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The model where the cracks are represented by means of internal hinges endowed with rotational springs
has been shown to enable simple and effective representation of transversely-cracked slender Euler–Ber-
noulli beams subjected to small deflections. It, namely, provides reliable results when compared to
detailed 2D and 3D models even if the basic linear moment–rotation constitutive law is adopted.

This paper extends the utilisation of this model as it presents the derivation of a closed-form stiffness
matrix and a load vector for slender multi-stepped beams and beams with linearly-varying heights. The
principle of virtual work allows for the simple inclusion of an arbitrary number of transverse cracks. The
derived at matrix and vector define an ‘exact’ finite element for the utilised simplified computational
model. The presented element can be implemented for analysing multi-cracked beams by using just
one finite element per structural beam member. The presented expressions for a stepped-beam are
not exclusively limited to this kind of height variation, as by proper discretisation an arbitrary variation
of a cross-section’s height can be adequately modelled.

The accurate displacement functions presented for both types of considered beams complete the der-
ivations. All the presented expressions can be easily utilised for achieving computationally-efficient and
truthful analyses.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous engineering structures are subjected to degenerative
effects during their utilisation. The progressions of cracks can se-
verely decrease the stiffness of an element and further lead to
the failure of the complete structure. In view of this, it is an impor-
tant task of engineers to detect these cracks as soon as possible.
However, the efficiency of structural health monitoring depends
not only on the data measured but also on the qualities and versa-
tilities of computational models regarding mechanical behaviour
modelling. Undoubtedly, suitable 2D or 3D meshes of finite ele-
ments yield a thorough discretisation of the structure, as well as
of the crack and its surroundings. Although this approach is excel-
lent when evaluating a structure’s response to a cracked situation
(with all the crack’s details known in advance), it becomes quite
awkward for inverse problems where the potential crack’s details
(presence, location, intensity) are unknown. Consequently, simpli-
fied models are more efficient in such situations.

The model that has been the subject of numerous research in
the past, is the model provided by Okamura et al. (1969). In this
ll rights reserved.

z.skrinar@um.si
model each crack is replaced by a massless rotational linear spring
of suitable stiffness and the linear moment-rotation constitutive
law is adopted. Each spring connects those neighbouring non-
cracked parts of the beam that are modelled as elastic elements.

Okamura et al. introduced the earliest definition for rotational
linear spring stiffness for a rectangular cross-section. In addition,
some other researchers (Dimarogonas and Papadopulus, 1983; Ra-
jab and Al-Sabeeh, 1991; Ostachowicz and Krawczuk, 1990; Kra-
wczuk and Ostachowicz, 1993; Sundermayer and Weaver, 1993;
Hasan, 1995; Skrinar and Pliberšek, 2004) have presented their
definitions.

This model was successfully implemented for dynamic analy-
ses. For a singly-cracked beam Fernández-Sáez and Navarro
(2002) presented closed-form expressions for the approximated
values of fundamental frequencies, whilst for a beam with multiple
cracks several solutions exist for natural frequency calculations: a
technique that reduces the order of the determinantal equation
(Shifrin and Ruotolo, 1999); a transfer matrix-based method lead-
ing to the determinant calculation of a 4 � 4 matrix (Khiem and
Lien, 2001); a fundamental solutions and recurrences formulae-
based approach for determining the mode-shapes of non-uniform
beams and concentrated masses (Li, 2002). The dynamic response
of a cracked cantilever beam subjected to a concentrated moving
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Fig. 1. Stepped beam finite element with cracks, nodes and degrees of freedom.
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load was studied by Lin and Chang (2006). Dado and Abuzeid
(2003) considered the coupling between the bending and axial
modes of vibration by implementing axial spring in the crack
model.

A general solution for the modal displacement of an Euler–Ber-
noulli beam with an arbitrary type of discontinuity (with cracks
treated as slopes’ discontinuities) at an arbitrary number of loca-
tions, was presented by Wang and Qiao (2007), where Heaviside’s
function was used to express the modal displacement of the whole
beam by a single function. Exact closed-form expressions for the
vibration modes of the Euler–Bernoulli beam, in the presence of
multiple concentrated cracks modelled by means of Dirac’s deltas,
were presented by Caddemi and Caliò (2009). The proposed
expressions were explicitly provided as functions of four integra-
tion constants only, to be determined by the standard boundary
conditions.

Okamura’s simplified computational model has also already
been implemented regarding experimental inverse identification
of a crack: Rizos et al. (1990) measured displacements at two
selected points, Boltežar et al. (1998) and Vestroni and
Capecchi (2000) implemented eigenfrequencies, Bamnios et al.
(2002) used mechanical impedance measurements, and Xiang
et al. (2006) discussed a methodology based on B-spline
wavelet on the interval element. Further, the utilisation of
neural networks to assess the damage in structure from
changes in static parameter was discussed by Maity and Saha
(2004).

However, since governing differential equations of bending
displacement can only be solved analytically for moderate struc-
tures, the research interest has further oriented towards a finite
element solution for the computation of transverse displace-
ments. The numerical procedure for the computation of a beam
element with a single transverse crack was first introduced by
Gounaris and Dimarogonas (1988). Skrinar presented, in sym-
bolic forms, the stiffness (Skrinar and Umek, 1996) and geomet-
rical stiffness (Skrinar, 2007) matrices of a beam finite element
with an arbitrarily located single transverse crack. An exact solu-
tion for the uniform Euler–Bernoulli column in the presence of
multiple concentrated cracks, as modelled by means of Dirac’s
deltas, where the exact explicit expressions of the stability mode
shapes as functions of four integration constants only, was ob-
tained by Caddemi and Caliò (2008). Krawczuk et al. (2000) dis-
cussed the influence of the plastic zone ahead of the crack tip on
the flexibility of the element, thus presenting in closed forms the
inertia and stiffness matrices of the element with a mid-span
crack. A finite element scheme for computing the eigensystem
for a cracked beam for different degrees of closure was devel-
oped by Kisa and Brandon (2000).

Several different approaches were applied to obtain
closed-form solutions for the static transverse displacements
and stiffness matrix of a beam’s finite element having an
arbitrary number of transverse cracks: implementation of the
Dirac delta function either in regard to the rigidity (Biondi and
Caddemi, 2007), or flexibility (Palmeri and Cicirello, 2011);
sequential solutions of coupled differential equations (Skrinar,
2009); and the principle of virtual work (Skrinar and Pliberšek,
2012). All these solutions, although derived by different
mathematical methods, originate from the genuine governing
differential equation for the transverse displacements of cracked
Euler–Bernoulli beam.

