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Fourier integral operators with sufficiently smooth phase act on the time-frequency content
of functions. However time-frequency analysis has only recently been used to analyze
these operators. In this paper, we show that if a Fourier integral operator has a smooth
phase function and its symbol is well localized in time and frequency, then the operator
is Schatten p-class for p ∈ [1,2], with inclusion of the symbol in mixed modulation spaces
serving as the appropriate measure of time-frequency localization. Our main results are
sharp in the sense that larger mixed modulation spaces necessarily contain symbols of
Fourier integral operators that are not Schatten p-class.
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1. Introduction

Classical Fourier integral operators, which arise in the study of hyperbolic differential equations (see [21]), are operators
of the form

A f (x) =
∫

a(x, ξ) f̂ (ξ)e2π iϕ(x,ξ) dξ . (1)

In this case a is the symbol and ϕ is the phase function of the operator. Fourier integral operators generalize pseudodif-
ferential operators in the sense that the pseudodifferential operator with Kohn–Nirenberg symbol σ is the Fourier integral
operator with symbol σ and phase function ϕ(x, ξ) = x · ξ . More generally, an operator of the form

A f (x) =
∫∫

b(x, y, ξ) f (y)e2π iψ(x,y,ξ) dy dξ (2)

is also called a Fourier integral operator and b, ψ are the symbol and phase function of A respectively. The properties
of Fourier integral operators with smooth symbols and phase functions have been studied extensively. In particular the
boundedness properties of such operators are well known. If the symbol and phase function belong to C∞ and the symbol
belongs to an appropriate Hormander symbol class, then the operator is bounded on L p (see [16,17] and the references
therein), bounded from H1 to L1 (see [17] and the generalization in [19]) and bounded on F L p (see [9]). More recently,
in [4] and [13], it was shown that the curvelet and shearlet representations of a Fourier integral operator of the form (1) are
sparse, provided a,ϕ ∈ C∞ and a is in an appropriate Hormander symbol class. Much less is known about Fourier integral
operators with non-smooth symbols.

However, for one particular type of Fourier integral operator, the pseudodifferential operator, much can be said, even in
the case of a non-smooth symbols. Specifically, time-frequency analysis can be used to describe the properties of pseudodif-
ferential operators, with the modulation spaces (which are Banach spaces characterized by time-frequency shifts and mixed
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norms) serving as appropriate symbol spaces for studying continuity and Schatten class properties of pseudodifferential op-
erators. Using Gabor frames, elements in the modulation spaces can be decomposed into a superposition of time-frequency
shifts, and this Gabor frame decomposition of the symbol of a pseudodifferential operator can be used to characterize the
properties of the operator. Results of this type appear in [10,12,14,15,18] and [20].

Both pseudodifferential operators and Fourier integral operators with smooth phase functions act on the time-frequency
content of functions, although the time-frequency action of a Fourier integral operator is much more general and less explicit
than the action of a pseudodifferential operator. However, this action still suggests that time-frequency analysis may play
an important role in understanding Fourier integral operators with non-smooth symbols. Indeed, recent results confirm this
intuition. In [3] it was shown that inclusion of the symbol of a Fourier integral operator with smooth phase in Sjöstrand’s
class (a space containing non-smooth symbols) implies boundedness of the operator on L2(Rd). In [7] and [8], the authors
use time-frequency analysis to prove the boundedness of Fourier integral operators of the form (1) on the time-frequency
localization space M p , provided a ∈ C2N , a much less strenuous condition than the traditional smoothness assumptions on
the symbol. More generally, in [5] and [6], the authors prove Schatten p-class membership for Fourier integral operators
with sufficiently smooth phase functions whose symbols belong to M p,1, another space containing non-smooth symbols.
Note that while Fourier integral operators generalize pseudodifferential operators, pseudodifferential operator analysis tech-
niques do not appear to generalize to Fourier integral operators. The results in [3,5–7] and [8] are proved with new Gabor
frame techniques.

In this paper, we use time-frequency analysis techniques to characterize Schatten class Fourier integral operators, with
the mixed modulation spaces, which are natural generalizations of the traditional modulation spaces, serving as appropriate
symbol classes. For operators of the form (1), we show that inclusion of the symbol in M(c)2,...,2,p,...,p for certain permu-
tations c and p ∈ [1,2] almost guarantees the operator is Schatten p-class when the phase is smooth. We also prove that
if the symbol of a Fourier integral operator of the form (2) belongs to the mixed modulation space M(c)2,...,2,p,...,p,1,∞
or M(c)∞,2,...,2,p,...,p,1 for appropriate permutations c and if the phase function is sufficiently smooth, then the operator
is Schatten p-class for p ∈ [1,2]. Our results for Fourier integral operators of the form (1) improve upon existing results
of this type and are sharp in the sense that mixed modulation spaces larger than M(c)2,...,2,p,...,p contain Fourier integral
operators that are not Schatten p-class. Although our results for Fourier integral operators of the form (2) are not directly
comparable to previously known Schatten class results for Fourier integral operators, namely those in [5] and [6], they seem
stronger in the sense that M(c)2,...,2,p,...,p,1,∞ , M(c)∞,2,...,2,p,...,p,1 are isomorphic to �2,...,2,p,...,p,1,∞ and �∞,2,...,2,p,...,p,1,
respectively, while M p,1 is isomorphic to �p,...,p,1,...,1 and �p,...,p,1,...,1 � �2,...,2,p,...,p,1,∞ and �p,...,p,1,...,1 � �∞,2,...,2,p,...,p,1.
Furthermore, our main results for Fourier integral operators of the form (2) are sharp in the sense that larger mixed modu-
lation spaces contain symbols of Fourier integral operators that are not Schatten p-class. However, the results in this paper
are not applicable to the special case of Fourier integral operators of the form

A f (x) =
∫∫

b(x, ξ) f (y)e2π iψ(x,y,ξ) dy dξ, (3)

whereas [5] and [6] do give Schatten class results for operators of this type.
The remainder of this paper is organized as follows. Section 2 contains background information. In Section 3, we prove a

time-frequency condition on the product of the symbol and phase of a Fourier integral operator that ensures the operator is
Schatten class. In Section 4, we use mixed modulation space product embeddings to find sharp time-frequency conditions
on the symbol of a Fourier integral operator that ensure the operator is Schatten class.

