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Abstract

This paper discusses the descriptional complexity of scattered context grammars with respect
to the number of nonterminals. It proves that the three-nonterminal scattered context grammars
characterize the family of recursively enumerable languages. c© 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

Recently, the formal language theory has intensively investigated the descriptional
complexity of grammars with respect to the number of nonterminals (see [6, 7]). This
investigation has achieved several characterizations of the family of recursively enumer-
able languages by various grammars with a reduced number of nonterminals. Specif-
ically, this family was characterized by four-nonterminal scattered context grammars
(see [3]). The present paper improves this result by demonstrating that even the three-
nonterminal scattered context grammars characterize the family of recursively enumer-
able languages.

2. De�nitions

We assume that the reader is familiar with the language theory (see [1, 5]).
Let V be an alphabet. The cardinality of V is denoted by card(V ). V∗ represents

the free monoid generated by V under the operation of concatenation. The unit of V∗
is denoted by �. We set V+ =V∗ − {�}; algebraically, V+ is thus the free semigroup
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generated by V under the operation of concatenation. For w∈V∗; |w| denotes the
length of w. For a∈V and w∈V∗, occur(a; w) denotes the number of occurrences of
a in w.
A scattered context grammar is a quadruple, G=(V; P; S; T ), where V is an alpha-

bet, T ⊆V; S ∈V−T , and P is a �nite set of productions of the form (A1; A2; : : : ; An)→
(x1; x2; : : : ; xn), where n is a positive integer, and Ai ∈V −T; xi ∈V∗, for i=1; 2; : : : ; n.
Let p∈P be a production of the above form; then, left(p) and right(p) denote
A1A2 : : : An and x1x2 : : : xn, respectively. If p∈P is of the form (A1; A2; : : : ; An)→ (x1; x2;
: : : ; xn); u= u1A1u2A2 : : : unAnun+1; v= u1x1u2x2 : : : unxnun+1, where ui ∈V∗, for i=1; 2;
: : : ; n, then u directly derives v according to p, denoted by u⇒ v[p] or, simply, u⇒ v.
In a standard manner, we extend ⇒ to ⇒n, where n¿0, and based on ⇒n, we de-
�ne ⇒∗. Let S⇒∗ x with x∈T ∗, then S⇒∗ x is called a successful derivation. The
language of G; L(G), is de�ned as L(G)= {x: S⇒∗ x with x∈T ∗}.
A queue grammar (see [2]) is a sixtuple, Q=(V; T;W; F; R; g), where V and W

are two disjoint alphabets, T ⊆V , F ⊆W; R∈ (V − T )(W − F), and g⊆ (V ×(W −
F))×(V∗ ×W ) is a �nite relation such that for every a∈V , there exists an ele-
ment (a; b; x; c)∈ g. If there exist u; v∈V∗W , a∈V , r; z ∈V∗, and b; c∈W such that
(a; b; z; c)∈ g; u= arb, and v= rzc, then u directly derives v according to (a; b; z; c),
denoted by u⇒ v [(a; b; z; c)] or, simply, u⇒ v. In the standard manner, we extend
⇒ to ⇒n and ⇒∗ Let R⇒∗ xq in Q with x∈T ∗ and q∈F , then R⇒∗ xq is called a
successful derivation in Q. The language of Q, L(Q), is de�ned as L(Q)= {x: S⇒∗ xq
with x∈T ∗ and q∈F}.
Let n be a positive integer. Set SCn= {L: L=L(G), where G=(V; P; S; T ) is a

scattered context grammar such that card(V − T )6n}. Let RE denote the family of
recursively enumerable language.

3. Results

This section demonstrates that RE=SC3.

Lemma 1. For any queue grammar; Q′; there exists an equivalent queue grammar;
Q=(V; T;W; F; R; g), such that Q generates every z ∈L(Q) by the derivation of the
form R⇒i u⇒ v⇒k w⇒ z; where i; k¿1; and the derivation satis�es the following
properties 1–4:

1. each derivation step in R⇒i u has the form a′y′b′ ⇒ a′y′x′b′ [(a′; b′; x′; c′)]; where
a′ ∈V − T; b′; c′ ∈Q − F; x′; y′∈ (V − T )∗;

2. in greater detail; the derivation step u⇒ v has this form a′′y′′b′′ ⇒ a′′y′′h′′x′′b′′