This paper extends the utilisation principle of virtual work in
order to obtain a stiffness matrix and a load vector for a uniform
load over the whole element and displacements’ functions for
stepped-beams and beams with linearly-varying heights. Simple
and straightforward derivation steps allow for expressions to be gi-
ven as closed-form solutions.
These explicitly-written expressions not only facilitate the com-
putation but also allow for better examination of the cracks’ influ-
ences during the static analysis.

2. A multi-cracked multi-stepped beam finite element’s
mathematical model formulation

The discussed multi-stepped-beam finite element considers
slender elastic homogeneous Euler–Bernoulli beams subjected to
small deflections. The element of total length L is assumed to have
a uniform modulus of elasticity E and width b. It consists of a se-
quence of Ns consecutive elastic geometric sections, as shown in
Fig. 1. These sections are numbered from the left-end and each sec-
tion of the element is characterised by a different uniform thick-
ness hj (j = 1,2, . . . ,Ns). The location of the interface between the
section j and adjacent section j + 1 to the right is denoted as Lj

(with Lo ¼ 0 and LNs ¼ L).
Each section can be either non-cracked or cracked with an arbi-

trary number of transverse cracks. The cracks are described by a
massless rotational springs. Due to the localised effects of the
cracks, the adjacent non-cracked parts bordering each crack are
modelled as simple elastic sections connected by the rotational
spring.

Each crack is assumed to be open with a uniform depth di. The
spring constant Ki is a function of the corresponding non-cracked
cross-section’s height hj, the relative depth of the crack di = di/hj,
Poisson’s ratio , and the flexural rigidity EIj of the neigbouring
cracked cross-section j. The finite element has altogether Nc cracks
at locations (distances) Li from the left node (i = 1,2, . . . ,Nc).

The finite element has four degrees of freedom altogether:
transverse displacement Y1 and rotation U1 at the left-end (node
1), as well as transverse displacement Y2 and rotation U2 at the
right-end (node 2). Upward displacement and anticlockwise rota-
tions are taken as positive.

3. Derivation of stiffness matrix

The four columns of stiffness matrix are obtained from two sep-
arate derivations. Since the finite element has four degrees of free-
dom altogether, this consequently means that in order to obtain a
statically determinate structure, two degrees of freedom must be
simultaneously removed. In order to complete this, all the required
stiffness matrix coefficients are obtained from two cantilever sub-
structures: clamped at both the right and left-ends, respectively.

3.1. Cantilever clamped at the right-end

The derivation of the first two columns of stiffness matrix con-
siders a cantilever clamped at the right-end. The structure is sub-
jected to a vertical upward force Fn1 and an anticlockwise
bending moment Mn1 at the free end. Since this is a statically deter-
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minate structure, the distribution of bending moments due to the
applied loads can be obtained from basic equilibriums.

Transverse displacement Y1 and rotation U1 at the left-end due
to the acting loads are obtained by implementing the principle of
virtual work. Therefore, a virtual vertical upward force dx1 = 1
and virtual anticlockwise bending moment dx2 = 1 are individually
applied at the considered point. The required nodal transverse dis-
placement Y1 is afterwards obtained by integrating the diagrams of
bending moments for the structure subjected to the simulta-
neously applied force Fn1 and bending moment Mn1 , with the dia-
grams for the structure subjected to the virtual force dx1.
Consequently, the total displacement is a sum of displacements
from both loads:

Y1 ¼ Y1ðFn1 þMn1 Þ ¼ Y1ðFn1 Þ þ Y1ðMn1 Þ ð1Þ

Similarly, the nodal rotation U1 is obtained by integrating the
diagrams for the structure subjected to the applied loads, with
the moments’ diagram due to the applied virtual bending moment
dx2 = 1. The rotation also consists of contributions from both loads:

U1 ¼ U1ðFn1 þMn1 Þ ¼ U1ðFn1 Þ þU1ðMn1 Þ ð2Þ
3.1.1. Nodal transverse displacement and nodal rotation for a stepped-
beam

The cantilever utilised for the stepped-beam’s stiffness matrix
derivation is presented in Fig. 2. For this structure the total trans-
verse nodal displacement Yn1 is expressed as:

Y1 ¼ Fn1 �
XNs

i¼1

L3
i � L3

i�1

3 � EIi
þ
XNc

i¼1

L2
i

Ki

 !

�Mn1 �
XNs

i¼1

L2
i � L2

i�1

2 � EIi
þ
XNc

i¼1

Li

Ki

 !
ð3Þ

Evidently, the resulting displacement is the sum of those contribu-
tions from (stepped) elastic segments, as well as rotational springs.
By introducing damage coefficients a (depending solely on the
severity and locations of cracks):

aj ¼
XNc

i¼1

Lj
i

Ki
ð4Þ

geometric coefficients b (depending solely of the non-damaged
geometry of the beam):

bj ¼
XNs

i¼1

Lj
i � Lj

i�1

j � EIi
ð5Þ

and their combinations:

lj ¼ bj þ aj�1 ð6Þ

Eq. (3) can be rewritten in a very plain form as:

Y1 ¼ Fn1 � l3 �Mn1 � l2 ð7Þ
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Fig. 2. Multi-stepped and multi-damaged cantilever, subjected to nodal force Fn1

and bending moment Mn1 .
Similarly, the resulting nodal rotation Un1 for a stepped-cantilever is
also a total of those contributions from (stepped) elastic segments,
as well as the rotational springs. It is expressed as:

U1 ¼ �Fn1 � l2 þMn1 � l1 ð8Þ
3.1.2. Nodal transverse displacement and nodal rotation of a beam
with linearly varying height

An arbitrary variation of a cross-section’s height along the axis
of the element can be satisfactorily described as a stepped-beam
provided that the distances of the interface between two neigh-
bouring steps (i.e. lengths of geometric sections) are adequately se-
lected. Although in such situations the geometric coefficients b
evaluated by Eq. (5) represents approximations of the exact values
that would follow from exact integrals, these discrepancies can be
neglected from the engineering point of view.

Nevertheless, beams with linearly-varying heights are hereafter
studied separately, and the corresponding expressions are evaluated
analytically. The cantilever utilised for the derivation of the first two
columns of the beam’s stiffness matrix with linearly-varying
heights, is presented in Fig. 3. The linear variation of the element’s
height is given as with abbreviations g ¼ n� 1 and n ¼ hL

ho

� �
:

hðxÞ ¼ ho � 1þ g � x
L

� �
where ho and hL are the beam’s heights at the left and right-ends of
the finite element, respectively. It should be noted that for beams
with linearly-varying heights n – 1 and g – 0.