2. Background

2.1. Mixed norm spaces

Definition 1. Given measure spaces (Xi,μi) and indices pi ∈ [1,∞] for i = 1,2, . . . ,d, we let

Lp1,p2,...,pd (X1, X2, . . . , Xd,μ1,μ2, . . . ,μd)

consist of all measurable functions F : X1 × X2 × · · · × Xd → C for which the following norm is finite:

‖F‖L p1,p2,...,pd =
(∫

Xd

· · ·
(∫

X1

∣∣F (x1, . . . , xd)
∣∣p1 dμ1(x1)

) p2
p1 · · · dμd(xd)

) 1
pd

,

with the usual modifications for those indices pi which equal ∞.
If Xi = R and μi is Lebesgue measure on R for all i = 1,2, . . . ,d, then we simply write L p1,p2,...,pd . If each Xi is countable

and μi is counting measure on Xi we simply write �p1,p2,...,pd (X1, X2, . . . , Xd).

The mixed norm spaces L p1,p2,...,pd (X1, X2, . . . , Xd,μ1,μ2, . . . ,μ2d) are generalizations of the classical spaces L p , and
the proof that L p is a Banach space can be extended to the mixed norm spaces (see [1]).

A Wiener amalgam norm is a type of mixed norm that measures local boundedness with global decay.
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Definition 2. Suppose p1, . . . , pd ∈ [1,∞]. Define a norm by

‖ f ‖W (L1(Rd)) =
∑

n∈Zd

‖ f χ[0,1]d+n‖∞.

The Wiener amalgam space W (L1(Rd)) is the set of functions for which this norm is finite.

For any multi-index α = (α1, . . . ,αd) ∈ Rd with α1, . . . ,αd ∈ (0,∞), we can define an equivalent norm on W (L1(Rd)) by∑
n∈Zd

‖ f χα·[0,1]d+α·n‖∞. (4)

2.2. Gabor transform

Suppose f : Rd → C is measurable. For x, ξ ∈ Rd define the translation operator Tx and modulation operator Mξ by

Tx f (t) = f (t − x) and Mξ f (t) = e2π it·ξ f (t),

and define the time-frequency shift π(x,ξ) by π(x,ξ) = Mξ Tx .

Definition 3. Fix φ ∈ S (Rd). Given f ∈ S ′(Rd), the Gabor transform or short-time Fourier transform of f with respect to φ is

Vφ f (x, ξ) =
∫
Rd

f (t)φ(t − x)e−2π iξ ·t dt = 〈 f , Mξ Txφ〉, x, ξ ∈ Rd.

The function φ is called the window function of the Gabor transform.

The value of Vφ f (x, ξ) gives information about the time-frequency content of f around x in time and ξ in frequency.
See [11] for background and information about the Gabor transform.

If c is a permutation of {1,2, . . . ,2d}, we identify c with the bijection c : R2d → R2d given by c(x1, . . . , x2d) =
(xc(1), . . . , xc(2d)).

Definition 4. Suppose φ ∈ S (Rd) and c is a permutation of {1,2, . . . ,2d} corresponding to the map c. Let M(c)p1,p2,...,p2d

be the mixed modulation space consisting of all f ∈ S ′(Rd) for which

‖ f ‖M(c)p1,p2,...,p2d = ‖Vφ f ◦ c‖L p1,p2,...,p2d < ∞.

The mixed modulation spaces generalize the traditional modulation spaces M p,q(Rd). In particular, if c is the identity
permutation and p = p1 = p2 = · · · = pd and q = pd+1 = · · · = p2d then M(c)p1,p2,...,p2d = M p,q(Rd). Furthermore, the most
interesting properties of modulation spaces carry over to the mixed modulation spaces. See [2] for more information about
mixed modulation spaces.

2.3. Gabor frames

Definition 5. Suppose Λ ⊂ R2d is a countable set. A Gabor frame for a Hilbert space L2(Rd) is a set {Mξ Txφ}(x,ξ)∈Λ ⊂ L2(Rd)

such that there are A, B > 0 with

A‖ f ‖2 �
∑

(x,ξ)∈Λ

∣∣〈 f , Mξ Tx〉
∣∣2 � B‖ f ‖2

for all f ∈ L2(Rd). In this case A, B are frame bounds. If we can take A = B then {Mξ Txφ}(x,ξ)∈Λ is a tight frame. A tight
frame is Parseval if we can choose A = B = 1.

Gabor frames give non-orthogonal expansions of elements of L2(Rd) in terms of the frame elements, and these expan-
sions are stable but usually redundant. If {Mξ Txφ}(x,ξ)∈Λ is a frame for L2(Rd), there is a dual sequence {φ̃x,ξ }(x,ξ)∈Λ ⊂
L2(Rd) such that

f =
∑

(x,ξ)∈Λ

〈 f , Mξ Txφ〉φ̃x,ξ =
∑

(x,ξ)∈Λ

〈 f , φ̃x,ξ 〉Mξ Txφ

for all f ∈ L2(Rd), and the sequence {φ̃x,ξ }(x,ξ)∈Λ can be chosen to be a frame for L2(Rd). In particular, if {Mξ Txφ}x∈X is a
tight frame for L2(Rd) with frame bound B , we have

f = B−1
∑

(x,ξ)∈Λ

〈 f , Mξ Txφ〉Mξ Txφ ∀ f ∈ L2(Rd).
See [11] for general background on Gabor frames.
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A Gabor frame with a nice generator and regular index set has powerful properties in time-frequency spaces beyond
L2(Rd). The following theorem from [2] makes this idea precise.