[(a′′; b′′; h′′x′′; c′′)]; where a′ ∈V − T , b′; c′ ∈Q − F; h′′; y′′ ∈ (V − T )∗; x′′ ∈T ∗;
3. each derivation step in v⇒k w has the form a′′′y′′′h′′′b′′′ ⇒ a′′′y′′′h′′′x′′′b′′′ [(a′′′;
b′′′; x′′′; c′′′)]; where a′′′ ∈V − T; b′′′; c′′′ ∈Q − F; y′′′ ∈ (V − T )∗; x′′′; h′′′ ∈T ∗;
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4. in greater detail; the derivation step w⇒ z has the form a′′′′y′′′′b′′′′ ⇒y′′′′x′′′′c′′′′

[(a′′′′; b′′′′; x′′′′; c′′′′)]; where a′′′′ ∈V−T; b′′′′ ∈Q−F; y′′′′; x′′′′ ∈T ∗; w= a′′′′y′′′′b′′′′;
z=y′′′′x′′′′.

Proof. Let Q′=(V ′; T ′; W ′; F ′; R′; g′) be any queue grammar. Introduce these four
pairwise disjoint alphabets U; X; Y , and {@; $; #;⊥} so that card(U )= card(V ′) and
card(X )= card(Y )= card(W ′). Introduce any bijection, �, from (V ′ ∪W ′) onto
(U ∪X ). Furthermore, introduce another bijection, �, from W ′ to Y . Set V =U ∪T ′ ∪
{@; #}, T =T ′, W =X ∪Y ∪{$;⊥}, F = {⊥}, and R=@$. De�ne the queue grammar
Q=(V; T;W; F; R; g) with g constructed in the following �ve-step way:

I. if R= ab with a∈V − T and b∈W − F , then add (@; $; a; b) to g;
II. for every (a; b; x; c)∈ g with a∈V; x∈V∗, and b; c∈W , add (�(a); �(b); �(x); �(c))
to g;

III. for every (a; b; xy; c)∈ g with a∈V , x∈V∗, y∈T ∗, and b; c∈W , add (�(a); �(b);
�(x) #y, �(c)) to g;

IV. for every (a; b; y; c)∈ g with a∈V; y∈T ∗, and b; c∈W , add (�(a); �(b); y; �(c))
to g;

V. for every c∈F , add (#, �(b), �, ⊥) to g.
A formal proof that Q satis�es the properties required by lemma is left to the reader.

Lemma 2. Let L be a recursively enumerable language. Then; there exists a three-
nonterminal scattered context grammar; G=(T ∪{0; 1; 2}; P; 2; T ), satisfying L=
L(G).

Proof. Let L be a recursively enumerable language. By Theorem 2.1 in [2], there exists
a queue grammar, Q=(V; T;W; F; R; g), such that L(Q)=L. Without any loss of gener-
ality, assume that Q satis�es the properties described in Lemma 1. The next construction
produces a three-nonterminal scattered context grammar, G, satisfying L(G)=L(Q).
Set n= card(V ∪W )+2. Introduce a bijection, �, from (V ∪W ) to ({1}+{0}{1}+ ∩

{0; 1}n). In a standard manner extend the domain of � to (V ∪W )∗. Without any loss
of generality assume that (V ∪W )∩{0; 1; 2}= ∅. De�ne the scattered context grammar,
G=(T ∪{0; 1; 2}, P; 2; T ), where P is constructed in the following six-step way:
I. if R= ab with a∈V −T and b∈W −F , then add (2)→ (01n−1�(b)22�(a)20) to
P;

II. for every (a; b; x; c)∈ g with a∈V − T , x∈ (V − T )∗, and b; c∈W − F , add
(d1; : : : ; dn; b1; : : : ; bn; 2; a1; : : : ; an−1; an; 2; 2)→ (d1; : : : ; dn; c1; : : : ; cn; e1; e2; : : : ; en;
2; 2; �(x)2) to P, where d1 : : : dn=01n−1 (that is, d1 = 0 and dh=1 for h=2; : : : ; n);
b1 : : : bn= �(b); a1 : : : an= �(a); c1 : : : cn= �(c); ei= � for i=1; : : : ; n;