The transverse displacement Y1 (equivalent of Eq. (3)) is thus gi-
ven as:

Y1 ¼ Fn1 �
Z L

x¼0

x2

EIðxÞ � dxþ
XNc

i¼1

L2
i

Ki

 !
�Mn1

�
Z L

x¼0

x
EIðxÞ � dxþ

XNc

i¼1

Li

Ki

 !

where EI(x) is the cross section’s flexural rigidity as a function of
coordinate x. When comparing the last expression to Eq. (3) it be-
comes apparent that the terms considering damage parameters
are identical, thus demonstrating that damage coefficients a are
independent of beam’s height variation. Consequently, the last
equation can be rewritten in the form of Eq. (7) by implementing
already-presented damage coefficients a (Eq. (4)), in combination
with appropriate geometric coefficients b that correspond to beams
with linearly-varying heights. These coefficients are defined by the
general expression (i = 1,2,3):

bi ¼
12

E � b �
Z L

x¼0

xi�1

hðxÞ3
� dx ð9Þ

The separate coefficients are:
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Fig. 3. Multi-damaged cantilever with linearly varying height, subjected to nodal
force Fn1 and bending moment Mn1 .
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b1 ¼
L � ð1þ nÞ

2 � EIð0Þ � n2 ð10Þ

b2 ¼
L2

2 � EIð0Þ � n2 ð11Þ

b3 ¼
L3 � ðð4� 3 � nÞ � nþ 2 � n2 � LnðnÞ � 1Þ

2 � EIð0Þ � g3 � n2 ð12Þ

It should be noted that for an element with uniform height (g ¼ 0)
Eq. (12) becomes undetermined.

The implementation of Eqs. (10)–(12), together with Eq. (4) and
Eq. (6), enables the transverse displacement Y1 and nodal rotation
U1 of a cantilever with linearly-varying height to be evaluated by
Eqs. (7) and (8), respectively. Consequently, these two equations
allow for derivation of the coefficients of the first two columns of
the stiffness matrix to be completed simultaneously for both con-
sidered structures.

3.1.3. Derivation of the first two columns and rows of the stiffness
matrix

From these Eqs. (7) and (8), the nodal force Fn1 and moment Mn1

are now vice-versly expressed as functions of nodal displacement
Y1 and rotation U1:

Fn1 ¼
l1 � Y1 þ l2 �U1

v ð13Þ

Mn1 ¼
l2 � Y1 þ l3 �U1

v ð14Þ

with another abbreviation:

v ¼ l1 � l3 � l2
2 ð15Þ

The corresponding right support’s vertical reaction Fn2 (positive up-
wards) due to applied loads can now be evaluated from the basic
equilibrium as:

Fn2 ¼ �Fn1 ð16Þ

whilst the corresponding reaction bending moment Mn2 (positive
anticlockwise) at the same location due to applied loads can now
be evaluated as:

Mn2 ¼ Fn1 � L�Mn1 ð17Þ

By introducing Eqs. (13) and (14) into Eqs. (16) and (17) the reac-
tions are also expressed by nodal displacement Y1 and rotation
U1. Consequently, since the stiffness matrix represents the relation-
ship between nodal forces and nodal displacements, Eqs. (13), (14),
(16), and (17) can be utilised to obtain the first two columns (and
also the first two rows) of the stiffness matrix’s considered finite
element.

Therefore, by taking U1 ¼ 0 in Eqs. (13), (14), (16), and (17), the
coefficients of the first row and column of the stiffness matrix can
be obtained, whilst the coefficients of the second row and the col-
umn are obtained by using Y1 ¼ 0.

3.2. Cantilever clamped at the left-end

The process of the free-end’s vertical displacement and rotation
calculation is now repeated for a cantilever, clamped at the left-
end. This allows for the remaining third and fourth columns of
the stiffness matrix to be derived at (due to its symmetry, only
three coefficients are actually still unknown).

The structure is subject to a vertical upward-force Fn2 and an
anticlockwise bending moment Mn2 at the free right-end, and the
vertical displacement Y2 and the rotation U2 of the same end are
first expressed as functions of both applied loads. A virtual verti-
cally-upward force dx3 = 1 and a virtual anticlockwise bending mo-
ment dx4 = 1 are thus separately applied at the free-end, in order to
obtain transverse displacement and rotation of this point. The
transverse displacement Y2 due to both applied loads is thus ob-
tained by integrating the bending moment diagram due to the ap-
plied transverse force dx3 with the diagrams of moments due to
loads Fn2 and Mn2 :

Y2 ¼ Fn2 � ðl3 � 2 � L � l2 þ L2 � l1Þ þMn2 � ðL � l1 � l2Þ ð18Þ

In order to obtain rotation, the cantilever is further subjected to a
virtual bending moment dx4 at the right-end, and the rotation is ob-
tained by integrating the diagram due to applied bending moment
dx4 with the diagrams of bending moments due to loads:

U2 ¼ Fn2 � ðL � l1 � l2Þ þMn2 � l1 ð19Þ

The last two general expressions are applicable for stepped-
beams as well as beams with linearly-varying heights. From these
expressions the nodal force Fn2 and the moment Mn2 are vice versa
expressed as functions of nodal displacement Y2 and rotation U2:

Fn2 ¼
l1 � Y2 þ ðl2 � l1 � LÞ �U2

v ð20Þ

Mn2 ¼
ðl2 � l1 � LÞ � Y2 þ ðl3 � 2 � l2 � Lþ l1 � L

2Þ �U2

v ð21Þ

Furthermore, the reactions at the left-support, that can actually
serve for verification purposes only, are:

Fn1 ¼ �Fn2 ð22Þ

Mn1 ¼ �Mn2 � Fn2 � L ð23Þ

By taking Y2 ¼ 0 in Eqs. (20)–(23), the remaining coefficients of the
third row and the column of the stiffness matrix are obtained (to
obtain the missing coefficients of the stiffness matrix Eqs. (20)
and (21) are the only ones actually needed due to the symmetry
of the matrix), whilst the remaining coefficients of the fourth row
and the column are obtained by inserting U2 ¼ 0.