Theorem 1. Fix β ∈ (0,1). Suppose p1, p2, . . . , p2d ∈ [1,∞] and ψ ∈ M(c)1,...,1 . Further suppose that {πβnψ}n∈Z2d is a frame for
L2(Rd) with canonical dual frame {πβnγ }n∈Z2d . Then

(a) {πβnψ}n∈Z2d is a Banach frame for M(c)p1,p2,...,p2d and there exist 0 < A � B < ∞ independent of p1, p2, . . . , p2d such that

A‖ f ‖M(c)p1,p2,...,p2d � ‖Vψ f ◦ c|βZ2d‖�p1,p2,...,p2d � B‖ f ‖M(c)p1,p2,...,p2d ,

for all f ∈ M(c)p1,p2,...,p2d .
(b) If p1, p2, . . . , p2d ∈ [1,∞) then

f =
∑

m∈Z2d

〈 f ,πβmψ〉πβmγ =
∑

m∈Z2d

〈 f ,πβmγ 〉πβmψ,

for all f ∈ M(c)p1,p2,...,p2d with unconditional convergence in M(c)p1,p2,...,p2d .
(c) If p1, p2, . . . , p2d ∈ [1,∞] then

f =
∑

m∈Z2d

〈 f ,πβmψ〉πβmγ =
∑

m∈Z2d

〈 f ,πβmγ 〉πβmψ,

for all f ∈ M(c)p1,p2,...,p2d with weak* convergence in M(c)∞,...,∞ .

2.4. Permutations

In Sections 2 and 3 certain mixed modulation spaces will be useful in classifying Schatten class Fourier integral op-
erators. These mixed modulation spaces depend on the permutations of the variables of the Gabor transform defined as
follows.

Definition 6. Suppose c is a permutation on {1,2, . . . ,4d}. A first slice permutation on {1,2, . . . ,4d} is one that maps
{1,2, . . . ,d,2d + 1,2d + 2, . . . ,3d} to {1,2, . . . ,2d} bijectively. A second slice permutation on {1,2, . . . ,4d} is one that maps
{d + 1,d + 2, . . . ,2d,3d + 1,3d + 2, . . . ,4d} to {1,2, . . . ,2d} bijectively.

Notice that first and second slice permutations necessarily map {d + 1,d + 2, . . . ,2d,3d + 1,3d + 2, . . . ,4d} to {2d + 1,

. . . ,4d} and {1,2, . . . ,d,2d + 1,2d + 2, . . . ,3d} to {2d + 1, . . . ,4d}, respectively.

Definition 7. Suppose c is a permutation on {1,2, . . . ,6d}. A first FIO slice permutation c is a permutation of {1,2, . . . ,6d}
such that

(a) c maps {1,2, . . . ,d,3d + 1,3d + 2, . . . ,4d} to {1,2, . . . ,2d},
(b) c maps {d + 1,d + 2, . . . ,2d,4d + 1,4d + 2, . . . ,5d} to {2d + 1,2d + 2, . . . ,4d}, and
(c) c maps {2d + 1,2d + 2, . . . ,3d} to {4d + 1,4d + 2, . . . ,5d}.

A second FIO slice permutation c is a permutation of {1,2, . . . ,6d} such that

(a) c maps {d + 1,d + 2, . . . ,2d,4d + 1,4d + 2, . . . ,5d} to {1,2, . . . ,2d},
(b) c maps {1,2, . . . ,d,3d + 1,3d + 2, . . . ,4d} to {2d + 1,2d + 2, . . . ,4d}, and
(c) c maps {2d + 1,2d + 2, . . . ,3d} to {4d + 1,4d + 2, . . . ,5d}.

A first FIO symbol permutation c is a permutation of {1,2, . . . ,6d} such that

(a) c maps {5d + 1,5d + 2, . . . ,6d} to {1,2, . . . ,d},
(b) c maps {1,2, . . . ,d,3d + 1,3d + 2, . . . ,4d} to {d + 1,d + 2, . . . ,3d}, and
(c) c maps {d + 1, . . . ,2d,4d + 1,4d + 2, . . . ,5d} to {3d + 1,3d + 2, . . . ,5d}.

A second FIO symbol permutation c is a permutation of {1,2, . . . ,6d} such that

(a) c maps {5d + 1,5d + 2, . . . ,6d} to {1,2, . . . ,d},
(b) c maps {d + 1,d + 2, . . . ,2d,4d + 1,4d + 2, . . . ,5d} to {d + 1,d + 2, . . . ,3d}, and
(c) c maps {1,2, . . . ,d,3d + 1,3d + 2, . . . ,4d} to {3d + 1,3d + 2, . . . ,5d}.
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2.5. Schatten class operators

Definition 8. Fix 1 � p < ∞. Suppose A : L2(Rd) → L2(Rd) is a linear operator. We say A is Schatten p-class and write
A ∈ I p(L2(Rd)) if

‖A‖I p = sup

(∑
n∈N

∣∣〈A fn, gn〉
∣∣p

) 1
p

< ∞,

where the supremum is taken over all pairs of orthonormal sequences { fn}n∈N , {gn}n∈N in L2(Rd).

Equivalently, an operator is Schatten p-class if its singular values constitute an �p sequence. Consequently, trace-class
operators are exactly the Schatten 1-class operators and Hilbert–Schmidt operators are the Schatten 2-class operators. For
p = ∞, we define Schatten p-class operators to be bounded operators.

2.6. Integral operators

An integral operator with kernel k is one of the form

A f (x) =
∫

k(x, y) f (y)dy.

If the kernel of an integral operator has sufficient time-frequency concentration, then the operator is Schatten class. This
is made precise in the following theorem from [2].

Theorem 2. Suppose c is a first or second slice permutation on {1,2, . . . ,4d} and p1 = p2 = · · · = p2d = 2 and p2d+1 = · · · = p4d = p
for some p ∈ [1,2]. If A is an integral operator with kernel k and k ∈ M(c)p1,p2,...,p4d , then A ∈ I p(L2(Rd)). Furthermore, this result
is sharp in the sense that if at least one of the following conditions holds then there are integral operators not in I p(L2(Rd)) whose
kernel lies in M(c)q1,q2,...,q4d .

(a) At least one of q1, . . . ,q2d is larger than 2.
(b) At least one of q2d+1, . . . ,q4d is larger than p.

In particular, Theorem 2 states that if p ∈ [1,2] and A is an integral operator on L2(R) with kernel k satisfying

∫
R

∫
R

( ∫
R

∫
R

∣∣Vφk(x1, x2, ξ1, ξ2)
∣∣2

dx1 dξ1

) p
2

dx2 dξ2 < ∞,

then A ∈ I p(L2(Rd)).

3. Schatten class results for Fourier integral operators

Notice that if A is the Fourier integral operator in (1), then A = T F , where F is the Fourier transform and T is the
integral operator with kernel k(x, y) = a(x, y)e2π iϕ(x,y). Hence, we obtain the following theorem as a direct consequence of
Theorem 2.

