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a b s t r a c t

This article employs a more flexible single-index regression model to characterize the
conditional distribution. The pseudo least integrated squares approach is proposed
to estimate the index coefficients. As shown in the numerical results, our estimator
outperforms the existing ones in terms of the mean squared error. Moreover, we provide
the generalized cross-validation criteria for bandwidth selection and utilize the frequency
distributions of weighted bootstrap analogues for the estimation of asymptotic variance
and the construction of confidence intervals. With a defined residual process, a test
rule is built to check the correctness of an applied single-index conditional distribution
model. To tackle the problem of sparse variables, a multi-stage adaptive Lasso algorithm is
developed to enhance the ability of identifying significant variables. All of our procedures
are found to be easily implemented, numerically stable, and highly adaptive to a variety
of data structures. In addition, we assess the finite sample performances of the proposed
estimation and inference procedures through extensive simulation experiments. Two
empirical examples from the house-price study in Boston and the environmental study
in New York are further used to illustrate applications of the methodology.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the conditional distribution FY (y|x) of a real-valued response Y given continuous or mixed discrete-
continuous covariates X = x, where X = (X1, . . . , Xd)

⊤ and x = (x1, . . . , xd)⊤. In regression analysis, a wide cross-section
of research interests has been pursued in the study of the conditional mean E[Y |x]. A more complete methodology and
theoretical framework related to fully nonparametric and semiparametric distribution models still remains and a further
investigation is necessary. As one can see, with a large number of covariatess, a fully nonparametric distribution usually
suffers from the curse of dimensionality [1]. Although parametric models have played prominent roles in applications, they
are frequently detected to be inadequate in many studies. Thus, a more flexible semiparametric model becomes a great
interest to characterize the dependence of Y on X . Moreover, it avoids the impact of misspecification of parametric models
and the difficulty in the estimation of nonparametric distributions.

One of the most popular extensions of parametric models is the single-index (SI) conditional distribution model:

FY (y|x) = G(y, xθ0), (1.1)
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where G(·, ·) is an unknown bivariate function, xθ = x1 + (x2, . . . , xd)⊤θ , and θ0 is a vector of true index coefficients.
The most significant covariate is assumed, without loss of generality, to be X1 and the setting of its coefficient is mainly to
deal with the problem of identifiability. When the conditional mean exists, it can be easily obtained from the above model
that E[Y |x] = m(xθ0) with m(·) being some unspecified function. Under the conditional mean model, [14] estimated θ0
through the estimation of the density-weighted average derivative. Due to the high-dimensional kernel smoothing, the
numerical instability is usually observed although the estimator was shown to be

√
n-consistent, asymptotically normal,

and computationally simple. To overcome such a weakness with practice, [11] developed a semiparametric least squares
approach andderived its asymptotic properties.Meanwhile, [9] recommended a cross-validation criterion to simultaneously
estimate bandwidths and index coefficients. Under the validity of model (1.1) with a continuous response, [2] introduced a
pseudo likelihood (PL) estimation for θ0. Without moment and continuous assumptions on Y , [7] suggested an estimation
criterion on the basis of the average squared difference between the empirical estimator and the model-based estimator of
the joint probability of Y and X . However, the good performance of this estimation procedure is connected to an appropriate
number of spheres and the corresponding radii used in the integral approximation. Currently, there is still no standard
rule to determine the values of these two quantities. Furthermore, the established algorithm is often computationally slow
and intensive, especially in high-dimensional covariate spaces. Confronted with these problems, we propose a simple and
easily implemented estimation criterion for θ0. The basic rationale behind this approach is to define the response process
N(y) = I(Y ≤ y) and to directly use the difference between N(y) and its conditional mean G(y, xθ0) over the support of Y .
Further, the asymptotic distribution of the pseudo least integrated squares estimator (PLISE) is derived to be multivariate
normal under some suitable conditions. Tomake inferences related to θ0, the frequency distribution of its bootstrap analogue
is utilized to estimate the asymptotic variance of the PLISE because a sandwich-type estimator tends to provide a very
poor approximation. With the proposed residual process, the method of [18] is extended to build a test rule to check the
correctness of model (1.1). Conclusively, there are two features of the PLISE: firstly, our estimation approach can be applied
to different types of response variable and outperforms the existing ones; secondly, the foregoing inferences can be easily
adopted and generalized to the considered problems in this article.

When the underlying true model has a sparse representation, identifying significant covariates becomes an important
issue to enhance the accuracy in prediction. In the presence of a potentially high-dimensional covariate space, the traditional
best-subset selection algorithms appear to be computationally infeasible. Another way for this issue is to apply the ridge
regression estimation, which shrinks an estimator toward zero but does not identify significant covariates cleverly. To
simultaneously select significant variables and estimate the parameters in regression models, [17] introduced a least
absolute shrinkage and selection operator (Lasso). Since the Lasso variable selection might be inconsistent, [3,19] proposed
a smoothly clipped absolute deviation (SCAD) penalty and an adaptive Lasso instead. In these model specifications, the
adaptive Lasso avoids the problem of nonconcavity in the SCAD penalty although both of the procedures enjoy the oracle
properties. By extending the adaptive Lasso in generalized linearmodels to our framework,we propose the penalized pseudo
least integrated squares estimator (PPLISE) and derive the corresponding oracle properties. In a small sample size scenario,
a multi-stage adaptive Lasso estimation procedure is further developed to improve possible selection inconsistency and
predictive inaccuracy in the PPLISE.

The rest of this article is organized as follows: in Section 2, we propose the PLISE for θ0 and the cross-validation criteria
for bandwidth selection. Moreover, the weighted bootstrap inference procedures are introduced to estimate the asymptotic
variance of the PLISE and construct the confidence regions for parameters of interests. A test rule and amulti-stage adaptive
Lasso procedure are established in Section 3. In Sections 4 and 5, simulation experiments are conducted and the proposed
approaches are applied to two empirical examples. Some concluding remarks and future research topics are provided in
Section 6 and the proofs of the main results are placed in Appendix.

2. Estimation and inference procedures

Based on a random sample of the form {(Xi, Yi)}
n
i=1, the PILSE of θ0 and the bandwidth selection criteria are proposed.

The frequency distributions of bootstrap analogues are fully employed to estimate the asymptotic variance of the PILSE and
construct the confidence intervals for the parameters of interest.

2.1. Estimation and bandwidth selection

For each fixed (y, xθ ), the approach of [6] can be applied for the estimation of G(y, xθ ). Let K(u) denote a kernel density,
h be a positive-valued bandwidth, Kh(u) = K(u/h)/h, and Nℓh(y, Xiθ ) =


j≠i N

ℓ
j (y)Kh(Xjθ − Xiθ )/(n − 1), i = 1, . . . , n,

ℓ = 0, 1. TheNadaraya–Watson estimator forG(y, Xiθ ) is given byGh(y, Xiθ ) = N1h(y, Xiθ )/N0h(y, Xiθ ). By using the response
processN(y) and a consistent estimator ofG(y, xθ ), the PLISEθh is proposed to be aminimizer of the pseudo sumof integrated
squares (PSIS):

SSh(θ) =
1
n

n
i=1


Y

e2ih(y; θ)dWni(y), (2.1)
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where Y is the support of Y or the interval of interest, eih(y; θ) = Ni(y) −Gh(y, Xiθ ), and Wni(y) is a non-negative weight
function. In practical implementation,Gh(y, xθ ) is set to be zero if the denominator N0h(y, xθ ) is zero. Although a local linear
estimator of G(y, xθ ) can be used in the PSIS, it does not share the properties of a cumulative distribution function andmight
cause some complications in the above estimation procedure.