Finally, the complete stiffness matrix of the multi-cracked
stepped-beam’s finite element (MCSBFE) is thus generally written
as:

½KMCSBFE�¼
1
v �

l1 l2 �l1 l1 �L�l2

l2 l3 �l2 l2 �L�l3

�l1 �l2 l1 l2�l1 �L
l1 �L�l2 l2 �L�l3 l2�l1 �L l1 �L

2�2 �L �l2þl3

2
6664

3
7775

ð24Þ

Although this very compact form is simultaneously valid for
stepped-beams as well as beams with linearly- varying heights, it
should be noted that the b coefficients involved in the evaluation
of the matrix’s coefficients, actually differ for both types of struc-
ture. Additionally, if a beam with an arbitrary variation of cross-sec-
tional height along the beam’s axis is adequately modelled by a
sequence of steps, and the geometric coefficients b are evaluated
by Eq. (5), Eq. (24) can also be applied for such a situation.

It can be verified that, for a beam with an arbitrary number of

cracks and uniform height implementing bj ¼ Lj

j�EI

� �
the stiffness

matrix from Eq. (24), although now presented in much more com-
pact form, reduces into the form already presented by Skrinar and
Pliberšek (2012).

It should be further noted that for the case of multi-stepped
beams with multiple cracks Eq. (24), although derived at in an
essentially different way, produces identical results to those ma-
trixes already presented by Biondi and Caddemi (2007).
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4. Derivation of the load vector due to uniform load q over the
whole finite element

Similarly to the derivation of the stiffness matrix, the load vec-
tor’s coefficients are also formally derived from separate deriva-
tions on two structures.

A cantilever clamped at the right-end and subjected to a
uniformly-distributed load q (positive upwards) is considered
during the derivation of the load vector’s first two
coefficients.

The nodal transverse displacement Y1;q of the free-end is ob-
tained by integrating the diagram of the bending moments for
the structure subjected to the applied distributed load q, with
the diagram for the structure subjected to the virtual vertically-up-
ward force dx1:

Y1;q ¼
q
2
� l4 ð25Þ

For stepped-beams the geometric coefficient b4 that appears in Eq.
(25) is evaluated from Eq. (5), and for beams with linearly varying
heights, the coefficient takes the form:

b4 ¼
L4 � ð1� 6 � nþ 3 � n2 þ 2 � n3 � 6 � n2 � LnðnÞÞ

2 � EIð0Þ � g4 � n2 ð26Þ

Similarly, the nodal rotation U1;q of the free-end is obtained by inte-
grating the moment diagram for the structure subjected to the ap-
plied load q, with the diagram due to the applied virtual
anticlockwise bending moment dx2 = 1:

U1;q ¼ �
q
2
� l3 ð27Þ

The originally distributed load is, in the finite element model, re-
placed by concentrated nodal forces (Fn1 ;q and Fn2 ;q) and bending
moments (Mn1 ;q and Mn2 ;q), and the substituted loads must provide
identical nodal displacement and rotation to that of the genuine
one. Since the transverse nodal displacement and rotation due to
force Fn1 , and moment Mn1 are already known, Eqs. (7) and (8),
respectively, the substituted nodal force and moment are obtained
from a system of two linear equations:

q
2
� l4 ¼ Fn1 ;q � l3 �Mn1 ;q � l2

� q
2
� l3 ¼ �Fn1 ;q � l2 þMn1 ;q � l1

that yield the first two coefficients of the load vector as:

Fn1 ;q ¼
q
2
� wv ð28Þ

Mn1 ;q ¼
q
2
� kv ð29Þ

with abbreviations

w ¼ l1 � l4 � l2 � l3 ð30Þ

and

k ¼ l2 � l4 � l2
3 ð31Þ

The remaining two terms of the load vector can be derived at in a
similar manner from a cantilever clamped at the left-end. However,
these coefficients can also be determined from a simple static equi-
librium of a cantilever clamped at the right-end:

Fn2;q ¼
q
2
� 2 � L � v� w

v ð32Þ
Mn2;q ¼
q
2
� L � w� L2 � v� k

v ð33Þ

As for the stiffness matrix it should be noted that the b coefficients
required for the evaluation of load vector’s coefficients (Eqs. (28)–
(33)), are different for stepped-beams than for beams with line-
arly-varying heights.
5. Computation of exact transverse displacements along the
finite element

In current derivations the transverse displacements interpola-
tion (or shape) functions were not derived at for two reasons.
Firstly, they were unrequired, as the presented derivations were
accomplished completely without their utilisation. Secondly, stan-
dard interpolation functions are complete polynomials of the third
degree and their implementation, in those situations where either
the transverse-distributed load is applied or the beams have non-
uniform heights, does not produce accurate results. Therefore,
the governing differential equations solutions’ have to be consid-
ered in order to obtain the correct transverse displacements for
both the exposed situations.
5.1. Mathematical form of transverse displacement’s function

Generally, Nc cracks and Ns steps divide a stepped-beam into
altogether Nc + Ns elastic segments (for beams with linearly-vary-
ing heights Ns = 1) of various uniform heights. Every segment
(excluding the first and last) is bounded either by a crack or dis-
crete step at each end. The formal approach to transverse displace-
ment computation thus requires the solving of Nc + Ns coupled
governing differential equations (GDE), thus implementing four
kinematical boundary conditions and 4 � (Nc + Ns � 1) continuity
conditions.

However, the general mathematical forms of the GDE’s solu-
tions for each elastic segment of a stepped-beam or a beam with
linearly-varying heights, can be obtained in advance. For the ith
(i = 1,2, . . . ,Nc + Ns) elastic segment, the shear force Vi(x) can be
evaluated from the transverse continuous load q(x) as follows:

ViðxÞ ¼ Di þ q½1�ðxÞ ð34Þ

where q[m](x) denotes the mth anti-derivative of the transverse con-
tinuous load q(x) without a constant of integration, and Di repre-
sents a constant of integration. Furthermore, ith segment’s
bending-moment Mi(x) is expressed as (with Ci being constants of
integration):

MiðxÞ ¼ Ci þ Di � xþ q½2�ðxÞ ð35Þ

Eqs. (34) and (35) are applicable to both stepped-beams as well
as beams with linearly varying heights.

Although rotations ui(x) are obtained from bending-moments
(given by Eq. (35)) for both types of considered beams, their deri-
vations must be studied separately due to the inclusions of flexural
rigidity.