Theorem 3. Suppose A is Fourier integral operator of the form (1). Let c be a first or second slice permutation on {1,2, . . . ,4d} and
p1 = p2 = · · · = p2d = 2 and p2d+1 = · · · = p4d = p for some p ∈ [1,2]. If ae2π iϕ ∈ M(c)p1,p2,...,p4d , then A ∈ I p(L2(Rd)).

Although Theorem 2 is not immediately applicable to the more general Fourier integral operators of the form (2), it can
be adapted to this type of operator to give time-frequency conditions on the product of the symbol and phase which ensure
the operator is Schatten class, as in the following theorem.

Theorem 4. Suppose A is a Fourier integral operator of the form (2) with symbol b and phase function ψ . Suppose p ∈ [1,2] and c is a
first or second FIO slice permutation. Let p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = · · · = p5d = 1
and p5d+1 = p5d+2 = · · · = p6d = ∞. If be2π iψ ∈ M(c)p1,p2,...,p6d , then A ∈ I p(L2(Rd)).

Proof. We prove the result in the case c is a second FIO slice permutation. The case that c is a first FIO slice permutation
can be proven similarly.
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Let { fn}n∈N , {gn}n∈N be arbitrary orthonormal sequences in L2(Rd) and let {Mαk2 Tαk1φ}k1,k2∈Zd be a Parseval Gabor

frame for L2(Rd) with φ ∈ M1,1(Rd) and α > 0. By Proposition 12.1.4 in [11], φ ∈ M1,1(Rd) implies φ̂ ∈ W (L1(Rd)). Using
the equivalent norm given in (4), there is a C such that∥∥{‖φ̂χα[0,1]d+αn‖∞

}
n∈Zd

∥∥
�1(Zd)

� C‖φ̂‖W (L1(Rd)).

Using the definition of A we have

〈A fn, gn〉 = 〈
be2π iψ, gn ⊗ fn ⊗ 1

〉
.

Since 1 ∈ M∞,1(Rd), Theorem 1 implies

1 =
∑

k1,k2∈Zd

〈1, Mαk2 Tαk1φ〉Mαk2 Tαk1φ weakly.

Thus

〈A fn, gn〉 =
∑

k1,k2∈Zd

〈1, Mαk2 Tαk1φ〉〈be2π iψ, gn ⊗ fn ⊗ Mαk2 Tαk1φ
〉

=
∑

k1,k2∈Zd

〈1, Mαk2 Tαk1φ〉〈Ak1,k2 fn, gn〉,

where Ak1,k2 is the integral operator with kernel

kk1,k2(x, y) =
∫

b(x, y, ξ)e2π iψ(x,y,ξ)Mαk2 Tαk1φ(ξ)dξ.

In the case p = 1 we have∑
n∈N

∣∣〈A fn, gn〉
∣∣ =

∑
n∈N

∣∣∣∣ ∑
k1,k2∈Zd

〈1, Mαk2 Tαk1φ〉〈Ak1,k2 fn, gn〉
∣∣∣∣

�
∑

k1,k2∈Zd

∑
n∈N

∣∣〈1, Mαk2 Tαk1φ〉〈Ak1,k2 fn, gn〉
∣∣

=
∑

k1,k2∈Zd

∑
n∈N

∣∣φ̂(αk2)
∣∣∣∣〈Ak1,k2 fn, gn〉

∣∣
=

∑
k1,k2∈Zd

∣∣φ̂(αk2)
∣∣∑

n∈N

∣∣〈Ak1,k2 fn, gn〉
∣∣

�
( ∑

k2∈Zd

∣∣φ̂(αk2)
∣∣)(

sup
k2∈Zd

∑
k1∈Zd

∑
n∈N

∣∣〈Ak1,k2 fn, gn〉
∣∣)

� C‖φ̂‖W (L1(Rd)) sup
k2∈Zd

∑
k1∈Zd

∑
n∈N

∣∣〈Ak1,k2 fn, gn〉
∣∣

� C‖φ̂‖W (L1(Rd)) sup
k2∈Zd

∑
k1∈Zd

‖Ak1,k2‖I1 .

By Theorem 2, we have

‖Ak1,k2‖I1 �
∑

n1,n2∈Zd

( ∑
m1,m2∈Zd

∣∣Vφ⊗φkk1,k2(αn1,αm1,αn2,αm2)
∣∣2

) 1
2

=
∑

n1,n2∈Zd

( ∑
m1,m2∈Zd

∣∣VΦ

(
be2π iψ)

(αn1,αm1,αk1,αn2,αm2,αk2)
∣∣2

) 1
2

,

where Φ = φ ⊗ φ ⊗ φ. Thus if

sup
k2∈Zd

∑
k1∈Zd

∑
n1,n2∈Zd

( ∑
m1,m2∈Zd

∣∣VΦ

(
be2π iψ)

(αn1,αm1,αk1,αn2,αm2,αk2)
∣∣2

) 1
2

< ∞,

then A ∈ I1(L2(Rd)). Notice that this quantity is finite if and only if be2π iψ ∈ M(c)p1,p2,...,p6d .
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For the case p = 2 we have

(∑
n∈N

∣∣〈A fn, gn〉
∣∣2

) 1
2

=
(∑

n∈N

∣∣∣∣ ∑
k1,k2∈Zd

〈1, Mαk2 Tαk1φ〉〈Ak1,k2 fn, gn〉
∣∣∣∣
2) 1

2

�
∑

k1,k2∈Zd

(∑
n∈N

∣∣φ̂(αk2)
∣∣2∣∣〈Ak1,k2 fn, gn〉

∣∣2
) 1

2

�
( ∑

k2∈Zd

∣∣φ̂(αk2)
∣∣)(

sup
k2∈Zd

∑
k1∈Zd

(∑
n∈N

∣∣〈Ak1,k2 fn, gn〉
∣∣2

) 1
2
)

� C‖φ̂‖W (L1(Rd)) sup
k2∈Zd

∑
k1∈Zd

‖Ak1,k2‖I2 , (5)

where (5) holds by Minkowski’s integral inequality. Again, by Theorem 2, we have

‖Ak1,k2‖I2 �
( ∑

n1,n2∈Zd

∑
m1,m2∈Zd

∣∣Vφ⊗φkk1,k2(αn1,αm1,αn2,αm2)
∣∣2

) 1
2

=
( ∑

n1,n2∈Zd

∑
m1,m2∈Zd

∣∣VΦ

(
be2π iψ)

(αn1,αm1,αk1,αn2,αm2,αk2)
∣∣2

) 1
2

.