It follows from a direct algebraic calculation that

E[(N(y) − G(y, Xθ ))
2
] = E[(N(y) − FY (y|X))2] + E[(FY (y|X) − G(y, Xθ ))

2
]. (2.2)

Since the first term on the right-hand side of (2.2) does not depend on θ , both of the minimizers of E


Y
(N(y) −

G(y, Xθ ))
2dW (y)


and E


Y
(FY (y|X) − G(y, Xθ ))

2dW (y)


can be shown to be θ0 under the validity of model (1.1),
where W (y) is a convergent function of Wn(y). Clearly, minimizing SSh(θ) is on average approximated by minimizing
E


Y
(FY (y|X) − G(y, Xθ ))

2dW (y)

with respect to θ . In our theoretical development and numerical implementation, the

quartic kernel K(u) = (15/16)(1 − u2)2I(|u| ≤ 1) is specified. The advantage of such a density function is thatθh can
achieve the

√
n-consistency. As a spacial case, the uniform distribution or the empirical distribution of Y can be specified

for Wni(y)’s in (2.1). In the case where G(y, xθ ) is known, the optimal weight for wni(y) = dWni(y)/dy is derived to be
proportional to 1/{G(y, Xiθ )(1 − G(y, Xiθ ))}, the reciprocal of the conditional variance of Ni(y), at each fixed y. Thus, we
can further replace G(y, xθ ) by a consistent estimatorGh(y, xθh) and iteratively update the weight estimation. Interestingly,
the resulting estimator coincides with the maximizer of the following log-pseudo likelihood function for a random sample
{Ni(y) : 1 ≤ i ≤ n}:

lph(θ) =
1
n

n
i=1


Y

{Ni(y) ln(Gh(y, Xiθ )) + (1 − Ni(y)) ln(1 −Gh(y, Xiθ ))}dy. (2.3)

Let Y(1) < · · · < Y(m) denote the distinct order statistics of {Y1, . . . , Yn} and Wn(j) =
 Y(j+1)
Y(j)

dWni(y). The zero-one

processN(y) and the step functionGh(y, xθh)with jumps occurring at {Y(1), . . . , Y(m)} yield a computationallymore attractive
alternative of the PSIS in (2.1) as follows:

SSh(θ) =
1
n

n
i=1

m−1
j=1

e2ih(Y(j); θ)Wn(j). (2.4)

In contrast, the estimation procedure of [7] is often computationally intensive. When the response variable Y is discrete
and has a finite support, the above estimation criterion can also be applied. As for the binary response with values in {0, 1},
the PSIS will automatically reduce to the sum of squares in [11]. In kernel estimation, a criterion for bandwidth selection is
provided via generalizing the most commonly used ‘‘leave one subject out’’ cross-validation procedure of [15]. The optimal
bandwidth hcv is naturally defined to be the unique minimizer of

CV1(h) =
1
n

n
i=1

m−1
j=1

e2ih(Y(j);θih)Wn(j) (2.5)

withθih = argmin


ℓ≠i
m−1

j=1 e2ℓ(Y(j); θ)Wn(j)/(n − 1)

. Another criteriondevelopedbyHärdle et al. [9] is further adopted

and extended to our framework. The estimators of h and θ are simultaneously obtained via minimizing SSh(θ) with respect
to (h, θ). More precisely, this optimal bandwidth estimator is defined to be theminimizer of CV2(h) = SSh(θh). At each fixed
bandwidth h, the criterion CV1(h) needs to repeatedly estimate θ0 based on n subsamples of size (n − 1) whereas CV2(h)
only requires to estimate it one time. Thus, the implementation of CV2(h) is easier and faster than that of CV1(h).

2.2. Asymptotic properties

Suppose that X has a compact support X and θ0 is an interior point of the compact parameter space Θ ⊆ Rd−1.
Let f (xθ ) be the density function of Xθ on Xθ = {xθ : x ∈ X, θ ∈ Θ},Mℓ1ℓ2(y, xθ ) = E[Gℓ1(y, Xθ0)(x − X)⊗ℓ2 |xθ ],

ℓ1 = 0, 1, ℓ2 = 0, 1, 2,H1(y, xθ0) = M01(y, xθ0)∂xθ G(y, xθ0), V1θ0 = 2E


Y
ε(y; θ0)H1(y, Xθ0)dW (y)

⊗2


, and V2θ0 =

4E


Y
H⊗2

1 (y, Xθ0)dW (y)

. Before establishing the asymptotic properties ofθh, some suitable conditions are made below.

(A1) infXθ
f (xθ ) > 0.

(A2) d3xθ f (xθ ) and ∂3
xθ M12(y, xθ ) are Lipschitz continuous in xθ with the Lipschitz constants being independent of (y, xθ ).

(A3) h = h0n−ς1 for ς1 ∈ (1/8, 1/5) and some positive constant h0.
(A4) V1θ0 and V2θ0 are nonsingular.
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Since the classes of kernel functions indexed by (h, xθ ) are Euclidean [12], the imposed conditions entail that the
considered classes of functions are Euclidean. By applying Theorem II.37 of [13], one has

sup
Y×Xθ

|∂
ℓ2
θ Nℓ1(y, xθ ) − ∂ℓ2

xθ (f (xθ )Mℓ1ℓ2(y, xθ ))| = o


ln n

nh2ℓ2+1


+ O(h2) a.s. (2.6)

For simplicity, the consistency and asymptotic normality ofθh are established in the following theorem with the case of
deterministic weight functionsWi(y)’s.

Theorem 1. Suppose that Assumptions (A1)–(A4) are satisfied. Then,θh p
−→ θ0 and

√
n(θh − θ0)

d
−→ N(0, Σθ0) as n → ∞,

where Σθ0 = V−1
1θ0

V2θ0V
−1
1θ0

.

For a continuous response Y , the PMLEθh12 of [2] is obtained by maximizing

lph12(θ) =
1
n

n
i=1

ln



j≠i

K4h2(Yj − Yi)K4h1(Xjθ − Xiθ )
j≠i

K4h1(Xjθ − Xiθ )

 , (2.7)

where K4h(u) = K4(u/h)/h and K4(u) = (105/64)(1 − 5u2
+ 7u4

− 3u6)I(|u| ≤ 1) (cf. [5]). The fourth-order kernel
function is required to ensure the 1/

√
n convergence rate. The authors concluded that the proposed estimator achieves

the asymptotic efficiency. However, we found some mistakes in their theoretical derivations and showed thatθh12 can only
reach the semiparametric efficiency bound. Let g(y, xθ0) = fY (y|x),

W1θ0 = E[(g−1(Y , Xθ0)∂
2
xθ g(Y , Xθ0) + 2dxθ ln f (Xθ0)∂xθ g(Y , Xθ0))M02(y, Xθ0) + ∂xθ ln g(Y , Xθ0)

·(2∂xθ M02(y, Xθ0) − M⊗2
01 (y, Xθ0))], and W2θ0 = E[(∂xθ ln g(Y , Xθ0))

2(X − E[X |Xθ0 ])
⊗2

].

The proofs for Theorem 1 are processed in the samemanner forθh12 p
−→ θ0 and

√
n(θh12 −θ0)

d
−→ N(0,W−1

1θ0
W2θ0W

−1
1θ0

) under
Assumption (A1) and the following assumptions:

(B1) d3xθ f (xθ ), ∂
3
xθ M02(y, xθ ), and ∂3

xθ E[g(Y , Xθ0)(x − X)⊗2
|xθ ] are Lipschitz continuous in xθ with the Lipschitz constants

being independent of (y, xθ ).
(B2) hk = h0kn−ς2 , k = 1, 2, for some positive constants h0k’s and ς2 ∈ (1/16, 1/6).
(B3) W1θ0 and W2θ0 are nonsingular.

2.3. Bootstrap inferences

Basedon the limiting distribution of
√
n(θh−θ0), a general rule in the construction of confidence intervals usually relies on

an appropriate estimator ofΣθ0 . One of themostwidely used estimators is the sandwich-type estimator Σθh = V−1
1θhV2θhV−1

1θh ,
whereV1θh = 2

n
i=1
m−1

j=1 (∂θ
Gh(Y(j), Xiθh))⊗2Wn(j)/n andV2θh = 4

n
i=1

m−1
j=1 eih(Y(j);θh)∂θ

Gh(Y(j), Xiθh)Wn(j)

⊗2
/n. In

practical implementation, a sufficiently good performance of Σθh essentially requires an adequate bandwidth. Although the
smoother in Σθh can be chosen different from that inGh(y, xθh), there is still no standard criterion for doing so.