III. for every (a; b; xy; c)∈ g with a∈V −T; x∈ (V −T )∗; y∈T∗, and b; c∈W −F ,
add (d1; : : : ; dn; b1; : : : ; bn; 2; a1; : : : ; an−1; an; 2; 2)→(f1; : : : ; fn; c1; : : : ; cn; e1; e2; : : : ;
en; 2; 2; �(x)y2) to P, where d1 : : : dn=01n−1, (that is, d1 = 0 and dh=1 for
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h=2; : : : ; n); f1 : : : fn=1n−10 (that is, fn=0 and fh=1 for h=1; : : : ; n − 1);
b1 : : : bn= �(b); a1 : : : an= �(a); c1 : : : cn= �(c); ei= � for i=1; : : : ; n;

IV. for every (a; b; y; c)∈ g with a∈V −T; y∈T∗, and b; c∈W −F , add (f1; : : : ; fn;
b1; : : : ; bn; 2; a1; : : : ; an−1; an; 2; 2)→(f1; : : : ; fn; c1; : : : ; cn; e1; e2; : : : ; en; 2; 2; y2) to P,
where f1 : : : fn=1n−10 (that is, fn=0 and fh=1 for h=1; : : : ; n − 1); b1 : : : bn
=�(b); a1 : : : an=�(a); c1 : : : cn= �(c); ei= � for i=1; : : : ; n;

V. for every (a; b; y; c)∈ g with a∈V − T; y∈T∗; b∈W − F , and c∈F , add (f1;
: : : ; fn; b1; : : : ; bn; 2; a1; : : : ; an−1; an; 2; 2)→ (e1; : : : ; en; en+1; : : : ; e2n; e2n+1; e2n+2; : : : ;
e3n; �; �; y) to P, where f1 : : : fn=1n−10 (that is, fn=0 and fh=1 for h=1; : : : ; n−
1); b1 : : : bn= �(b); a1 : : : an= �(a); ei= � for i=1; : : : ; 3n;

VI. add (2; 2; a; 2)→ (2; �; a2; 2) to P, where a∈{0; 1}.

To keep this proof readable omit some obvious details from the rest of this proof
whose completion is left to the reader.

Claim 1. Let 2⇒∗ x in G be a derivation in G during which G uses the produc-
tion introduced in step I i times; for some i¿1. Then, occur(2; x)= (1 + 2i) −
3j; occur(1; x)= (n− 1)k; and occur(0; x)= k + i− j; where k is a non-negative inte-
ger and j is the number of applications of a production introduced in step V during
2⇒∗ x such that j¿1 and (1 + 2i)¿3j.

Claim 2. Let 2⇒∗ x in G be a derivation in G during which G uses the production
introduced in step I two or more times. Then; x =∈T∗.

Proof 2. Let 2⇒∗ x in G be a derivation in G. If G uses the production introduced
in step I two or more times during 2⇒∗ x, then the previous claim implies that x
contains some occurrences of 0. Thus, x =∈T∗ because 0 is a nonterminal.

Claim 3. G generates every w∈L(G) as 2⇒ u [p]⇒∗ v⇒w [q]; where p is the pro-
duction introduced in I; q is a production introduced in V; during u⇒∗ v; G makes
every derivation step by a production introduced in II–IV; or VI.

Proof 3. Let w∈L(G). Then, 2⇒∗ w in G and w∈T∗. By Claim 1, as w∈T∗, G
uses the production introduced in I once. Because 2⇒∗ w begins from 2, we can ex-
press 2⇒∗ w as 2⇒ u [p]⇒∗ w, where p is the production introduced in I, and during
u⇒∗ w, G never uses the production introduced in I. Observe that every production,
r, introduced in II–IV, and VI satis�es occur(left(r); 2)=3 and occur(right(r); 2)=3.
Furthermore, notice that every production, q, introduced in V , satis�es occur(left(q); 2)
=3 and occur(right(q); 2)=0. These observations imply 2⇒ u [p]⇒∗ v⇒w [q] in G,
where p is the production introduced in I, q is a production introduced in V, during
u⇒∗ v, G makes every step by a production introduced in II–IV, or VI.
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Before describing the form of every successful derivation in G in greater detail, we
make some observations about the use of productions introduced in VI.
During any successful derivation in G, a production introduced in step VI is always

applied after using a production introduced in steps I–IV (the use of these productions is
described below). More precisely, to continue the derivation after applying a production
introduced in I–IV, G has to shift the second appearance of 2 right in the current
sentential form. G makes this shift by using productions introduced in VI to generate
a sentential form having precisely n appearances of d (d∈{0; 1}) between the �rst
appearance of 2 and the second appearance of 2. Indeed, the sentential form has to
contain exactly n appearances of d between the �rst appearance of 2 and the second
appearance of 2; otherwise, the successfulness of the derivation is contradicted by
arguments O.1 and O.2, which follow next.