Thus if

sup
k2∈Zd

∑
k1∈Zd

( ∑
n1,n2∈Zd

∑
m1,m2∈Zd

∣∣VΦ

(
be2π iψ)

(αn1,αm1,αk1,αn2,αm2,αk2)
∣∣2

) 1
2

< ∞,

then A ∈ I2(L2(Rd)). This quantity is finite if and only if be2π iψ ∈ M(c)p1,p2,...,p6d .

Taking the supremum of
∑

n∈N
|〈A fn, gn〉| and (

∑
n∈N

|〈A fn, gn〉|2) 1
2 over all orthonormal sequences gives the result for

p = 1 and p = 2. For 1 < p < 2, the result follows by interpolation. �
4. Sharp time-frequency conditions on the symbol of a Fourier integral operator with smooth phase

Theorems 3 and 4 give conditions on the product of the symbol and phase useful for identifying Schatten class Fourier
integral operators. However it would be more convenient to allow the properties of the symbol and properties of the phase
separately to determine whether a Fourier integral operator is Schatten class. Hence, in this section we find conditions
on the symbol and phase function of a Fourier integral operator so that their product lies in given mixed modulation
spaces.

We begin by stating some preliminary lemmas. The following lemma comes from Proposition 3.2 in [3].

Lemma 5. There exists a finite C such that∥∥τ (t·)∥∥M∞,1(Rd)
� C‖τ‖M∞,1(Rd) ∀τ ∈ M∞,1(Rd), t ∈ [0,1].

The next lemma is a special case of Proposition 1.2 in [6], which describes multiplication properties of modulation spaces.

Lemma 6. Suppose p,q, p1, p2,q1,q2 ∈ [1,∞] satisfy 1
p1

+ 1
p2

= 1
p and 1

q1
+ 1

q2
= 1 + 1

q . Then there exists a finite C such that

‖ f g‖M p,q(Rd) � C‖ f ‖M p1,q1 (Rd)‖g‖M p2,q2 (Rd) ∀ f ∈ M p1,q1
(
Rd), g ∈ M p2,q2

(
Rd).

In particular, there is a finite C such that

‖ f g‖M p,q(Rd) � C‖ f ‖M p,q(Rd)‖g‖M∞,1(Rd) ∀ f ∈ M p,q(Rd), g ∈ M∞,1(Rd).
Corollary 7. There is a finite C such that∥∥ f n

∥∥
M∞,1(Rd)

� Cn‖ f ‖n
M∞,1(Rd)

∀ f ∈ M∞,1(Rd).
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Although not literally true, functions in M∞,1(Rd) can be thought of as functions in L∞(Rd) whose Fourier transform
is in L1(Rd). Lemma 6 shows that in some sense multiplying a function f with an element of M∞,1(Rd) preserves the
time-frequency localization of f . This holds because multiplying f by an L∞(Rd) function preserves the time localization
of f , and multiplying f by a function whose Fourier transform is in L1(Rd) (i.e., convolving f̂ with a L1(Rd) function)
preserves the frequency localization of f . This idea extends to the mixed modulation spaces as well, as stated precisely in
the following theorem. The proof is a generalization of the proof of Lemma 6 (see [6] for details), so it is omitted.

Theorem 8.

(a) Let p ∈ [1,∞]. Suppose c is a first or second slice permutation and p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p.
Then for some finite C we have for all f ∈ M(c)p1,p2,...,p4d , g ∈ M∞,1(R2d) that

‖ f g‖M(c)p1,p2,...,p4d � C‖ f ‖M(c)p1,p2,...,p4d ‖g‖M∞,1(R2d).

(b) Let p ∈ [1,∞]. Suppose c is a first or second FIO slice permutation and p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · =
p4d = p, p4d+1 = p4d+2 = · · · = p5d = 1 and p5d+1 = p5d+2 = · · · = p6d = ∞. Then for some finite C we have for all
f ∈ M(c)p1,p2,...,p6d , g ∈ M∞,1(R3d) that

‖ f g‖M(c)p1,p2,...,p6d � C‖ f ‖M(c)p1,p2,...,p6d ‖g‖M∞,1(R3d).

If ϕ is real valued then eiϕ ∈ L∞ . Furthermore eiϕ will be smooth only if ϕ is smooth. Hence, we expect that eiϕ ∈ M∞,1

if ϕ is sufficiently smooth. Theorem 8 shows that for a Fourier integral operator with smooth phase ϕ , the time-frequency
localization of aeiϕ is controlled by the time frequency localization of a. Therefore the conditions in Theorems 3 and 4
should be satisfied for Fourier integral operators having smooth phase and time-frequency localized symbols. We make this
idea precise in Theorems 9 and 11.

Theorem 9.

(a) Suppose A is a Fourier integral operator of the form (1) with symbol a and phase ϕ . Let c be a first or second slice permutation. Fix
p ∈ [1,2] and let p1 = p2 = · · · = p2d = 2 and p2d+1 = p2d+2 = · · · = p4d = p. If a ∈ M(c)p1,p2,...,p4d has compact support and
ϕ ∈ C2(R2d) is real valued and satisfies Dαϕ ∈ M∞,1(R2d) for all multi-indices α with |α| = 2, then A ∈ I p(L2(Rd)).
Furthermore, this result is sharp in the sense that if at least one of the following conditions holds, then there are Fourier integral op-
erators not in I p(L2(Rd)) with symbols in M(c)q1,q2,...,q4d and phase functions ϕ satisfying ϕ ∈ C2(R2d) and Dαϕ ∈ M∞,1(R2d)

for all multi-indices α with |α| = 2.
(i) At least one of q1, . . . ,q2d is larger than 2.