An alternative approach to avoid encountering such a situation is to employ the frequency distribution of bootstrap
replications. A natural resampling approach is to draw independent bootstrap random vectors Unb

1 , . . . ,Unb
n from the

empirical distribution Pn,U = n−1n
i=1 IUi with Ui = (Xi, Yi), i = 1, . . . , n. The bootstrap analogueθnb

h is straightforward
created via solving SSh(θ) in (2.1) based on a bootstrap sample {Unb

1 , . . . ,Unb
n }. Without requiring drawing observations

from the collected data, we further adopt general weighted bootstrap approximations for the sampling distribution ofθh.
Let ξ1, . . . , ξn be independently generated from a common distributionwithmeanµ and variance σ 2. The randomweighted
bootstrap estimatorθ rw

h is then defined to be the minimizer of

SSrwh (θ) =

n
i=1

Di

m−1
j=1

(erwih (Y(j); θ))2Wn(j), (2.8)

where Di = ξi/
n

j=1 ξj, erwih (y; θ) = Ni(y) −Grw
h (y, Xiθ ), andGrw

h (y, Xiθ ) = N rw
1h (y, Xiθ )/N rw

0h (y, Xiθ ) with N rw
ℓh (y, Xiθ ) =

j≠i DjNℓ
j (y)Kh(Xjθ − Xiθ ), ℓ = 0, 1. This bootstrapping approach can be treated as the naive bootstrap one with a measure

P rw
n,U =

n
i=1 DiIUi . It is interesting to note that the dependentweightsDi’s can also be replacedwith the independentweights

ξ1/(nµ), . . . , ξn/(nµ).
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Applying the frequency distribution ofθ rw
h , the random bootstrap confidence intervals for θ0ℓ, ℓ = 2, . . . , (d − 1), are

naturally constructed byθℓh ± ρz1−α/2serw(θ rw
ℓh −θℓh) or

θℓh − ρqrw1−α/2(
θ rw

ℓh −θℓh),θℓh − ρqrwα/2(
θ rw

ℓh −θℓh)

, (2.9)

where ρ = µ/σ is a scale factor modification for the variability in the weights, zp is the pth quantile value of the standard
normal distribution, and serw(·) and qrw(·) denote the standard error and the 100pth percentile of Bθ rw

h ’s, respectively. Let
P∗(·) represent the probability measure conditioning on {U1, . . . ,Un}. The validity of (2.9) is given in the next theorem.

Theorem 2. Suppose that assumptions in Theorem 1 are satisfied. Then,

P∗
√

nρ(θ rw
h −θh) ≤ w


− P

√
n(θh − θ0) ≤ w

 p
−→ 0 ∀w = (w2, . . . , wd)

⊤ as n → ∞. (2.10)

3. Model test and sparse models

In this section, a test rule is established for the correctness ofmodel (1.1). The PPLISE is built to tackle with the problem of
sparse variables. A multi-stage adaptive Lasso procedure is further developed to improve the accuracy of variable selection.

3.1. Model checking

Let ε(y; θ) = N(y) − G(y, Xθ ) and θ1 be the minimizer of


Y
E[ε2(y; θ)]dW (y). It is straightforward to yield that θ1 = θ0

and E[ε(y; θ1)] = 0undermodel (1.1). If the consideredmodel is incorrect, εy(y; θ1) canbe further projected into some linear
combinations of covariates, i.e. ε(y; θ1) = ν(y, x∗

θ2
) + ζ (y) with E[ζ (y)] = 0 for some y and {X∗

1 , . . . , X∗
n } = {X1, . . . , Xn},

and

θ2 = argmin
θ


Y

min

E[(ε(y; θ1) − ν(y, x∗

θ ))
2
], E[ε2(y; θ1)]


dW (y).

The parameter θ2 is naturally estimated by the minimizer θ̆he of RSSn(θ), where

RSSn(θ) =
1
n

n
i=1

m−1
j=1

min{(eih(Y(j);θh) −νhe(Y(j), X∗

iθ ))
2, (eih(Y(j);θh) − ēh(Y(j);θh))2}Wn(j)

withνhe(y, X
∗

iθ ) =


j≠i

ejh(y;θh)Khe(X
∗

jθ − X∗

iθ )
j≠i

Khe(X
∗

jθ − X∗

iθ )
and ēh(y;θh) =

1
n

n
i=1

eih(y;θh).
By further computing TSSn =

n
i=1
m−1

j=1 (eih(Y(j);θh) − ēh(Y(j);θh))2Wn(j)/n, the test statistic Fn = RSSn(θ̆he)/TSSn is
used to test the hypotheses:

H0 : FY (y|x) = G(y, xθ0) for all (x, y)
HA : FY (y|x) ≠ G(y, xθ0) for some (x, y).

In this test, the null hypothesis should be rejected for small vales of this test statistic. The next theorem shows the
convergence behaviors of Fn under H0 and HA, respectively.

Theorem 3. Suppose that Assumptions (A1)–(A4) are satisfied, ∂x∗θ ν(y, x∗

θ ) is Lipschitz continuous in x∗

θ with the Lipschitz
constant being independent of (y, x∗

θ ), and he = he0n−ς2 with ς2 ∈ (1/8, 1/2) for some positive constant he0. Then, Fn =

1 + op(n−1/2) under H0 and

Fn = 1 −


YHA

Var(E[ε(y; θ1)|Xθ2 ])dW (y)
Y
Var(ε(y; θ1))dW (y)

+ Op(n−2ς1)

under HA, where YHA = {y : FY (y|x) ≠ G(y, xθ1) and y ∈ Y}.

When the alternative hypothesis holds, the asymptotic representation is quite complicated due to the discrepancy in
convergence rates over the support. Furthermore, it needs to take into account higher-order approximation terms under
the null hypothesis. A bootstrapping technique becomes one feasible way to obtain a critical value for the test. In our test
rule,H0 is rejectedwith a significance levelα whenever Fn ≤ qα(F b

n ), where F b
n is the bootstrap analogue of Fn with e∗

ih(y;θh)’s
substituting for eih(y;θh)’s and each e∗

ih(y;θh) being independently drawn from a two-point distribution:
5 +

√
5


/10


δ(1−
√
5)eih(y;θh)/2 +


5 −

√
5


/10


δ(1+
√
5)eih(y;θh)/2 (cf. [8]).

As expected, this test rule is generally more powerful than those based on X , especially when its dimension is high.
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Similar to the single-indexing cross-validation value of [18], we consider the measure

SCVn =
1
n

n
i=1

m−1
j=1

min{(eih(Y(j);θh) −νhe(Y(j), Xiθ̆ihe
))2, (eih(Y(j);θh) − ēh(Y(j);θh))2}Wn(j), (3.1)

where

θ̆ihe = argmin
θ

n
i=1

m−1
j=1

min{(eih(Y(j);θh) −νihe(Y(j), X∗

iθ ))
2, (eih(Y(j);θh) − ēh(Y(j);θh))2}Wn(j)

if it exists andνihe(y, X
∗

iθ ) is computed asνhe(y, X
∗

iθ )with the ith subject being deleted, i = 1, . . . , n. Following the argument
of this author, one can also conclude that SCVn = TSSn if model (1.1) is correct and SCVn < TSSn otherwise as n → ∞.

3.2. Adaptive lasso estimation and oracle properties

The PPLISEθ(p) of θ0 is obtained via minimizing the penalized pseudo sum of integrated squares (PPSIS):

PSShλ
(θ) = SSh(θ) + λ

d
ℓ=2

|θℓ|

|θℓ|
, (3.2)

where λ is a nonnegative regularization or tuning parameter. In this variable selection and estimation procedure, significant
covariates receive smaller penalties and tend to have nonzero coefficient estimates while nonsignificant coefficients will be
shrunk into zero. The above optimization problem entails that the underlying true model can be consistently identified andθ(p)A0 has the same asymptotic distribution asθA0 , where A0 = {ℓ|θ0ℓ ≠ 0}.

Theorem 4. Suppose that Assumptions (A1)–(A4) are satisfied and λ = λ0n−ς3 for ς3 ∈ (1/2, 1) and some positive constant

λ0. Then, P(A = A0) → 1 and
√
n(θ(p)A0 −θA0)

d
−→ N(0, ΣθA0

) as n → ∞, where A = {ℓ|θℓ ≠ 0} andΣθA0
is the asymptotic

variance of θA0 .

