in Keratinocyte Differentiation

http://www.jidonline.org

	Upregulation Of The Human Alkaline Ceramidase 1 And Acid Ceramidase Mediates Calcium-induced Differentiation Of Epidermal Keratinocytes�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	Introduction����������������������������������������������������
	Results�������������������������������������
	Discussion����������������������������������������������
	Materials And Methods�������������������������������������������������������������������������������
	Conflict Of Interest����������������������������������������������������������������������������
	Acknowledgments�������������������������������������������������������������
	Supplementary Material����������������������������������������������������������������������������������
	References����������������������������������������������




