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Abstract

This paper discusses the descriptional complexity of scattered context grammars with respect
to the number of nonterminals. It proves that the three-nonterminal scattered context grammars
characterize the family of recursively enumerable languages. (© 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

Recently, the formal language theory has intensively investigated the descriptional
complexity of grammars with respect to the number of nonterminals (see [6, 7]). This
investigation has achieved several characterizations of the family of recursively enumer-
able languages by various grammars with a reduced number of nonterminals. Specif-
ically, this family was characterized by four-nonterminal scattered context grammars
(see [3]). The present paper improves this result by demonstrating that even the three-
nonterminal scattered context grammars characterize the family of recursively enumer-
able languages.

2. Definitions

We assume that the reader is familiar with the language theory (see [1, 5]).

Let V be an alphabet. The cardinality of V' is denoted by card(V). V* represents
the free monoid generated by V' under the operation of concatenation. The unit of ¥*
is denoted by &. We set ¥+ =V"* — {¢}; algebraically, V'* is thus the free semigroup
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generated by ¥ under the operation of concatenation. For w € V*, |w| denotes the
length of w. For a €V and w € V*, occur(a,w) denotes the number of occurrences of
a in w.

A scattered context grammar is a quadruple, G=(V,P,S,T), where V is an alpha-
bet, TCV, S€V—T, and P is a finite set of productions of the form (4;,4>,...,4,) —
(x1,X2,...,X,), Where n is a positive integer, and 4, €V —T, x; € V*, fori=1,2,...,n.
Let peP be a production of the above form; then, left(p) and right(p) denote
A4y ... A, and x1x; ... x,, respectively. If p € P is of the form (41, 4>,...,4,) — (x1,X2,
o Xn), U= ArnAs . U Aplins1, U= UIX1U2X) . . . UpXnlins, Where u; €V, fori=1,2,
...,n, then u directly derives v according to p, denoted by u = v[ p] or, simply, u = v.
In a standard manner, we extend = to =", where n>0, and based on =", we de-
fine =*. Let S="x with x&€ T*, then S="*x is called a successful derivation. The
language of G,L(G), is defined as L(G)={x: S="*x with x&T*}.

A queue grammar (see [2]) is a sixtuple, Q= (V,T,W,F,R,g), where V' and W
are two disjoint alphabets, TCV, FCW, Re(V —T)YW —F), and g C(V x(W —
F))x(V*x W) is a finite relation such that for every a €V, there exists an ele-
ment (a,b,x,c) € g. If there exist u,v € VW, a€V, r,z€V*, and b,c € W such that
(a,b,z,c)€g, u=arb, and v=rzc, then u directly derives v according to (a,b,z,c),
denoted by u=v [(a,b,zc)] or, simply, u=-v. In the standard manner, we extend
= to =" and =* Let R="xq in Q with x€ T* and ¢ € F, then R="xq is called a
successful derivation in Q. The language of Q, L(Q), is defined as L(Q)={x: S="*xq
with x € T* and g € F}.

Let n be a positive integer. Set SC,={L: L=L(G), where G=(V,P,S,T) is a
scattered context grammar such that card(V — T)<n}. Let RE denote the family of
recursively enumerable language.

3. Results
This section demonstrates that RE = SC;.

Lemma 1. For any queue grammar, Q', there exists an equivalent queue grammar,
O=V,T,W,F,R,g), such that Q generates every z € L(Q) by the derivation of the
form R=-"u=v=Fw=z where i,k>1, and the derivation satisfies the following
properties 1-4:

1. each derivation step in R="u has the form a'y'b’ = da'y'x'b' [(d’,b',x,c")], where
deV-Tb,eQ—F x,yelV—-T)y

2. in greater detail, the derivation step u=-v has this form a"y"b" =a" y"h"'x"b"
[(a”,b",h'x", ")), where ' €V —T, b, eQ—F, W,y'eV-T), x"eT*

3. each derivation step in v="w has the form a'"'y"' W"'b" = a"' y"" W"'x"b"" [(a"",
b///’x///’c///)]’ M}here a/// e V _ T’ b///’c/// e Q _ F’ y/// 6 (V _ T)*’ x///,h/// e T*;
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4. in greater detail, the derivation step w=-z has the form a""y""b"" = y""'x"" "
[(a//l/ bl/// x//// C////)] m}here a//// 6 V_T bl/// E Q_F y///l x//// e T* W:al///yl///b////
z= yl///x//l/.
Proof. Let O'=(V',T',W/,F',R',g’) be any queue grammar. Introduce these four
pairwise disjoint alphabets U, X,Y, and {@,$,#, L} so that card(U)=card(V'") and
card(X)=card(Y)=card(W'). Introduce any bijection, a, from (V'UW’) onto
(U UX). Furthermore, introduce another bijection, 8, from W' to Y. Set ¥ =UUT'U
AL T=T,W=XUYU{S$,L}, F={L}, and R=@$. Define the queue grammar
q g
O=V,T,W,F,R,g) with g constructed in the following five-step way:

I. if R=ab with aeV — T and be W — F, then add (@, $,a,b) to g;

II. for every (a,b,x,c)€g witha €V, x€ V*, and b,c € W, add (a(a), u(b), x(x),x(c))
to g;

III. for every (a,b,xy,c)eg withaeV, xe v, yeT*, and b,ce W, add (a(a), x(d),
a(x) #y, p(c)) to g;

IV. for every (a,b,y,c)eg with a€V, yeT*, and b,c€ W, add («(a), f(b), y, f(c))
to g,

V. for every c€F, add (#, f(b), ¢, L) to g.

A formal proof that Q satisfies the properties required by lemma is left to the reader.
O

Lemma 2. Let L be a recursively enumerable language. Then, there exists a three-
nonterminal scattered context grammar, G=(TU{0,1,2},P,2,T), satisfying L=
L(G).

Proof. Let L be a recursively enumerable language. By Theorem 2.1 in [2], there exists
a queue grammar, Q= (V, T, W,F,R, g), such that L(Q)= L. Without any loss of gener-
ality, assume that Q satisfies the properties described in Lemma 1. The next construction
produces a three-nonterminal scattered context grammar, G, satisfying L(G)=L(Q).
Set n=card(V U W )+2. Introduce a bijection, f3, from (V' UW) to ({1}7{0}{1}" N
{0,1}"). In a standard manner extend the domain of §§ to (V' U W)*. Without any loss
of generality assume that (V¥ U W)N{0,1,2} = 0. Define the scattered context grammar,
G=(TuU{0,1,2}, P,2,T), where P is constructed in the following six-step way:

I. if R=ab withacV —T and b€ W — F, then add (2) — (01"~!(b)22f(a)20) to
P;

II. for every (a,b,x,c)eg with acV — T, xe(V — T)*, and b,ce W — F, add
(dl,...,d,,,bl,...,bn,Z,al,...,a,,,l,a,,,Z,Z)—>(d1,...,d,,,cl,...,cn,el,ez,...,en,
2,2, B(x)2) to P, where d; ...d,=01""! (thatis, d, =0and d,=1for h=2,...,n),
by...b,=p(b), ai...a,=p(a), ci...c,=p(c), ee=¢ fori=1,...,n;

III. for every (a,b,xy,c)€g withacV —T, xe(V —-T)*, yeT*, and b,cc W —F,
add (dl,...,d,,,bl,...,b,,,2,a1,...,an,l,an,2,2)—>(f1,...,f,,,cl,...,cn,el,ez,...,
en,2,2,p(x)y2) to P, where d,...d,=01""!, (that is, d; =0 and d,=1 for
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h=2,...,n), fi... fu=1""10 (that is, f,=0 and f,=1 for h=1,....n — 1),
by...b,=p(b), ar...an=p(a), c|...co=p(c), es=¢ for i=1,...,n;

IV. for every (a,b,y,c)€g withacV —T, yc€T* and b,cE W —F, add (f1,..., fn,
biy..sbu,2, aryee s n—1,81,2,2) = (f1y-- s frsCls--sCns€1,€2,5...,€1,2,2, y2) to P,
where fl...f,,:l”*IO (that is, f,=0 and f, =1 for h=1,...,.n— 1), b;...b,
=p(b),ay...a,=p(a), c1...c,=p(c), eg=¢ fori=1,...,n;

V. for every (a,b,y,c)€g with acV — T, yeT*, be W —F, and c€ F, add (f1,
ces fus b1y b 2,a, Ay 1,01,2,2) (€1, ey €y @il - > €2y €25t 1> €212y -
e &8, y) to P, where f|... f,=1"710 (thatis, f,=0and f,=1forh=1,...,n—
1), by...b,=p(b), ay...a,=p(a), es=c¢ for i=1,...,3n;

VI add (2,2,a,2) —(2,¢,a2,2) to P, where a € {0,1}.

To keep this proof readable omit some obvious details from the rest of this proof
whose completion is left to the reader.

Claim 1. Let 2="x in G be a derivation in G during which G uses the produc-
tion introduced in step 1 i times, for some i=1. Then, occur(2,x)=(1 + 2i) —
3j, occur(l,x)=(n— 1)k, and occur(0,x)=k + i — j, where k is a non-negative inte-
ger and j is the number of applications of a production introduced in step V during
2=%x such that j=1 and (1 + 2i)>=3j.

Claim 2. Let 2="x in G be a derivation in G during which G uses the production
introduced in step 1 two or more times. Then, x & T*.

Proof 2. Let 2="x in G be a derivation in G. If G uses the production introduced
in step I two or more times during 2=-*x, then the previous claim implies that x
contains some occurrences of 0. Thus, x ¢ T* because 0 is a nonterminal. [

Claim 3. G generates every w€ L(G) as 2= u[p] =" v=w]q], where p is the pro-
duction introduced in I, q is a production introduced in V, during u="*v, G makes
every derivation step by a production introduced in 1I-1V, or V1.