It is revealed in our simulation experiments that the one-stage adaptive Lasso estimation in (3.2) usually cannot achieve
the variable selection well in small sample applications. To conquer this shortcoming, we develop a multi-stage adaptive
Lasso estimation scheme. Letθ(m) represent the vector of nonzero estimates at themth stage, θ(m) = (θ⊤

(m)ℓ−, θ(m)ℓ, θ
⊤

(m)ℓ+)⊤

be the corresponding parameter vector with a length of dm, and θ(m)ℓ− and θ(m)ℓ+ denote the vectors of coefficients with
sub-indices smaller and greater than ℓ, respectively. Moreover, SS(m)(θ(m)) is defined as SSh(θ) with θ being replaced with
θ(m). The estimation procedure is implemented through the following steps:

S1. (θ (1)
(1)ℓ,

h(1)
(1)ℓ) = argminθℓ,h SS(1)(θ (1)

(1)ℓ−, θ(1)ℓ,θ(0)ℓ+) + λ|θℓ|/|θ (0)
(1)ℓ| withθ (0)

(1)ℓ =θℓ andθ (1)
(1)ℓ = 0 whenever |θ (1)

(1)ℓ| < ε0,
l = 2, . . . , d1, for some sufficiently small positive value ε0.

S2. Set (θ (k)
(1)ℓ,

h(k)
(1)ℓ) = (0,h(k−1)

(1)ℓ ) if θ (k−1)
(1)ℓ = 0; otherwise, (θ (k)

(1)ℓ,
h(k)

(1)ℓ) = argminθℓ,h SS(1)(θ (k)
(1)ℓ−, θ(1)ℓ,θ (k−1)

(1)ℓ+ ) +

λ|θℓ|/|θ (k−1)
(0)ℓ | andθ (k)

(1)ℓ = 0 whenever |θ (k)
(1)ℓ| < ε0, k = 2, . . . .

S3. Iterations are stopped if ∥θ (k)
(1) −θ (k−1)

(1) ∥ < ε1 for some pre-chosen small value ε1 > 0, andθ(1)λ is set to be non-zero

components ofθ (k)
(1) .

S4. θ(1) =θ(1)λ1 with λ1 = argminλ GCV(λ) and

GCV(λ) =
SS(1)(θ(1)λ)

1 −
1
n tr

V1θ(1)λ
+ diag


λ

nθ2
(1)λ

−1V1θ(1)λ

2 .

S5. Repeat steps S1–S4M times until ∥θ(M) −θ(M−1)∥ < ε2 for some small value ε2 > 0.

4. Monte Carlo experiments

The performances of the proposed estimation and inference procedures were assessed through a class of simulations
with a variety of sample sizes, correlation structures of covariates, and error processes. The simulations were based on
1000 replications and the bootstrap inferences were drawn from 500 bootstrap samples, which enable us to obtain stable
numerical results.
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Table 4.1
The means (Mean) and standard deviations (SD) of 1000 estimates for (θ01, θ02) = (0.8, −0.5).

M1 θ1h θ̄1h θ̆1h θ emp
1h

θ1h
(n, ρ) Mean SD Mean SD Mean SD Mean SD Mean SD

(100, 0.2) 0.814 0.1449 0.797 0.0799 0.802 0.0961 0.805 0.0891 0.801 0.0849
(250, 0.2) 0.806 0.0644 0.803 0.0500 0.801 0.0589 0.801 0.0527 0.800 0.0516
(500, 0.2) 0.804 0.0438 0.802 0.0349 0.801 0.0408 0.803 0.0355 0.800 0.0361
(100, 0.5) 0.825 0.1598 0.817 0.1131 0.813 0.1157 0.806 0.1169 0.807 0.1061
(250, 0.5) 0.807 0.0822 0.806 0.0632 0.803 0.0720 0.803 0.0666 0.805 0.0665
(500, 0.5) 0.803 0.0520 0.801 0.0436 0.802 0.0489 0.804 0.0373 0.799 0.0431

M1 θ2h θ̄2h θ̆2h θ emp
2h

θ2h
(n, ρ) Mean SD Mean SD Mean SD Mean SD Mean SD

(100, 0.2) −0.508 0.0884 −0.503 0.0650 −0.494 0.0757 −0.504 0.0673 −0.500 0.0612
(250, 0.2) −0.501 0.0485 −0.501 0.0374 −0.498 0.0589 −0.499 0.0412 −0.501 0.0401
(500, 0.2) −0.501 0.0349 −0.501 0.0273 −0.497 0.0321 −0.500 0.0281 −0.499 0.0266
(100, 0.5) −0.505 0.0938 −0.505 0.0703 −0.490 0.0796 −0.500 0.0739 −0.501 0.0703
(250, 0.5) −0.501 0.0556 −0.502 0.0427 −0.497 0.0507 −0.501 0.0446 −0.504 0.0443
(500, 0.5) −0.502 0.0363 −0.501 0.0283 −0.496 0.0346 −0.500 0.0309 −0.500 0.0291

M2 θ1h θ̄1h θ̆1h θ emp
1h

θ1h
(n, ρ) Mean SD Mean SD Mean SD Mean SD Mean SD

(100, 0.2) 0.813 0.1449 0.810 0.1437 0.803 0.0568 0.801 0.0589 0.799 0.0881
(250, 0.2) 0.803 0.0728 0.801 0.0945 0.803 0.0349 0.801 0.0281 0.801 0.0479
(500, 0.2) 0.802 0.0516 0.805 0.0711 0.802 0.0236 0.801 0.0188 0.799 0.0321
(100, 0.5) 0.825 0.1594 0.826 0.1922 0.804 0.0771 0.802 0.0680 0.801 0.1039
(250, 0.5) 0.803 0.0821 0.803 0.1125 0.802 0.0425 0.801 0.0373 0.802 0.0594
(500, 0.5) 0.805 0.0616 0.808 0.0845 0.802 0.0292 0.799 0.0218 0.801 0.0405

M2 θ2h θ̄2h θ̆2h θ emp
2h

θ2h
(n, ρ) Mean SD Mean SD Mean SD Mean SD Mean SD

(100, 0.2) −0.507 0.1030 −0.500 0.1133 −0.499 0.0472 −0.499 0.0414 −0.499 0.0665
(250, 0.2) −0.501 0.0553 −0.500 0.0703 −0.498 0.0278 −0.501 0.0223 −0.502 0.0378
(500, 0.2) −0.499 0.0419 −0.500 0.0488 −0.499 0.0193 −0.501 0.0143 −0.500 0.0249
(100, 0.5) −0.496 0.1100 −0.503 0.1209 −0.486 0.0531 −0.501 0.0446 −0.499 0.0692
(250, 0.5) −0.497 0.0586 −0.498 0.0757 −0.492 0.0289 −0.499 0.0245 −0.502 0.0403
(500, 0.5) −0.501 0.0417 −0.503 0.0541 −0.497 0.0198 −0.500 0.0170 −0.501 0.0271

4.1. Assessment of estimators and inference procedures

In this simulation scenario, the covariates X = (X1, X2, X3)
⊤ were generated from a trivariate normal distribution with

mean zero, standard deviation of 1, and pairwise correlations of 0.2 or 0.5. The response variable Y was generated from the
following two models:

M1. Y = Xθ0 + ε with θ0 = (1, 0.8, −0.5)⊤ and ε ∼ N(0, 0.25).

M2. Y = Xθ0 + ε with θ0 = (1, 0.8, −0.5)⊤ and ε ∼ N(0, 0.25X2
θ0

).

The uniform distribution and the empirical distribution of Y were used as the weights in (2.4) with the resulting estimators
being denoted byθh andθ emp

h , respectively.We compared the finite sample properties of our estimatorsθh andθ emp
h with the

estimator θ̆h of [7], the pseudo maximum likelihood estimator (PMLE)θh, and the pseudo least squares estimator (PLSE) θ̄h.
The inference procedures based on the asymptotic normality ofθh and the frequency distributions of its bootstrap analogues
were also studied by simulations. With the limitation of number of pages, the exchangeable random weights were only
investigated through independent and identically distributed Gamma(4, 2) random variables, which have better numerical
results than others.