5.1.1. Stepped-beam
For a stepped-beam the relationship between the uith segment’s

bending-moment Mi(x) and the rotation ui(x) is given as:

MiðxÞ ¼ EIi �
duiðxÞ

dx
ð36Þ

where EIi is the uniform flexural rigidity of the ith elastic segment.
The rotations can thus be expresses as (with bi being the con-

stants of integration):



2532 M. Skrinar / International Journal of Solids and Structures 50 (2013) 2527–2541
uiðxÞ ¼ bi þ Ci � xþ
Di

2
� x2 þ q½3�ðxÞ

EIi
ð37Þ

The transverse displacements wi(x) are further obtained by inte-
grating the rotations. Therefore, the general mathematical form of
the GDE’s solution for each elastic segment of a stepped beam is a
complete polynomial of the third degree plus q½4� ðxÞ

EIi
. It has the gen-

eral form:

wiðxÞ ¼ ai þ bi � xþ ci � x2 þ di � x3 þ q½4�ðxÞ
EIi

ð38Þ

with four unknown coefficients (constants of integration ai, bi, ci and
di) that must be determined either from the boundary conditions of
the finite element (for i = 1) or the continuity conditions between
two consecutive elastic segments (for i > 1).

5.1.2. Beam with linearly-varying height
Generally, Nc cracks divide a beam with linearly-varying height

into Nc + 1 elastic segments. Each segment (excluding the first and
the last) is bounded by a crack at both ends. The formal approach
to transverse displacement computation thus requires solving (up
to) the Nc + 1 coupled governing differential equations (GDE),
implementing four kinematical boundary conditions and 4 � Nc

continuity conditions.
However, when initiating from Eq. (35) the relationship be-

tween the segment bending moment Mi(x) and the rotation ui(x)
for beams with linearly varying heights, is given as:

MiðxÞ ¼ EIðxÞ � duiðxÞ
dx

ð39Þ

The rotations are thus expressed as (where
R

represents anti-deriv-
ative without constants of integration which is given as Bi):

uiðxÞ ¼ Bi þ Ci �
Z

1
EIðxÞ � dxþ Di �

Z
x

EIðxÞ � dxþ
Z

q½2�ðxÞ
EIðxÞ � dx ð40Þ

Finally, the general mathematical form of the GDE’s solution for
each elastic segment of a beam with linearly-varying height can
be given as:

wiðxÞ ¼ Ai þ Bi � xþ Ci �
Z Z

1
EIðxÞ � dx

� �
� dxþ Di

�
Z Z

x
EIðxÞ � dx

� �
� dxþ

Z Z
q½2�ðxÞ
EIðxÞ � dx

� �
� dx ð41Þ

or in plain general form:

wiðxÞ ¼ Ai þ Bi � xþ Ci � o1ðxÞ þ Di � o2ðxÞ þ q4ðxÞ ð42Þ

with four unknown coefficients (constants Ai, Bi, Ci and Di).
The first two double integrals in Eq. (41) are load-independent.

The evaluation of the first yields:

o1ðxÞ ¼
L3

2 � EIð0Þ � ðLþ x � gÞ � g2 ð43Þ

Also the second double integral can be evaluated independently
from the distributed load:

o2ðxÞ ¼ �
L3 � L

Lþx�gþ 2 � Ln xþ L
g

� �
� SgnðgÞ

� �� �
2 � EIð0Þ � g3 ð44Þ

with Sgn denoting the sign (or signum) function.
The last double integral of Eq. (41) is load-dependent. For fre-

quent case q(x) = const = q it obtains the following form:

q4ðxÞ¼
L3 �q � 2 � ð3 �Lþx �gÞ �Ln xþ L

g

� �
�SgnðgÞ

� �
�L �SgnðgÞ�x �g � 2þ L

Lþx�g

� �� �
4 �EIð0Þ �g4

ð45Þ
5.2. Derivation of coefficients for first elastic segment

With the general expressions already known for the elastic seg-
ments of each type of considered beams, the coefficients for the
first elastic segment (between the left-node and the first crack or
step) can be obtained from boundary conditions rather than from
the system of coupled GDE that can be transformed into a system
of linear equations. The four boundary conditions consist of kine-
matical and mechanical conditions. Whilst the two kinematical
conditions (transverse displacement Y1 = w1(0) and rotation
/1 = /1(0)) are obtained from a global stiffness matrix and a load
vector of the structure, two mechanical conditions (shear force
V1(0) and bending-moment M1(0)) at the first element’s node are
afterwards obtained from the local element’s stiffness matrix and
load vector. These conditions allow for determining the transverse
displacement’s coefficients for the first elastic segment.

5.2.1. Stepped-beam
For a stepped-beam, each coefficient from Eq. (38) can be eval-

uated individually. They are given as follows:

a1 ¼ Y1 b1 ¼ U1 c1 ¼
M1ð0Þ
2 � EI1

d1 ¼
V1ð0Þ
6 � EI1

ð46Þ
5.2.2. Beam with linearly-varying height
For a beam with linearly-varying height the coefficients C1 and

D1 are evaluated first. They are given as follows:

C1 ¼ M1ð0Þ � q½2�ð0Þ ð47Þ

D1 ¼ V1ð0Þ � q½1�ð0Þ ð48Þ

where the terms q½2�ð0Þ and q½1�ð0Þ vanish for for q(x) = const = q.
With known coefficients C1 and D1 coefficient B1 follows from

Eq. (40) by introducing the known rotation U1 at the left-node:

B1 ¼ U1 þ C1 þ
D1 � L

g

� �
� L
2 � EIð0Þ � g�

Z
q½2�ðxÞ
EIðxÞ � dx

����
x¼0

ð49Þ

The last term in Eq. (49) is load-dependent, and for
q(x) = const = q it obtains the form:

Z
q½2�ðxÞ
EIðxÞ � dx

����
x¼0
¼

L3 � q � 3þ 2 � Ln L
jgj

� �� �
4 � EIð0Þ � g3 ð50Þ

Finally, the remaining coefficient A1 is obtained from known no-
dal transverse displacement Y1 as:

A1 ¼ Y1 � C1 � o1ð0Þ � D1 � o2ð0Þ � q4 ð51Þ
5.3. Derivation of coefficients for consecutive elastic segments

When the complete transverse displacement’s function for the
first elastic part is known, four continuity conditions allow for a
determination of the unknown constants (ai, bi, ci and di or Ai, Bi,
Ci and Di, i > 1) for the next successive neighbouring elastic part.