(ii) At least one of q2d+1, . . . ,q4d is larger than p.
(b) Suppose A is a Fourier integral operator of the form (2) with symbol b and phase ψ . Let c be a first or second FIO slice per-

mutation. Fix p ∈ [1,2] and let p1 = p2 = · · · = p2d = 2, p2d+1 = p2d+2 = · · · = p4d = p, p4d+1 = p4d+2 = · · · = p5d = 1
and p5d+1 = p5d+2 = · · · = p6d = ∞. If b ∈ M(c)p1,p2,...,p6d has compact support and ψ ∈ C2(R3d) is real valued and satisfies
Dαψ ∈ M∞,1(R3d) for all multi-indices α with |α| = 2, then A ∈ I p(L2(Rd)).
Furthermore, this result is sharp in the sense that if at least one of the following conditions holds, then there are Fourier integral op-
erators that are not in I p(L2(Rd)) with symbols in M(c)q1,q2,...,q5d,p5d+1,p5d+2,...p6d and phase functions ψ satisfying ψ ∈ C2(R3d)

and Dαψ ∈ M∞,1(R3d) for all multi-indices α with |α| = 2.
(i) At least one of q1,q2, . . . ,q2d is larger than 2.

(ii) At least one of q2d+1,q2d+2, . . . ,q4d is larger than p.
(iii) At least one of q4d+1,q4d+2, . . . ,q5d is larger than 1.

Proof. We prove (b). Statement (a) can be proven similarly.
By Theorem 4, it suffices to prove ‖be2π iψ‖M(c)p1,...,p6d < ∞. Write ψ = ψ1 + ψ2, where

ψ1(w) = ψ(0,0,0) +
∑

|α|=1

(
Dαψ

)
(0,0,0)wα

and

ψ2(w) =
∑

|α|=2

2

α!

( 1∫
0

(1 − t)
(

Dαψ
)
(t w)dt

)
wα.

Choose χ ∈ C∞
c (R3d) such that χ(w) = 1 for all w in the support of b. Then
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∥∥be2π iψ
∥∥

M(c)p1,...,p6d = ∥∥be2π iψ1 e2π iψ2
∥∥

M(c)p1,...,p6d

= ∥∥be2π iψ1 e2π iχψ2
∥∥

M(c)p1,...,p6d

�
∥∥be2π iψ1

∥∥
M(c)p1,...,p6d

∥∥e2π iχψ2
∥∥

M∞,1 .

Hence it suffices to show be2π iψ1 ∈ M(c)p1,...,p6d and e2π iχψ2 ∈ M∞,1(R3d). Notice that

be2π iψ1 = Mq
(
e2π iψ(0,0,0)b

)
,

where the components of q ∈ R3d are (Dαψ)(0,0,0) for multi-indices α with |α| = 1. Since b ∈ M(c)p1,p2,...,p6d , we have
‖be2π iψ1‖M(c)p1,...,p6d = ‖b‖M(c)p1,...,p6d < ∞ as well.

Now we show that e2π iχψ2 ∈ M∞,1(R3d). To this end, choose finite C such that

‖ f g‖M∞,1(R3d) � C‖ f ‖M∞,1(R3d)‖g‖M∞,1(R3d) ∀ f , g ∈ M∞,1(R3d).
We have

∥∥e2π iχψ2
∥∥

M∞,1 =
∥∥∥∥∥
∑
n�0

(2π iχψ2)
n

n!

∥∥∥∥∥
M∞,1

�
∑
n�0

‖(2π iχψ2)
n‖M∞,1

n!

�
∑
n�0

(2πC)n‖χψ2‖n
M∞,1

n! = e2πC‖χψ2‖M∞,1 .

By Lemma 5, we can choose C ′ so that∥∥τ (t·)∥∥M∞,1(R3d)
� C ′‖τ‖M∞,1(R3d) ∀τ ∈ M∞,1(R3d), t ∈ [0,1].

Since χ ∈ C∞
c (R3d), we have χ(w)wα ∈ M∞,1(R3d) for all α with |α| = 2. Thus

‖χψ2‖M∞,1 =
∥∥∥∥∥

∑
|α|=2

χ(w)wα 2

α!

( 1∫
0

(1 − t)
(

Dαψ
)
(t w)dt

)∥∥∥∥∥
M∞,1

�
∑

|α|=2

2

α!

∥∥∥∥∥χ(w)wα

( 1∫
0

(1 − t)
(

Dαψ
)
(t w)dt

)∥∥∥∥∥
M∞,1

�
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

∥∥∥∥∥
1∫

0

(1 − t)
(

Dαψ
)
(t w)dt

∥∥∥∥∥
M∞,1

=
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

∫
sup

x∈R3d

∣∣∣∣∣
∫ 1∫

0

(1 − t)
(

Dαψ
)
(t w)Mξ Txφ(w) dt dw

∣∣∣∣∣ dξ

�
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

∫
sup

x∈R3d

1∫
0

(1 − t)

∣∣∣∣
∫ (

Dαψ
)
(t w)Mξ Txφ(w) dw

∣∣∣∣ dt dξ

�
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

1∫
0

(1 − t)

∫
sup

x∈R3d

∣∣∣∣
∫ (

Dαψ
)
(t w)Mξ Txφ(w) dw

∣∣∣∣ dξ dt

=
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

1∫
0

(1 − t)
∥∥(

Dαψ
)
(t w)

∥∥
M∞,1 dt

�
∑

|α|=2

2C

α!
∥∥χ(w)wα

∥∥
M∞,1

1∫
0

(1 − t)C ′∥∥(
Dαψ

)
(w)

∥∥
M∞,1 dt

�
∑

|α|=2

2CC ′

α!
∥∥χ(w)wα

∥∥
M∞,1

∥∥(
Dαψ

)
(w)

∥∥
M∞,1

< ∞.
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Now we will prove sharpness. Let c1 be the permutation of {1,2, . . . ,4d} such that

c1(1) = c(1), c1(2) = c(2), . . . , c1(d) = c(d),

c1(d + 1) = c(d + 1), c1(d + 2) = c(d + 2), . . . , c1(2d) = c(2d),

c1(2d + 1) = c(3d + 1), c1(2d + 2) = c(3d + 2), . . . , c1(3d) = c(4d),

and

c1(3d + 1) = c(4d + 1), c1(3d + 2) = c(4d + 2), . . . , c1(4d) = c(5d),

and let c2 be the permutation of {1,2, . . . ,2d} such that

c2(1) = c(2d + 1) − 4d, c2(2) = c(2d + 2) − 4d, . . . , c2(d) = c(3d) − 4d,

and

c2(d + 1) = c(5d + 1) − 4d, c2(d + 2) = c(5d + 2) − 4d, . . . , c2(2d) = c(6d) − 4d.