Table 4.1 displays the means and the standard deviations of 1000 estimates with the sample sizes (n) of 100, 250, and
500, and the correlation coefficients (ρ) of 0.2 and 0.5. The biases of compared estimators are generally not apparent except
forθh and θ̄h under (n, ρ) = (100, 0.5) and θ̆h under (n, ρ) = (100, 0.5) and model M1. As one can expect, the standard
deviations of these estimators decrease as n increases or as ρ becomes small. We further detect in this table thatθh tends to
have a substantially large variance when n is small. The high variability inθh is mainly caused by the use of the fourth-order
kernel function. In practical applications, the second-order kernel function is often used to overcome this shortcoming. In
addition, the simulation results indicate thatθ emp

h has the smallest variance under the validity of heterogeneous error model
andθh is comparable with θ̄h in the case of a constant error process. Even if θ̄h performs satisfactorily in the homogeneous
error model, it has a relatively large variance among all estimators in the heterogeneous one. In addition, the CPU time for
the computation ofθ emp

h is much shorter than that for θ̆h although both estimators have a similar performance.
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Table 4.2
The averages of 1000 SANE, NBE, and RWE for the standard deviations ofθh , the empirical coverage probabilities of 1000 0.95 bootstrap confidence intervals,
and the average lengths of 0.95 quantile intervals (LQI) of 1000 estimates and bootstrap confidence intervals.

M1 θ01

(n, ρ) SANE NBE RWE (BNCI, BQCI) LQI (LBNCI, LBQCI)

(100, 0.2) 0.0630 0.0998 0.0908 (0.941, 0.915) 0.327 (0.356, 0.364)
(250, 0.2) 0.0417 0.0581 0.0545 (0.951, 0.937) 0.203 (0.214, 0.216)
(500, 0.2) 0.0302 0.0388 0.0369 (0.942, 0.940) 0.146 (0.145, 0.145)
(100, 0.5) 0.0764 0.1262 0.1163 (0.938, 0.922) 0.418 (0.456, 0.462)
(250, 0.5) 0.0528 0.0735 0.0686 (0.944, 0.930) 0.258 (0.269, 0.270)
(500, 0.5) 0.0380 0.0493 0.0467 (0.956, 0.945) 0.166 (0.183, 0.183)

M1 θ02

(n, ρ) SANE NBE RWE (BNCI, BQCI) LQI (LBNCI, LBQCI)

(100, 0.2) 0.0482 0.0773 0.0710 (0.954, 0.934) 0.240 (0.278, 0.275)
(250, 0.2) 0.0322 0.0443 0.0414 (0.946, 0.937) 0.164 (0.162, 0.161)
(500, 0.2) 0.0229 0.0292 0.0275 (0.942, 0.941) 0.103 (0.108, 0.107)
(100, 0.5) 0.0522 0.0836 0.0768 (0.943, 0.918) 0.274 (0.301, 0.297)
(250, 0.5) 0.0352 0.0480 0.0447 (0.945, 0.940) 0.176 (0.175, 0.174)
(500, 0.5) 0.0249 0.0322 0.0304 (0.954, 0.950) 0.114 (0.119, 0.118)

M2 θ01

(n, ρ) SANE NBE RWE (BNCI, BQCI) LQI (LBNCI, LBQCI)

(100, 0.2) 0.0520 0.1060 0.0969 (0.961, 0.948) 0.362 (0.380, 0.390)
(250, 0.2) 0.0367 0.0616 0.0550 (0.967, 0.952) 0.193 (0.216, 0.223)
(500, 0.2) 0.0251 0.0410 0.0368 (0.973, 0.964) 0.128 (0.144, 0.148)
(100, 0.5) 0.0640 0.1319 0.1217 (0.957, 0.941) 0.427 (0.477, 0.492)
(250, 0.5) 0.0435 0.0761 0.0694 (0.968, 0.949) 0.236 (0.272, 0.279)
(500, 0.5) 0.0333 0.0504 0.0456 (0.961, 0.943) 0.163 (0.179, 0.182)

M2 θ02

(n, ρ) SANE NBE RWE (BNCI, BQCI) LQI (LBNCI, LBQCI)

(100, 0.2) 0.0403 0.0831 0.0741 (0.969, 0.949) 0.258 (0.291, 0.288)
(250, 0.2) 0.0273 0.0481 0.0424 (0.964, 0.951) 0.149 (0.166, 0.165)
(500, 0.2) 0.0190 0.0316 0.0280 (0.965, 0.954) 0.102 (0.110, 0.108)
(100, 0.5) 0.0427 0.0888 0.0803 (0.973, 0.955) 0.280 (0.315, 0.310)
(250, 0.5) 0.0287 0.0513 0.0462 (0.960, 0.953) 0.164 (0.181, 0.179)
(500, 0.5) 0.0229 0.0338 0.0300 (0.958, 0.947) 0.109 (0.118, 0.117)

The sandwich-type estimate (SANE), the naive bootstrap estimate (NBE), and the random weighted bootstrap estimate
(RWE) of the standarddeviation ofθh are provided in Table 4.2. Overall, the SANEunderestimates the asymptotic variance in a
more pronounced fashion even for a sufficiently largen.We further found that the bootstrap estimator slightly overestimates
the asymptotic variance but its accuracy is significantly improved as the sample size increases. Apparently, the RWE is
closer to the asymptotic variance than the NBE. Table 4.2 also presents the empirical coverage probabilities, the average
lengths of 0.95 quantile intervals of 1000 estimates, and the average lengths of 1000 bootstrap normal approximated and
quantile confidence intervals (LBNCI, LBQCI). It is revealed that all the bootstrap confidence intervals are wider than the
true quantile intervals and approach the expected ones with adequate sample size. The empirical coverage probabilities of
normal approximated confidence intervals (BNCI) tend to be higher than the nominal level whereas the bootstrap quantile
intervals (BQI) are slightly smaller than the nominal one. In general, these constructed confidence intervals have fairly
accurate coverage probabilities and provide greater precision as the sample size increases.

4.2. Assessment of model checking and adaptive lasso

The performances of testing procedures were studied through models M2 and

M3. Y = X1 + 0.8X2
2 − 0.5(1 + |X3|)

−1
+ ε with ε ∼ N(0, 0.25X2

θ0
).

Table 4.3 summarizes the estimated sizes and powers for the hypothesis of model correctness and the rejection proportions
of the single-indexing cross-validation method. Under the validity of model M2, the simulation results indicate that the
estimated sizes are all smaller than the nominal size at 0.05. The power performance under model M3 is fairly good and the
high power is generally associated with the large sample size. From the simulation experiments, the measure SCVn tends to
have high rejection rates for model M3 and, except for (n, ρ) = (250, 0.2), to some extent higher ones for model M2.

We further assessed the multi-stage adaptive Lasso algorithm through models M1–M2 with X = (X1, X2, X3, X4, X5,
X6, X7)

⊤ and θ0 = (1, 0.8, −0.5, 0, 0, 0, 0)⊤. Since the average numbers of selecting incorrect zero coefficients are zero in
all approaches, we only displayed those of correct zero coefficients. The mean squared error E[(θest − θ0)

⊤ΣX (θest − θ0)]
of any estimator θest was utilized to evaluate the predictive accuracy, where ΣX is the variance–covariance matrix of X .
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Table 4.3
The estimated sizes and powers, and the rejection proportions (RP) based on 1000 (SCVn) values.

(n, ρ) M2 M3
α RP β RP

(100, 0.2) 0.001 0.063 0.903 0.952
(250, 0.2) 0.000 0.050 0.984 0.994
(100, 0.5) 0.001 0.060 0.936 0.991
(250, 0.5) 0.000 0.066 1.000 1.000

Table 4.4
The proportions of variable selection over 1000 runs, the average number of correct zeros (CORR), and the averages of 1000 mean squared errors (MSE).