Proof 3. Let w€ L(G). Then, 2=*w in G and we T*. By Claim 1, as we T*, G
uses the production introduced in I once. Because 2 =" w begins from 2, we can ex-
press 2 =" w as 2= u[p] =" w, where p is the production introduced in I, and during
u="*w, G never uses the production introduced in I. Observe that every production,
r, introduced in I1I-1V, and VI satisfies occur(left(r),2) =3 and occur(right(r),2)=3.
Furthermore, notice that every production, ¢, introduced in V, satisfies occur(left(q),2)
=3 and occur(right(q),2) = 0. These observations imply 2= u[p]=*v=w[q] in G,
where p is the production introduced in I, g is a production introduced in V, during
u="v, G makes every step by a production introduced in II-1V, or VI. [
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Before describing the form of every successful derivation in G in greater detail, we
make some observations about the use of productions introduced in VI

During any successful derivation in G, a production introduced in step VI is always
applied after using a production introduced in steps I-IV (the use of these productions is
described below). More precisely, to continue the derivation after applying a production
introduced in -1V, G has to shift the second appearance of 2 right in the current
sentential form. G makes this shift by using productions introduced in VI to generate
a sentential form having precisely n appearances of d (d € {0,1}) between the first
appearance of 2 and the second appearance of 2. Indeed, the sentential form has to
contain exactly n appearances of d between the first appearance of 2 and the second
appearance of 2; otherwise, the successfulness of the derivation is contradicted by
arguments O.1 and O.2, which follow next.

O.1. If there exist fewer than n d’s between the first appearance of 2 and the second
appearance of 2, no rule introduced in I-V can be used, so the derivation ends. If the
last sentential form contains nonterminals and if the derivation is not successful, it is
a contradiction.

0O.2. Assume that there exist more than n d’s between the first appearance of 2 and
the second appearance of 2. Then, after the next application of a rule introduced in
I-V, more than 3n d’s (d € {0,1}) appear before the first appearance of 2. Return to
the construction of productions in G to make observations 0.2.1-0.2.3:

0.2.1. The production introduced in step I is always used only in the first step of a
successful derivation (see Claim 3).

0.2.2. All productions introduced in steps II-IV rewrite 3n nonterminals preceding
the first appearance of 2 with other 3z nonterminals.

0.2.3. Recall that a production introduced in step V is always used in the last
derivation step (see Claim 3); furthermore, observe that this production erase precisely
3n non-terminals preceding the first appearance of 2.

By observations 0.2.1-0.2.3, the occurrence of more than 3n d’s between the first
and second appearance of 2 gives rise to a contradiction of the successfulness of the
derivation.

By arguments O.1 and 0.2, we see that the sentential form has to contain precisely
n appearances of d between the first and second appearance of 2.

Except for the use of productions introduced in step VI (this use is explained above),
every successful derivation in G is made as 2=rhs(p;) [pil="u=v[ps] = w=z
[ ps], where i,k >1, and the derivation satisfies the following properties A-D:

A. Each derivation step in rhs(p;)="u has this form 017! (6" )2p(a’)2B(1")20 =
01"~ B(c")22B(¥'x")20 [ p2], where ps is a production introduced in II, (a’,b',x",c’) € g,
yeW -1)%

B. In greater detail, the derivation step u => v [ p3] has this form 017! 8(6"")28(a’" )2
(W20 = 17 10B(c" 22 8(h" " 1x""20 [ ps], where u= 01"~ (6" )2B(a" )2B(1" )20, v=
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1"10B(c")22B(H" y")x"'20, ps is a production introduced in III, (a”,b”,y"x",c") € g,
h//, y// c (V _ T)*, X' e T*;

C. Each derivation step in v =% w has this form 1"~108(b"")2B(a’"")2p(y"")t"'20 =
1"10B(c")22B(y"")t"'x"""20 [ p4], where py4 is a production introduced in IV, (a””, 0",
x///’c//l) Eg, y/// G (V _ T)*, t”l,x/” E T*;

D. In greater detail, the derivation step w = z [ ps] has this form 1”~108(b""")2p(a""")
21,////20 G t””x””[ps], Where w= 1}171Oﬁ(b////)zﬁ(allll)ztllllzo’ z= t””x””, pS IS a prO'
duction introduced in ¥, (a"”,b"",x"",c""") € g with ¢ € F.

Let 2=rhs(p1) [p1]l="u=v[p3]="w=z[ps] be any successful derivation in
G such that this derivation satisfies the above properties. Observe that at this point
R=1d"y"b" = y'x"b" =k """ =z in Q, so z € L(Q). Consequently, L(G)C
L(O).

A proof demonstrating that L(Q) CL(G) is left to the reader. Since L(Q)=L(G)
and G has only three nonterminals, 0, 1, and 2, Lemma 2 holds. [J

Theorem 3. RE =SC;

Proof. Obviously, SC; C RE. By Lemma 2, we also have RE C SC;. Thus, SC; =RE,
and the theorem holds. [

Recall that SC; C RE; in fact, the one-nonterminal scattered context grammars cannot
even generate some context-sensitive languages (see [4]). However, this paper proves
SC; =RE (see Theorem 3). What is the generative power of two-nonterminal scattered
context grammars?
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