Notice that c1 is a first or second slice permutation.
Let b(x, y, ξ) = b1(x, y)b2(ξ). Then

‖b‖M(c)q1,q2,...,q5d ,p5d+1,p5d+2,...p6d = ‖b1‖M(c1)q1,q2,...,q4d ‖b2‖M(c2)
q4d+1,...,q5d ,p5d+1,...,p6d .

Let A be the Fourier integral operator of the form (2) with symbol b and phase function ψ = 1. Then

A f (x) =
∫

b2(ξ)dξ

∫
b1(x, y) f (y)dy.

If (iii) holds, then choose b1 ∈ M(c1)
q1,q2,...,q4d and b2 ∈ M(c2)

q4d+1,...,q5d,p5d+1,...,p6d such that
∫

b2(ξ)dξ = ∞. Then
A : L2(Rd) → L2(Rd) is not well defined and hence not in I p(L2(Rd)). Otherwise, if (i) or (ii) hold, then choose
b1 ∈ M(c1)

q1,q2,...,q4d and b2 ∈ M(c2)
q4d+1,...,q5d,p5d+1,...,p6d such that

∫
b2(ξ)dξ = 0 and the integral operator with kernel

b1 is not in I p(L2(Rd)) (such a choice is possible by Theorem 2). Then A /∈ I p(L2(Rd)). �
In the remainder of this section, we develop alternative conditions on the symbol and phase function of a Fourier integral

operator so that their product lies in mixed modulation spaces relevant to Schatten class integral operators. First, a technical
lemma is needed. See [11] for a proof.

Lemma 10. Suppose Φ ∈ M1,1(Rd) and M is a d × d self-adjoint matrix. Define a operator S M by

SM f (w) = eπ iw·M w f (w) ∀ f ∈ M∞,∞(
Rd).

Then ∣∣VΦ SM f (x, ξ)
∣∣ = ∣∣V S−MΦ f (x, ξ − Mx)

∣∣ ∀x, ξ ∈ Rd.

Theorem 11. Let p ∈ [1,2].

(a) Suppose A is a Fourier integral operator of the form (1) with symbol a and phase ϕ . Let c be a first or second slice permutation and
let p1 = p2 = · · · = p2d = 2 and p2d+1 = p2d+2 = · · · = p4d = p. Suppose a ∈ M(c)p1,p2,...,p4d and ϕ ∈ C2(R2d) has constant
second-order partial derivatives with ϕxi y j = 0 for all i, j ∈ {1,2, . . . ,d}. Then A ∈ I p(L2(Rd)).
Furthermore, this result is sharp in the sense that if at least one of the following conditions hold then there are Fourier integral
operators not in I p(L2(Rd)) with symbols in M(c)q1,q2,...,q4d and phase functions ϕ ∈ C2(R2d) with constant second-order partial
derivatives.
(i) At least one of q1, . . . ,q2d is larger than 2.

(ii) At least one of q2d+1, . . . ,q4d is larger than p.
(b) Suppose A is a Fourier integral operator of the form (2) with symbol b and phase ψ . Let c be a first or second FIO symbol permuta-

tion and p1 = · · · = pd = ∞, pd+1 = pd+2 = · · · = p3d = 2, p3d+1 = p3d+2 = · · · = p5d = p and p5d+1 = p5d+2 = · · · p6d = 1.
Suppose b ∈ M(c)p1,p2,...,p6d , ψ ∈ C2(R3d), all the second-order partial derivatives of ψ are constant and ψxi y j = 0 for all

i, j ∈ {1,2, . . . ,d}. Then A ∈ I p(L2(Rd)).
Furthermore, this result is sharp in the sense that if at least one of the following conditions holds, then there are Fourier integral
operators that are not in I p(L2(Rd)) with symbols in M(c)p1,...,pd,qd+1,...q6d and phase functions ψ ∈ C2(R3d) with constant
second-order partial derivatives.

(i) At least one of qd+1,qd+2, . . . ,q3d is larger than 2.
(ii) At least one of q3d+1,q3d+2, . . . ,q5d is larger than p.

(iii) At least one of q5d+1,q5d+2, . . . ,q6d is larger than 1.
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Proof. We prove (b) in the case c is a first FIO symbol permutation. The other parts and cases can be proved similarly.
Let c′ be a first FIO slice permutation. Set r1 = r2 = · · · = r2d = 2, r2d+1 = r2d+2 = · · · = r4d = p, r4d+1 = r4d+2 = · · · =

r5d = 1 and r5d+1 = r5d+2 = · · · = r6d = ∞. By Theorem 4, it suffices to show be2π iψ ∈ M(c′)r1,r2,...,r6d .
Write ψ = ψ1 + ψ2, where

ψ1(w) = ψ(0,0,0) +
∑

|α|=1

(
Dαψ

)
(0,0,0)wα

and

ψ2(w) =
∑

|α|=2

2

α!

( 1∫
0

(1 − t)
(

Dαψ
)
(t w)dt

)
wα.

Notice that e2π iψ2(w) = eiπ w·M w where M is the block matrix

M = 2π

⎡
⎣ M1 M2 M3

M∗
2 M4 M5

M∗
3 M∗

5 M6

⎤
⎦ ,

with

(M1)i, j = ψxi x j (0,0,0)

2
∀i, j ∈ {1,2, . . . ,d},

(M2)i, j = ψxi y j (0,0,0)

2
= 0 ∀i, j ∈ {1,2, . . . ,d},

(M3)i, j = ψxiξ j (0,0,0)

2
∀i, j ∈ {1,2, . . . ,d},

(M4)i, j = ψyi y j (0,0,0)

2
∀i, j ∈ {1,2, . . . ,d},

(M5)i, j = ψyiξ j (0,0,0)

2
∀i, j ∈ {1,2, . . . ,d},

and

(M6)i, j = ψξiξ j (0,0,0)

2
∀i, j ∈ {1,2, . . . ,d}.