M1
(n, ρ) Stage X2 X3 X4 X5 X6 X7 CORR(4) MSE

(100, 0.2) PLISE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0302
1st 1.000 1.000 0.167 0.179 0.184 0.174 3.296 0.0183
2nd 1.000 1.000 0.093 0.096 0.010 0.098 3.613 0.0173
3rd 1.000 1.000 0.083 0.086 0.095 0.088 3.648 0.0171

(250, 0.2) PILSE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0092
1st 1.000 1.000 0.083 0.101 0.079 0.086 3.641 0.0057
2nd 1.000 1.000 0.057 0.062 0.049 0.053 3.779 0.0055

(100, 0.5) PLISE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0328
1st 1.000 1.000 0.147 0.155 0.136 0.143 3.419 0.0208
2nd 1.000 1.000 0.097 0.097 0.088 0.082 3.636 0.0198
3rd 1.000 1.000 0.091 0.092 0.083 0.080 3.654 0.0194

(250, 0.5) PILSE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0108
1st 1.000 1.000 0.083 0.100 0.084 0.074 3.659 0.0070
2nd 1.000 1.000 0.053 0.071 0.059 0.047 3.770 0.0067

M2
(n, ρ) Stage X2 X3 X4 X5 X6 X7 CORR(4) MSE

(100, 0.2) PLISE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0284
1st 1.000 1.000 0.192 0.210 0.175 0.192 3.231 0.0203
2nd 1.000 1.000 0.080 0.090 0.076 0.084 3.670 0.0171
3rd 1.000 1.000 0.075 0.082 0.073 0.078 3.692 0.0166

(250, 0.2) PILSE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0093
1st 1.000 1.000 0.130 0.142 0.134 0.138 3.456 0.0066
2nd 1.000 1.000 0.062 0.070 0.064 0.073 3.731 0.0060

(100, 0.5) PLISE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0321
1st 1.000 1.000 0.152 0.172 0.165 0.165 3.346 0.0229
2nd 1.000 1.000 0.073 0.085 0.081 0.083 3.678 0.0203
3rd 1.000 1.000 0.062 0.079 0.077 0.078 3.704 0.0198

(250, 0.5) PLISE 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.0104
1st 1.000 1.000 0.132 0.115 0.121 0.115 3.517 0.0068
2nd 1.000 1.000 0.064 0.064 0.066 0.053 3.753 0.0064

Table 4.4 gives the average numbers of correct zeros, the mean squared errors of estimators, and the proportions of variable
selection. For the sample size of 100, the second-stage adaptive Lasso is found to have more accurate magnitudes of zero
coefficients than the first-stage one while no significant improvement is detected in the third-stage one. To sum up, the
performance of the PLISE is theworst in selecting important covariates. Again, the covariateswith zero coefficients are rarely
selected in our multi-stage adaptive Lasso estimation procedure. Interestingly, the influences of correlation coefficient and
error structure are not apparent in the second-stage and third-stage ones. All of the adaptive Lasso estimation procedures
become undifferentiated to each other as the sample size increases. In addition, an estimator obtained from the multi-stage
adaptive Lasso has a relatively small mean squared error.

5. Empirical examples

The PLISE and the corresponding inference procedures are applied to the Boston house-price data. The multi-stage
adaptive Lasso procedure is further adopted to identify significant meteorological variables on ozone concentration in the
New York metropolitan area. Moreover, all the considered variables are standardized to have a mean of zero and variance
of one.

5.1. Application to a study of house price

The first analyzed data were collected by the U.S. Census Service in the area of Boston. A total of 506 observations on
14 attributes are contained in this data set. Measurements of interest include median value of owner-occupied homes in
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Table 5.1
The PPLISE, the bootstrap standard errors, and the 0.95 bootstrap confidence intervals.

Variable PPLISE RWE BNCI BQCI

temp −1.401 0.1778 (−1.7496, −1.0525) (−1.7453, −1.0689)
wind2 −0.497 0.0707 (−0.6360, −0.3588) (−0.6218, −0.3859)
solar2 0.528 0.1227 (0.2871, 0.7680) (0.3252, 0.8155)
wind ∗ temp −1.020 0.0910 (−1.1988, −0.8420) (−1.1234, −0.8614)
temp ∗ solar −0.356 0.0803 (−0.5136, −0.1987) (−0.5060, −0.2067)

$1,000’s (medv), logarithm of percentage of lower status of the population (lstat), average number of rooms per dwelling
(rm), logarithm of full-value property-tax rate per $10,000 (tax), pupil teacher ratio by town (ptrat), andweighted distances
to five Boston employment centers (dis).

For the index coefficients of the SI: lstat + θ02rm + θ03tax + θ04ptrat + θ05dis, the PLISE (−0.715, 0.470, 0.350, 0.201)
is obtained with the cross-validation bandwidth hcv = 1.0765 being chosen. The corresponding bootstrap standard
errors are further computed to be (0.2116, 0.1194, 0.0645, 0.0420). Here, the PMLE(−0.843, 0.615, 0.433, 0.144) and the
PLSE(−0.302, 0.217, 0.270, 0.302) are also found to have very similar explanations of themeaning of predictors. Moreover,
the 0.95 normal-type and quantile-type bootstrap confidence intervals are constructed to be (−1.1302, −0.3007) and
(−1.3029, −0.3170) for rm, (0.2360, 0.7040) and (0.2363, 0.6862) for tax, (0.2240, 0.4766) and (0.2191, 0.4723) for
ptrat , and (0.1189, 0.2834) and (0.1290, 0.2906) for dis. These variables are detected to be significantly associated with
medv. It concurs with the simulation finding that the constructed confidence intervals were fairly close when the sample
size is large. As evidenced from SCVn(= 1.987) < TSSn(= 2.108) and the test statistic Fn = 0.941 with the corresponding
bootstrap p-value of 0.022, the fitted SI model might be too simple. A more thorough investigation is needed to spot the
relationship of the covariates on the conditional distribution ofmedv.

5.2. Application to a study of air quality

The second data contain the measurements of daily ozone concentration (ozone), wind speed (wind), daily maximum
temperature (temp), and solar radiation level (solar) on 111 successive days at meteorological stations from May to
September 1973 in New York metropolitan area. The variables wind, temp, solar,wind2, temp2, solar2,wind ∗ temp,wind ∗

solar , and temp ∗ solar were included in the initial model fitting with the first one being the baseline covariate. Our primary
interest is to detect significant meteorological factors on ozone.

We obtain the PLISE (−1.417, −0.211, −0.482, 0.087, 0.560, −0.984, 0.077, −0.471) with the cross-validation band-
width hcv = 0.7517 being chosen. It is found that the PLISE is more close to the PMLE (−1.351, −0.162, −0.582, −0.033,
0.441, −0.871, −0.032, −0.381) than the PLSE (−1.840, 0.073, −0.283, 0.324, 0.393, −0.947, 0.290, −0.632). In this
data analysis, the multiple-stage adaptive Lasso estimation is also implemented and the predictors (solar, temp2,wind ∗

solar)⊤ are identified to have zero coefficients. We note that the coefficients with zero estimates from the first-stage are
the same as those from the second-stage. The estimates of coefficients, the bootstrap standard errors, and the bootstrap
confidence intervals are all presented in Table 5.1. Moreover, we apply the conditional distribution model with the SI:
wind+θ02temp+θ03wind2+θ04solar2+θ05wind∗temp+θ06temp∗solar and test the adequacy of the fittedmodel. The value
of the test statistic Fn is computed to be 0.995 with the corresponding bootstrap p-value of 0.656 and SCVn = TSSn = 8.237.
These results indicate that no significant evidence can be identified to reject the considered model.

6. Concluding remarks and further extensions

This article presents an appealing estimation procedure, which outperforms the existing ones, for index coefficients.
Compared with the PMLE, an important advantage of the PLISE is that it only requires a lower-order kernel in a one-
dimensional bandwidth space. The modified cross-validation scores and residual process are also provided for bandwidth
selection and model checking. Due to the poor approximation of the sandwich-type estimator, we employ a random
weighted bootstrap estimator to estimate the asymptotic variance of the PLISE. To further improve estimation and variable
selection in sparse high-dimensional models, the L1-penalty with randomweights is adopted into the PLISE criterion. When
the number of covariates increases exponentially with the sample size, our PPLISE still enjoys the oracle property under the
partial orthogonality of [10].