5.3.1. Stepped-beam
General forms that relate the coefficients ci and di (i > 1) of ith

elastic section with the coefficients ci�1 and di�1 of the preceding
neighbouring elastic section i � 1, do not depend on the type of
connection between sections (crack or discrete change of cross
section):

ci ¼ ci�1 �
EIi�1

EIi
ð52Þ
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di ¼ di�1 �
EIi�1

EIi
ð53Þ

It is further evident from Eqs. (52) and (53) that for a crack the
expressions reduce into ci = ci�1 and di = di�1.

However, the relationships between the coefficients ai and bi

(i > 1) of ith elastic section and the coefficients ai�1 and bi�1 of
the preceding neighbouring elastic segment depend on the type
of connection (crack or discrete change of cross section) between
the segments.

If a crack with rotational spring Kj separates elastic sections
i � 1 and i at distance Lj the relationships are given as (considering
EIi = EIi�1):

bi ¼ bi�1 þ
2 � ci�1 � EIi þ 6 � di�1 � EIi � Lj þ q½2�ðLjÞ

Kj
ð54Þ

ai ¼ ai�1 �
2 � EIi � Lj � ðci�1 þ 3 � Lj � di�1Þ þ Lj � q½2�ðLjÞ

Kj
ð55Þ

For a discrete-step-change of the cross-section at distance Lj the
relationships are given as:

bi ¼ bi�1 þ 2 � ðci�1 � ciÞ � Lj þ 3 � ðdi�1 � diÞ � L2
j þ

q½3�ðLjÞ
EIi�1

� q½3�ðLjÞ
EIi

ð56Þ

ai ¼ ai�1 þ ðci � ci�1Þ � L2
j þ 2 � ðdi � di�1Þ � L3

j þ
q½4�ðLjÞ
EIi�1

� q½4�ðLjÞ
EIi

� Lj � q½3�ðLjÞ
EIi�1

þ Lj � q½3�ðLjÞ
EIi

ð57Þ
b/h=0.1/0.3 m 

cross sections 

1 m2 m 1 m 2 m 1.5 m 1.5 m 

b/h=0.1/0.2 m b/h=0.1/0.25 m 

Fig. 4. First example structural setup.
5.3.2. Beam with linearly-varying height
If follows from the equivalences of the shear forces and bending

moments at the crack location Li between the elastic sections i � 1
and i that:

Di ¼ Di�1 ð58Þ

Ci ¼ Ci�1 ð59Þ

and, consequently, the relationships can be written as Di � D1 � D
and Ci � C1 � C.

The continuity condition for rotations further yields:

Bi ¼ Bi�1 þ
C þ D � Li�1 þ q½2�ðLi�1Þ

Ki�1
ð60Þ

Finally, the continuity condition for transverse displacements
yields:

Ai ¼ Ai�1 þ ðBi�1 � BiÞ � Li�1 ð61Þ

This procedure, during which all elastic sections’ coefficients can be
easily evaluated solely from its boundary conditions, is afterwards
repeated in sequence towards the last elastic part. The exact trans-
verse displacements of the complete finite-element are thus ob-
tained by basic mathematical operations, and neither the explicit
solving of coupled GDEs nor the solving of Nc + Ns systems of linear
equations with four unknowns, are required.

6. Numerical applications

The applicability of derived at expressions for stiffness matrix,
load vector, and transverse displacements’ functions is demon-
strated in three examples. The relevance of the discussed expres-
sion is confirmed by comparing the obtained results for
transverse displacements and the reactions at the supports to the
results from alternative 2D finite element models.
6.1. Example 1 – stepped multi-cracked beam

In first example, a 9 m long stepped multi-cracked beam was
analyzed. The beam under consideration had three stepped seg-
ments with piecewise constant rectangular cross-sections’ dimen-
sions, Fig. 4. The Young modulus of the material was E = 30 GPa
with Poisson’s ratio 0.3. Three cracks were introduced, located at
distances of 2 m, 4 m and 7.5 m from the left-end. The relative
crack-depth was taken to be d = 0.5 m for all cracks, as identical rel-
ative depths minimize the influence of the rotational spring-stiff-
ness definition on the results. The genuine definition given by
Okamura was selected from among all existing definitions for rota-
tional spring due to the fact that it is the only one that takes Pois-
son’s ratio into account. For the relative crack-depth of d = 0.5 this
definition also produces results which have been proved to be in
good agreement with those experimentally obtained values, as
presented by Vestroni (2009). The analysed beam was loaded with
a downward transverse uniform load q = 1 kN/m along the whole
element and three different combinations of boundary conditions
were studied. The computational model for all three structures
consisted of a single presented beam finite-element with just
two nodes, thus representing the smallest possible finite-element
computational model.

The stiffness matrix of the single multicracked stepped beam fi-
nite element (MCSBFE) was obtained from Eq. (24):

½K1�¼

64915:1096 312673:5571 �64915:1096 271562:4296
312673:5571 1802260:5914 �312673:5571 1011801:4224
�64915:1096 �312673:5571 64915:1096 �271562:4296
271562:4296 1011801:4224 �271562:4296 1432260:4442

2
6664

3
7775

The model had four degrees of freedom but by considering
known displacements or rotations at the boundaries of the struc-
ture, the discrete unknowns (vertical displacement and rotations)
at the nodes for all considered situations were evaluated from sys-
tems of up to two linear equations.

6.1.1. Simply supported beam
The stiffness matrix of the simply supported beam was obtained

by eliminating the first and third columns and rows of the ele-
ment’s stiffness matrix:

½Kss� ¼
1802260:5914 1011801:4224
1011801:4224 1432260:4442

� �

The unknown nodal rotations of both ends were thus obtained by
implementing the corresponding load vector obtained from Eqs.
(29) and (33):

fFg ¼
�9229:15419 Nm

6546:1719 Nm

	 


The vertical reactions/nodal shear-forces at both ends were further
evaluated over the element’s stiffness matrix and nodal rotations.

Since three cracks were introduced within three constant geo-
metric sections of the structure, six functions for six elastic regions
altogether had to be analysed in order to obtain vertical displace-
ment distributions along the structure. Due to a distributed load
that was applied to the structure, each region’s interpolation func-
tion following on from Eq. (38) was a complete polynomial of the



Table 1
Comparison of the results from two different computational approaches.