Thus∣∣VΦ

(
be2π iψ)

(x1, x2, x3, ξ1, ξ2, ξ3)
∣∣

= ∣∣VΦ

(
be2π iψ)

(x, ξ)
∣∣

= ∣∣VΦ SM
(
be2π iψ1

)
(x, ξ)

∣∣
= ∣∣V S−MΦ

(
be2π iψ1

)
(x, ξ − Mx)

∣∣
= ∣∣V S−MΦ

(
be2π iψ1

)(
x1, x2, x3, ξ1 − M1x1 − M2x2 − M3x3,

ξ2 − M∗
2x1 − M4x2 − M5x3, ξ3 − M∗

3x1 − M∗
5x2 − M6x3

)∣∣
= ∣∣V S−MΦ

(
be2π iψ1

)(
x1, x2, x3, ξ1 − M1x1 − M3x3,

ξ2 − M4x2 − M5x3, ξ3 − M∗
3x1 − M∗

5x2 − M6x3
)∣∣ (6)

where (6) follows from Lemma 10.
Hence

∥∥be2π iψ
∥∥

M(c′)r1,...,r6d = sup
ξ3

∫ (∫∫ (∫∫ ∣∣VΦ

(
be2π iψ)

(x1, x2, x3, ξ1, ξ2, ξ3)
∣∣2

dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3

= sup
ξ3

∫ (∫∫ (∫∫ ∣∣V S−MΦ

(
be2π iψ1

)(
x1, x2, x3, ξ1 − M1x1 − M3x3,

ξ2 − M4x2 − M5x3, ξ3 − M∗
3x1 − M∗

5x2 − M6x3
)∣∣2

dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3
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�
∫ (∫∫ (∫∫

sup
ξ3

∣∣V S−MΦ

(
be2π iψ1

)(
x1, x2, x3, ξ1 − M1x1 − M3x3,

ξ2 − M4x2 − M5x3, ξ3 − M∗
3x1 − M∗

5x2 − M6x3
)∣∣2

dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3

=
∫ (∫∫ (∫∫

sup
ξ3

∣∣V S−MΦ

(
be2π iψ1

)
(x1, x2, x3, ξ1, ξ2, ξ3)

∣∣2
dξ1 dx1

) p
2

dξ2 dx2

) 1
p

dx3

≡ ∥∥be2π iψ1
∥∥

M(c)p1,...,p6d .

As in the proof of Theorem 9, we have

be2π iψ1 = Mq
(
e2π iψ(0,0,0)b

)
,

where the components of q ∈ R3d are (Dαψ)(0,0,0) for multi-indices α with |α| = 1. Therefore∥∥be2π iψ1
∥∥

M(c)p1,...,p6d = ‖b‖M(c)p1,...,p6d < ∞,

which implies be2π iψ ∈ M(c′)r1,r2,...,r6d , as desired.
Sharpness can be proved similarly to the proof of sharpness in Theorem 9. �
In the literature on Fourier integral operators, it is common to avoid degenerate operators by assuming∣∣det(ϕxy)

∣∣ � d > 0

for Fourier integral operators of the form (1) and∣∣∣∣det

(
ψxy ψxξ

ψyξ ψξξ

)∣∣∣∣ � d > 0

for Fourier integral operators of the form (2). Although Theorem 11 is only applicable to degenerate Fourier integral oper-
ators of the form (1) and certain types of both degenerate and non-degenerate Fourier integral operators of the form (2),
we can generalize the proof technique to apply to both degenerate and non-generate Fourier integral operators of types (1)
and (2).

Theorem 12. Let p ∈ [1,2].

(a) Suppose A is a Fourier integral operator of the form (1) with symbol a and phase ϕ . Let c be a permutation on {1,2, . . . ,4d}
satisfying one of the following conditions.
(i) c maps {3d + 1, . . . ,4d} to {1,2, . . . ,d} or

(ii) c maps {2d + 1, . . . ,3d} to {1,2, . . . ,d}.
Let p1 = p2 = · · · = pd = 2 and pd+1 = pd+2 = · · · = p4d = p. Suppose a ∈ M(c)p1,p2,...,p4d and ϕ ∈ C2(R2d) has constant
second-order partial derivatives. Then A ∈ I p(L2(Rd)).

(b) Suppose A is a Fourier integral operator of the form (2) with symbol b and phase ψ . Let c be a permutation on {1,2, . . . ,6d} that
maps {5d + 1, . . . ,6d} to {1,2, . . . ,d}, maps {2d + 1, . . . ,3d} to {5d + 1, . . . ,6d}, and satisfies one of the following conditions.
(i) c maps {4d + 1, . . . ,5d} to {d + 1,d + 2, . . . ,2d} or

(ii) c maps {3d + 1, . . . ,4d} to {d + 1,d + 2, . . . ,2d}.
Let p1 = · · · = pd = ∞, pd+1 = pd+2 = · · · = p2d = 2, p2d+1 = p3d+2 = · · · = p5d = p and p5d+1 = p5d+2 = · · · = p6d = 1.
Suppose b ∈ M(c)p1,p2,...,p6d , ψ ∈ C2(R3d), all the second-order partial derivatives of ψ are constant. Then A ∈ I p(L2(Rd)).

Proof. We prove (a) in the case that (i) holds. The other case and statement (b) are proved similarly.
Notice that by Lemma 4.7 in [2], for any permutation c′ on {1, . . . ,4d} and any exponents qi, ri ∈ [1,∞] satisfying qi � ri

for all i ∈ {1, . . . ,4d} we have M(c′)q1,...,q4d ⊂ M(c′)r1,...,r4d .
Choose a permutation c′ on {1, . . . ,4d} such that c′ maps {3d+1, . . . ,4d} to {1,2, . . . ,d}, {d+1, . . . ,2d} to {d+1, . . . ,2d},

and {1, . . . ,d,2d + 1, . . . ,3d} to {2d + 1, . . . ,4d}. Notice that c′ is a second slice permutation.
By Theorem 3, it suffices to show ae2π iϕ ∈ M(c′)q1,...,q4d , where q1 = · · · = q2d = 2 and where q2d+1 = · · · = q4d = p.

Using Lemma 10 as in the proof of Theorem 11, we can show ae2π iϕ ∈ M(c)p1,...,p4d , and by our choice of c′ we have
M(c)p1,...,p4d = M(c′)p1,...,p4d . By Lemma 4.7 in [2], M(c′)p1,...,p4d ⊂ M(c′)q1,...,q4d since pd+1 � qd+1, . . . , p2d � q2d . Thus
ae2π iϕ ∈ M(c′)q1,...,q4d . �
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