In some applications, the predictive abilities of covariates might depend on the support values of a response variable. It
is more realistic to consider the following varying-index model:

FY (y|x) = G(y, xθ0(y)), (6.1)

where θ0(y) is a vector of index coefficient functions of y. This modeling approach is especially useful to handle an ordinal
response variable and for quantile forecasting. Reasonably, the proposed PSIS in (2.4) and PPSIS in (3.2) can be modified as

SSh(θ(y)) =
1
n

n
i=1

(Ni(y) −Gh(y, Xiθ(y)))
2 and PSShλ

(θ(y)) = SSh(θ(y)) + λ

d
k=2

|θk(y)|

|θkh(y)| . (6.2)
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In survival analysis, the response measurement represents the time to a specific event. The considered model is noted to
include more acceptable proportional hazards and accelerated failure time models. A major challenge in dealing with this
issue is that the failure times of some individuals might not be available due to censoring. Our results should be served as a
base in the development of related inferences.
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Appendix

Proof of Theorem 1. By Assumptions (A1) and (A3), we can derive from (2.6) that

sup
Y×Xθ

|Gh(y, xθ ) − G(y, xθ0)|

≤
1

inf
Xθ

f (xθ )
sup

Y×Xθ

|N1h(y, xθ ) − f (xθ )M10(y, xθ )| +

sup
Y×Xθ

|N1h(y, xθ )|

inf
Xθ

N∗

0h(y, xθ )
sup
Xθ

|N0h(y, xθ ) − f (xθ )|

= op


ln n
nh


+ O(h2) = op(1). (A.1)

where N∗

0h(y, xθ ) lies between f (xθ ) and N0h(y, xθ ) for all (y, xθ ). It follows immediately from (A.1) that

sup
θ

SSh(θ) −


Y

E[(N(y) − M10(y, Xθ ))
2
]dW (y)

 = op(1). (A.2)

Moreover, θ0 can be shown to be the unique minimizer of


Y
E[(N(y) − M10(y, Xθ ))

2
]dW (y) through the inequality

Y
E[(N(y) − M10(y, Xθ ))

2
]dW (y) ≥


Y
E[ε2(y; θ0)]dW (y). With (A.2), the consistency of θ is ensured by applying

Theorem 5.1 of [11].
Along the same lines as the proof in (A.1), one has

sup
Y×X

|∂θ
Gh(y, xθ0) − H1(y, xθ0)| = op


ln n
nh3


+ O(h2). (A.3)

The score function
√
nSh(θ0) =

√
n∂θSSh(θ0) can be further decomposed as

√
nSh(θ0) =

1
ℓ1=0

1
ℓ2=0

√
nSℓ1ℓ2(θ0), (A.4)

where Sℓ1ℓ2(θ0) = −(2/n)
n

i=1


Y

ε
1−ℓ1
ih (y; θ0)H

1−ℓ2
1 (y, Xiθ0)(G(y, Xiθ0)−

Gh(y, Xiθ0))
ℓ1(∂θ

Gh(y, Xiθ0)−H1(y, Xiθ0))
ℓ2dWi(y).

It is implied from (A.1) and (A.3) that
√
nS11(θ0) = op(1). (A.5)

Let A1mi = −
M2−m

01 (y,Xiθ0 )∂2−m
xθ G(y,Xiθ0 )

f (Xiθ0 )
, A2mi =

εi(y;θ0)G2−m(y,Xiθ0 )

f (Xiθ0 )
,m = 1, 2, A2mi =

1
f 2(Xiθ0 )

(εi(y; θ0)∂xθ (f (Xiθ0)M11(y, Xiθ0))G
4−m

(y, Xiθ0)+ (m− 4)f (Xiθ0)M11(y, Xiθ0)∂xθ G(y, Xiθ0)),m = 3, 4, φkmij = N2−m
j (y)Kh(Xjθ0 − Xiθ0)−G2−m(y, Xiθ0)f (Xiθ0), k,m =

1, 2, and φ2mij = N4−m
j (y)∂θKh(Xjθ0 − Xiθ0) − G2−m(y, Xiθ0)∂xθ (f (Xiθ0)M01(y, Xiθ0)),m = 3, 4.

The terms
√
nSℓ1ℓ2(θ0), ℓ1 ≠ ℓ2, in (A.4) can be rewritten as

√
nSℓ1ℓ2(θ0) =

−2
√
n

2k
m=1


i≠j


Y

AkmiφkmijdWi(y) + op(1), k = ℓ1 + 2ℓ2. (A.6)
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A little tedious but straightforward algebra leads to E[Akmi|xiθ0 ] = 0 and E[φkmij|xi, yi] = O(h2), k = 1, 2, which imply that

P

sup

Y

√
n|Sℓ1ℓ2(θ0)| > ε


≤

1
ε2n(n − 1)2

2k
m=1

sup
Y


i≠j

E[A2
kmiφ

2
kmij] +


l≠i,j

E[A2
kmiφkmijφkmil]



= O

1
n


+ O(h4), k = ℓ1 + 2ℓ2 ∀ε > 0. (A.7)

Combining with (A.5)–(A.7), one has
√
nSh(θ0) =

√
nS00(θ0) + op(1) and the central limit theorem further enables us to

have
√
nSh(θ0)

d
−→ N(0, V1θ0). (A.8)

Similar to the arguments for (A.1) and (A.3), there exist functionsH2(y, xθ ) andH2(θ) = E


Y
(H⊗2

1 (y, Xθ )−ε(y; θ)H2(y, Xθ ))

dWni(y)

satisfying

sup
Y×Xθ

|∂2
θ
Gh(y, xθ ) − H2(y, xθ )| = op


ln n
nh5


+ O(h2) (A.9)

and

sup
θ

|Ih(θ) − H2(θ)| = op


ln n
nh5


+ O(h2). (A.10)

Using (A.3), (A.9), and the law of large numbers, a direct calculation yields that

Ih(θ0) = V2θ0 −
2
n

n
i=1


Y

εih(y; θ0)H2(y, Xiθ0)dWni(y) + op(1) = V2θ0 + op(1). (A.11)

Since there exists an open set Θ0 ⊂ Θ with supθ∈Θ0
∥H2(θ) − H2(θ0)∥ < ε/3 ∀ε > 0, we can derive from (A.10) that

P

sup
θ∈Θ0

∥Ih(θ) − Ih(θ0)∥ > ε


≤ P


sup
θ∈Θ0

∥Ih(θ) − H2(θ)∥ >
ε

3


+ P


∥H2(θ0) − Ih(θ0)∥ >

ε

3


(A.12)

and, hence,

P

sup
θ∈Θ0

∥Ih(θ) − Ih(θ0)∥ > ε


→ 0 as n → ∞. (A.13)

Further, the Taylor expansion to Sh(θh) around θ0 to the second order gives

Sh(θ0) + Ih(θ∗)(θh − θ0) = 0 (A.14)

with θ∗ lying on the line segment betweenθh and θ0. Together with (A.8), (A.13), and the consistency ofθh, the limiting
distribution of

√
n(θh − θ0) can be obtained by applying the Slutsky’s theorem. �

Proof of Theorem 2. Let Srwh (θ) and Irwh (θ) denote the first and second derivatives of SSrwh (θ). Paralleling the proof of (2.6),
we can show that

sup
Y×Xθ

∂ℓ2
θ N rw

ℓ1h(y, xθ ) − ∂
ℓ2
θ Nℓ1h(y, xθ )

 = op∗


1

nh2ℓ2+1


. (A.15)

By the Taylor expansion and (A.15), one has

sup
θ

|SSrwh (θ) − SSh(θ)| ≤
1
n

n
i=1


ξi

µ
− 1


sup

θ


Y

e2ih(y; θ)dWi(y)
+ op∗(1) = op∗(1). (A.16)

The same argument for the convergence ofθh to θ0 implies that (θ rw
h −θh) = op∗(1). From (A.15) and Sh(θh) = 0, the score

function Srwh (θh) can be expressed as

Srwh (θ) = Srw00 (θ) + Srw01 (θ) + Srw10 (θ) + op∗


1

√
n


(A.17)
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with ISrwℓ1ℓ2(
θh) = −(2/n)

n
i=1(ξi/µ)


Y
e1−ℓ1
ih (y; θ)(∂θ

Gh(y, Xiθh))1−ℓ2(∂θ
Grw

h (y, Xiθh) − ∂θ
Gh(y, Xiθh))ℓ1(Gh(y, Xiθh) −Grw

h (y, Xiθh))ℓ2dWni(y). We further conclude from E∗
[Srw00 (θh)] = 0, E∗

[(Srw00 (θh))2] p
−→ ρ−2V2θ0 , and the central limit theorem

for independent random vectors [16] that

P∗


ρV−1/2

2

√
nSrw00 (θh) ≤ w


p
−→

d
ℓ=2

Φ(wℓ). (A.18)