Parameter MCSBFE COSMOS/M
22,500 2D FE

Vertical reaction at the left support
(A)

4500 N 4500 N

Rotation at the left support (A) �1.2739 � 10�2 rad �1.265 � 10�2 rada

Vertical reaction at the right
support (B)

4500 N 4500 N

Rotation at the right support (B) 1.3570 � 10�2 rad 1.3393 � 10�2 rad⁄

Displacement at the first crack
location (x = 2 m)

�24.688 mm �24.436 mm

Displacement at first step (x = 3 m) �34.727 mm �34.511 mm
Displacement at the second crack

location (x = 4 m)
�41.789 mm �41.477 mm

Max. displacement �41.995 mm
(x = 4.287 m)

�41.691 mm
(x = 4.295 m)
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fourth degree. The following function for transverse displacements
between left node and first crack was obtained by the implemen-
tation of the boundary conditions for the left-end, into Eq. (46):

w1ðxÞ ¼ �1:27391 � 10�2 � xþ 1:11111 � 10�4 � x3 � 6:17284 � 10�6

� x4 0

6 x 6 2 m

The remaining functions for transverse displacements were further
obtained by the implementation of continuity conditions at discrete
steps and cracks, Eqs. (52)–(57):

w2ðxÞ ¼ �1:98035 � 10�3 � 1:17489 � 10�2 � xþ 1:11111 � 10�4 � x3

� 6:17284 � 10�6 � x4 2 m 6 x 6 3 m

Displacement at second step

(x = 6 m)
�34.671 mm �34.434 mm

Displacement at the third crack
location (x = 7.5 m)

�19.761 mm �19.474 mm

a

w3ðxÞ ¼ 8:70715 � 10�3 � 1:72906 � 10�2 � xþ 3:75 � 10�4 � x3

� 2:08333 � 10�5 � x4 3 m 6 x 6 4 m

Not computed directly but evaluated from displacements of neighbouring

nodes.

w4ðxÞ ¼ �4:0237 � 10�3 � 1:41079 � 10�2 � xþ 3:75 � 10�4 � x3

� 2:08333 � 10�5 � x4 4 m 6 x 6 6 m
2 m 4 m 6 m 8 m 10 m x [m] 0 

w5ðxÞ ¼ �4:35517 � 10�2 � 3:12789 � 10�3 � xþ 1:92 � 10�4 � x3

� 1:06667 � 10�5 � x4 6 m 6 x 6 7:5 m
22,500 2D FE 
1 MCSBFE 

v [m] 
-0.04

-0.03

-0.02

-0.01

Fig. 5. Comparison of transverse displacements from both applied models.
w6ðxÞ ¼ �5:2145 � 10�2 � 1:98211 � 10�3 � xþ 1:92 � 10�4 � x3

� 1:06667 � 10�5 � x4 7:5 m 6 x 6 9 m

The remaining unused four boundary conditions at the right-end
served for verification purposes only.

The considered structure was furthermore modelled through
2D plane finite elements by implementing the COSMOS/M finite
element program. In similar 2D FE models where crack propaga-
tion has been studied the mesh-density increased within the vicin-
ity of a crack, and crack-tip stress singularity was commonly
modelled by eight singular triangular elements placed around the
crack-tip (Sadowski et al., 2009). However, since in the considered
example non-propagation of cracks was assumed, uniform quadri-
lateral elements were implemented. The transverse displacements
and reactions were obtained from a computational model consist-
ing of 22,500 2D eight noded rectangular elements with almost
70,000 nodal points. In each node, two degrees of freedom were ta-
ken into account – vertical and horizontal displacements. Vertical
and horizontal displacements were obtained in discrete points by
solving approximately 140,000 linear equations.

The results for several significant discrete parameters (trans-
verse displacements, rotations and reactions) from both applied
computational models were compared and are summarized in Ta-
ble 1. The table shows that the MCSBFE’s values for vertical reac-
tions in the supports are identical to the values from the basic
static analysis. Furthermore, it is evident from the table that the
displacement discrepancies at the elements’ steps are smaller than
those at the cracks. Furthermore, the cracks’ discrepancies are
somewhat higher for both cracks closer to the supports. Neverthe-
less, the matching of the results is very good. The maximum dis-
crepancy of the displacements (appearing at the location of third
crack) is slightly smaller than 1.5%, and the error at maximum dis-
placement’s location is slightly smaller than 0.75%.

The comparison between transverse displacements along the
axis obtained by both implemented approaches is given in Fig. 5,
where only very small discrepancies are noticeable (the results
from MCSBFE are slightly higher than those from the 2D plane fi-
nite elements model).
6.1.2. Propped cantilever
This structure was obtained by fully clamping the left-end of

the element from the previous case. By considering zero rotation
at the left-node, as well as zero transverse displacements at both
ends, the discrete value of the rotation 2 at the right-node was eval-
uated from a single linear equation:

1432260:4442 �U2 ¼ 6546:1719

This single value allowed for the computation of nodal vertical reac-
tion forces and bending moment as well as the distribution of trans-
verse displacements along the longitudinal axis of the structure. In
addition, also this example was analyzed implementing the compu-
tational model with 22,500 2D quadrilateral plane finite elements.
Fig. 6 thus represents the distribution of transverse displacements
from both computations. Furthermore, the discrete values of some
representative quantities are summarized in Table 2.

It is evident from Table 2 that the implementation of GDE solu-
tions (in the form of Eq. (38)) reflects an obvious agreement of the
results, as the absolute maximum difference in displacement –
appearing at the third crack – is smaller than 1.3%. The difference
at the maximum displacement’s location is smaller than 0.6%. Ex-
cept for the first crack, the results from MCSBFE slightly overvalue
those from the 2D FE model.

For the vertical reactions, the maximum difference is smaller
than 0.10%, whilst the difference for bending-moment in the left-
support is smaller than 0.15%.
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Fig. 6. Comparison of transverse displacements from both applied models.

Table 2
Comparison of results for the second case using two different computational
approaches.

Parameter MCSBFE COSMOS/M
22,500 2D FE

Vertical reaction at the left support 6039.290 N 6037.286 N
Bending moment at the left support 13853.611 Nm 13833.495 Nm
Vertical reaction at the right support 2960.710 N 2963.000 N
Rotation at the right support 4.5705 � 10�3 rad 4.533 � 10�3 rada

Displacement at the first crack
location (x = 2 m)

�3.011 mm �3.032 mm

Displacement at first step (x = 3 m) �6.244 mm �6.208 mm
Displacement at the second crack

location (x = 4 m)
�9.402 mm �9.308 mm

Max. displacement �10.771 mm
(x = 5.233 m)

�10.710 mm
(x = 5.245 m)

Displacement at second step (x = 6 m) �10.152 mm �10.103 mm
Displacement at the third crack

location (x = 7.5 m)
�6.483 mm �6.402 mm

a Not computed directly but evaluated from displacements of neighbouring
nodes.