O.1. If there exist fewer than n d’s between the �rst appearance of 2 and the second
appearance of 2, no rule introduced in I–V can be used, so the derivation ends. If the
last sentential form contains nonterminals and if the derivation is not successful, it is
a contradiction.
O.2. Assume that there exist more than n d’s between the �rst appearance of 2 and

the second appearance of 2. Then, after the next application of a rule introduced in
I–V, more than 3n d’s (d∈{0; 1}) appear before the �rst appearance of 2. Return to
the construction of productions in G to make observations O.2.1–O.2.3:
O.2.1. The production introduced in step I is always used only in the �rst step of a

successful derivation (see Claim 3).
O.2.2. All productions introduced in steps II–IV rewrite 3n nonterminals preceding

the �rst appearance of 2 with other 3n nonterminals.
O.2.3. Recall that a production introduced in step V is always used in the last

derivation step (see Claim 3); furthermore, observe that this production erase precisely
3n non-terminals preceding the �rst appearance of 2.

By observations O.2.1–O.2.3, the occurrence of more than 3n d’s between the �rst
and second appearance of 2 gives rise to a contradiction of the successfulness of the
derivation.
By arguments O.1 and O.2, we see that the sentential form has to contain precisely

n appearances of d between the �rst and second appearance of 2.
Except for the use of productions introduced in step VI (this use is explained above),

every successful derivation in G is made as 2⇒rhs(p1) [p1]⇒i u⇒ v [p3]⇒k w⇒ z
[p5], where i; k¿1, and the derivation satis�es the following properties A–D:

A. Each derivation step in rhs(p1)⇒i u has this form 01n−1�(b′)2�(a′)2�(y′)20⇒
01n−1�(c′)22�(y′x′)20 [p2], where p2 is a production introduced in II, (a′; b′; x′; c′)∈ g;
y′ ∈ (V − T )∗;
B. In greater detail, the derivation step u⇒ v [p3] has this form 01n−1�(b′′)2�(a′′)2�

(h′′)20⇒ 1n−10�(c′′)22�(h′′y′′)x′′20 [p3], where u=01n−1�(b′′)2�(a′′)2�(y′)20; v=
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1n−10�(c′′)22�(h′′y′′)x′′20; p3 is a production introduced in III, (a′′; b′′; y′′x′′; c′′)∈ g;
h′′; y′′ ∈ (V − T )∗; x′′ ∈T∗;
C. Each derivation step in v⇒k w has this form 1n−10�(b′′′)2�(a′′′)2�(y′′′)t′′′20⇒

1n−10�(c′)22�(y′′′)t′′′x′′′20 [p4], where p4 is a production introduced in IV, (a′′′; b′′′;
x′′′; c′′′)∈ g; y′′′ ∈ (V − T )∗; t′′′; x′′′ ∈T∗;
D. In greater detail, the derivation step w⇒ z [p5] has this form 1n−10�(b′′′′)2�(a′′′′)

2t′′′′20∈ t′′′′x′′′′[p5], where w=1n−10�(b′′′′)2�(a′′′′)2t′′′′20; z= t′′′′x′′′′; p5 is a pro-
duction introduced in V; (a′′′′; b′′′′; x′′′′; c′′′′)∈ g with c′′′′ ∈F .
Let 2⇒ rhs(p1) [p1]⇒i u⇒ v [p3]⇒k w⇒ z [p5] be any successful derivation in

G such that this derivation satis�es the above properties. Observe that at this point
R⇒i a′′y′′b′′ ⇒y′′x′′b′′′ ⇒k a′′′′t′′′′b′′′′ ⇒ z in Q, so z ∈L(Q). Consequently, L(G)⊆
L(Q).
A proof demonstrating that L(Q)⊆L(G) is left to the reader. Since L(Q)=L(G)

and G has only three nonterminals, 0, 1, and 2, Lemma 2 holds.

Theorem 3. RE=SC3

Proof. Obviously, SC3⊆RE. By Lemma 2, we also have RE⊆SC3. Thus, SC3 =RE,
and the theorem holds.

Recall that SC1⊂RE; in fact, the one-nonterminal scattered context grammars cannot
even generate some context-sensitive languages (see [4]). However, this paper proves
SC3 =RE (see Theorem 3). What is the generative power of two-nonterminal scattered
context grammars?
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