It follows from (2.6), (A.15), and the Taylor expansions ofGrw
h (y, xθ ) and ∂θ

Grw
h (y, xθ ) that

√
nSrwℓ1ℓ2(

θ) =
2

√
n3

2k
m=1

n
i=1


j≠i

ξi

µ


ξj

µ
− 1


Y

AkmiϕkmijdWi(y) + op∗(1), (A.19)

k = ℓ1 + 2ℓ2, ℓ1 ≠ ℓ2, where ϕkmij = N2−m
j (y)Kh(Xjθ0 − Xiθ0) for k,m = 1, 2, and ϕ2mij = N4−m

j (y)∂θKh(Xjθ0 − Xiθ0) for
m = 3, 4. The Chebyshev’s inequality and E∗

[(ξi/µ)(ξj/µ − 1)Akmiϕkmij] = 0 enable us to have the following probability
inequality:

P∗(
√
n|Srwℓ1ℓ2(

θh)| > ε) ≤
4

ε2n3

2k
m=1


j≠i

E


ξ 2
i

µ2


ξi

µ
− 1

2

sup

Y
|Akmiϕkmij|

2

+
1
ρ2


j≠i,l


Y

AkmiAkmlϕkmijϕkmljdWni(y)


, k = ℓ1 + 2ℓ2, (A.20)

which is Op(1/nh4) + Op(1/n3h8). Together with (A.17) and (A.18), one has

√
nSrwh (θh) =

√
nSrw00 (θh) + op∗(1). (A.21)

Similarly, we can derive that

Irwh (θ) =
−2
n

n
i=1

ξi

µ


Y

eih(y;θh)∂θ
Gh(y, Xiθh)dWi(y)

⊗2

+ op∗(1) = V2θ0 + op∗(1). (A.22)

From (A.18), (A.21)–(A.22), and Irwh (θ)(θ rw
h −θh) ≈ −ISrwh (θh), it yields that

P∗


ρV−1

2θ0
V−1/2
1θ0

√
n(θ rw

h −θh) ≤ w


p
−→

d
ℓ=2

Φ(wℓ). (A.23)

Thus, Theorem 2 is a direct consequence of Theorem 1 and (A.23). �

Proof of Theorem 3. From Theorem 1 and (A.1), we have

sup
Y×X

|Gh(y, xθh) − G(y, xθ1)| = ∥θh − θ1∥ sup
Y×X

∥H1(y, xθ1)∥ + sup
Y×X

|Gh(y, xθ1) − G(y, xθ1)| + op


1

√
n



= op


ln n
nh


+ O(h2). (A.24)

Similar to the argument for (2.6), one can further derive from (A.1) that

sup
Y×X∗

θ

|νhe(y, x
∗

θ ) − ν(y, x∗

θ )| = op


ln n
nhe


+ O(h2

e ) + op


ln n
nh


+ O(h2). (A.25)

By using (A.24) and (A.25) and the argument of (A.7), it follows that

1
n

n
i=1

(eih(y;θh) −νhe(y, X
∗

iθ2))
2

=
1
n

n
i=1

(εi(y; θ1) − ν(y, X∗

iθ2))
2
+ op


1

√
n


(A.26)
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and

1
n

n
i=1

(eih(y;θh) − eh(y;θh))2 =
1
n

n
i=1

[(εi(y; θ1) − ν(y, X∗

iθ2))
2
+ ν(y, X∗

iθ2)
2
] −


1
n

n
i=1

εi(y; θ1)

2

+
2
n

n
i=1

[(εi(y; θ1) − ν(y, X∗

iθ2))ν(y, X∗

iθ2) + ν(y, X∗

iθ2)(G(y, Xiθ1) −Gh(y, Xiθ1))] + op


1

√
n


. (A.27)

Since ν(y, x∗

θ2
) = 0 for all (y, x, θ2) and E[ε2(y; θ1)] = E[Var(ε2(y; θ1)|Xθ1)] under H0, the functional central limit theorem

further implies that

sup
Y

1n
n

i=1

εi(y; θ1)

 = Op


1

√
n


and

1
n

n
i=1

ε2
i (y; θ1) = E[Var(ε(y; θ1)|Xθ1)] + Rn(y), (A.28)

where supY |Rn(y)| = Op(n−1/2). Together with (A.26) and (A.27), both of RSSn(θ̆he) and TSSn can also be written as
Y
E[Var(ε(y; θ1)|Xθ1)]dW (y) +


Y
Rn(y)dW (y) + op(n−1/2) and, hence, Fn = 1 + op(n−1/2). By the fact that ν(y, x∗

θ2
) is

a non-zero function under HA, it yields that

sup
YHA

1n
n

i=1

ν(y, X∗

iθ2)
2
−


n−1

n
i=1

εi(y; θ1)

2

− Var(E[ε(y; θ1)|Xθ2 ])

 = Op


1

√
n


, (A.29)

sup
YHA

2n
n

i=1

(εi(y; θ1) − ν(y, X∗

iθ2))ν(y, X∗

iθ2)

 = Op


1

√
n


, (A.30)

and sup
YHA

2n
n

i=1

ν(y, X∗

iθ2)(G(y, Xiθ1) −Gh(y, Xiθ1))

 = Op

n−2ς1


. (A.31)

From (A.26), (A.27) and (A.29)–(A.31), the asymptotic representation of Fn under HA is then obtained. �

Proof of Theorem 4. Applying the Taylor expansion on PSShλ
(θ) with θ = θ0 + u/

√
n, we have

n(PSShλ
(θ) − PSShλ

(θ0)) =
√
nu⊤Sh(θ0) +

1
2
u⊤Ih


θ0 +

u∗

√
n


u − nλ

d
ℓ=2

θ0ℓ +
uℓ√
n

− |θ0ℓ|

|θℓh|
, (A.32)

where u∗
= (u∗

2, . . . , u
∗

d)
⊤ lies on the line segment between u = (u2, . . . , ud)

⊤ and the origin. From Theorem 1 and
Assumption (A5),

√
nλ/|θℓh|

p
−→ 0 is ascertained for ℓ ∈ A0. Coupled with

√
n
θ0ℓ + uℓ/

√
n
− |θ0ℓ|

 p
−→ uℓsgn(θ0ℓ), it

is further ensured that

nλ

θ0ℓ +
uℓ√
n

− |θ0ℓ|

|θℓh|

p
−→ 0 for ℓ ∈ A0. (A.33)

For ℓ ∉ A0 and uℓ = 0, one has

nλ

θ0ℓ +
uℓ√
n

− |θ0ℓ|

|θℓh|

p
−→ 0. (A.34)

As for ℓ ∉ A0 and uℓ ≠ 0, the summand on the right-hand side of (A.32) is automatically reduced to
√
nλ|uℓ|/|θℓh|. Using√

nθℓh = Op(1) and Assumption (A5), we also derive that

nλ

θ0ℓ +
uℓ√
n

− |θ0ℓ|

|θℓh|

p
−→ ∞. (A.35)

Thus, the left-hand side of (A.32) can be shown from (A.33)–(A.35) to converge in distribution to
∞ uℓ ≠ 0 for some ℓ ∉ A0

(V 1/2
2θ0

Zd−1)
⊤u +

1
2
u⊤V1θ0u uℓ = 0 for all ℓ ∉ A0,

(A.36)
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where Zd−1 is a randomvector of (d−1) i.i.d. standard normal randomvariables. Following from the epi-convergence results
of [4], one has

(u⊤

A0
,u⊤

Ac
0
) = argmin

u
n

PSShλ


θ0 +

u
√
n


− PSShλ

(θ0)


d
−→ c(−Z⊤

dim(A0)
V 1/2
2A0

V−1
1A0

, 0⊤)⊤ (A.37)

and, hence, the limiting distribution ofuA0 through the equalityuA0 =
√
n(θ(p)A0 − θA0).

Further, the asymptotic normality ofθ(p)ℓ for ℓ ∈ A0 and some more algebra lead to

P

ℓ ∈ A ≥ P


|θ(p)ℓ − θ0ℓ| ≤ |θ0ℓ|/2


→ 1. (A.38)

The Karush–Kuhn–Tucker conditions also ascertain that

P(ℓ ∈ A) = P(
√
nSℓh(θ(p)) =

√
nλsgn(θℓ(p))/|θℓh|) for ℓ ∉ A0. (A.39)

By (A.39),
√
nλsgn(θℓ(p))/|θℓh|

p
−→ sgn(θ0ℓ)∞ for ℓ ∈ A, and the asymptotic normality of

√
nSℓh(θ(p)), one can similarly

derive that

P(ℓ ∈ A) → 0 for ℓ ∉ A0. (A.40)

Finally, combining with (A.38)–(A.40), the variable selection consistency is established. �
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