Table 3
Comparison of results for the third case using different computational approaches.

Parameter MCSBFE COSMOS/M
22,500 2D FE

Vertical reaction at the left support 9000 N 9001.24 N
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6.1.3. Cantilever, clamped at left-end
The stiffness matrix of the cantilever, clamped at left-end was

obtained by eliminating the first and second columns and rows
of the element’s stiffness matrix:

½Kc� ¼
64915:1096 �271562:4296
�271562:4296 1432260:4442

� �

The unknown nodal transverse displacement and rotation of free
end were thus obtained by implementing the load vector:

fFg ¼
�4201:8909 N
6546:1719 Nm

	 


The reactions at the clamped end were further evaluated over the
element’s stiffness matrix and free-end nodal transverse displace-
ment and rotation.
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Fig. 7. Comparison of transverse displacements from both applied models.
As in previous cases, this example was also analysed by imple-
menting the computational model with 22,500 2D quadrilateral
plane finite elements, and Fig. 7 represents the distribution of
transverse displacements from both computations. Furthermore,
the discrete values of some representative quantities are summa-
rized in Table 3.

It is evident from Fig. 7, as well as from Table 3, that the differ-
ences in the displacement’s increase from clamped left-end to-
wards the free-end. At the right-end the maximum differences
appear for displacement as well as rotation (2.258% and 2.257%,
respectively). Although these discrepancies appear to be slightly
higher than those for the previous two cases, it should be noted
that 1.029% and 1.108% errors already appear for the non-cracked
structure when comparing maximal displacements and rotations,
respectively. It should be additionally noted that the differences
in MCSBFE’s results against 2D results nonlinearly increases from
the left-end. The error at the first crack (where displacement is
unaffected by the cracks) is just 0.18%, whilst at the first step’s dis-
placement (which is already influenced by the first crack) the dis-
crepancy had already increases to 1.25%. This indicates that the
results in this example are very sensible for the rotational spring’s
stiffness.

6.2. Example 2 – cracked cantilever with linearly-varying height

In the second example, a multicracked cantilever beam with lin-
early-varying height of length L = 8 m was considered, Fig. 8.

The material properties were taken as E = 30 GPa and = 0.1. The
cross-section was a rectangle with width b = 0.1 m where the
height h was linearly decreasing from h = 0.6 m at the left-end to
h = 0.3 m at the right-end.

Three transverse cracks were located at distances 2 m, 4 m and
6 m from the left, clamped end. As in first example, just in order to
avoid discussion about the rotational stiffness definition and to
minimize its influence on the results, the relative crack depth of
0.5 was considered for all cracks. Further, Okamura’s definition
was once more utilised for the rotational spring stiffness
evaluation.

The stiffness matrix of the single MCSBFE was obtained from Eq.
(24) by implementing the corresponding geometric coefficients b,
Eqs. (10)–(12):

½K1�¼

373696:7225 1884013:4001 �373696:7225 1105560:3798
1884013:4001 11009897:9066 �1884013:4001 4062209:2942
�373696:7225 �1884013:4001 373696:7225 �1105560:3798
1105560:3798 4062209:2942 �1105560:3798 4782273:7439

2
6664

3
7775
(A)
Bending moment at the left support

(A)
40500 Nm 40502 Nm

Displacement at the first crack
location (x = 2 m)

�10.321 mm �10.3400 mm

Displacement at first step (x = 3 m) �24.966 mm �25.282 mm
Displacement at the second crack

location (x = 4 m)
�45.119 mm �45.988 mm

Displacement at second step
(x = 6 m)

�110.007 mm �112.540 mm

Displacement at the third crack
location (x = 7.5 m)

�164.716 mm �168.530 mm

Displacement at the right end �220.525 mm �225.620 mm
Rotation at the right end �3.7242 � 10�2 rad �3.81 � 10�2 rada

a Not computed directly but evaluated from displacements of neighbouring
nodes.
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Fig. 8. The second example setup.

Table 4
The coefficients required for calculating the stiffness matrix and transverse
displacements.

Coefficient Value Coefficient Value

ao 2.171339814 � 10�7 a1 9.650151029 � 10�7

a2 4.840932046 � 10�6 a3 2.605295113 � 10�5

b1 4.444444444 � 10�7 b2 2.370370370 � 10�6

b3 1.465057133 � 10�5 b4 9.641260881 � 10�5

C �8000 D 10000
B1 �3.5555556 � 10�3 A1 �0.2292690
B2 3.25405812 � 10�3 A2 �0.2286660
B3 2.9804771 � 10�3 A3 �0.2275716
B4 2.7834988 � 10�3 A4 �0.2263898

2 m 4 m 6 m 8 m 

14,400 2D FE 
1 MCSBFE 

v [m] 

x [m] 
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Fig. 9. Comparison of transverse displacements from both applied models.
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Two load cases were analysed: the vertical concentrated downward
force F at the free-end and the vertical uniform continuous down-
ward load q over the whole length.

By considering the boundary conditions at the left-node, the
discrete value of the displacement and rotation were evaluated
at the right-node using a system of two linear equations:

373696:7225 �1105560:3798
�1105560:3798 4782273:7439

� �
�

u2

U2

	 

¼ fFg

where {F} represents the load case’s corresponding load vector.

6.2.1. First load case – vertically concentrated downward force F
In the first load case the structure was loaded by a vertical

downward force 1000 N at the free-end. The load corresponding
load vector could be established directly and had the following
form:

fFg ¼
�1000 N

0

	 


The obtained discrete values of vertical displacement and rotation
of the free end further allowed for the computation of nodal vertical
reaction force and bending moment of the clamped-end as well as
the distribution of transverse displacements along the longitudinal
axis of the structure.

The structure had three cracks. Consequently, four elastic re-
gions had to be analysed in order to obtain vertical displacements’
distribution along the structure. The complete cantilever was thus
divided into four elastic segments (each of 2 m length). The trans-
verse displacements functions for each elastic region were ob-
tained in the form of Eq. (42), with the following terms:

o1ðxÞ ¼ �
3:7925926 � 10�5

x� 16

o2ðxÞ ¼
6:0681481 � 10�4

16� x
þ 7:5851852 � 10�5 � Lnð16� xÞ

q4ðxÞ ¼ 0

Furthermore, to complete the transverse displacements functions
10 coefficients (C, D, Ai and Bi, i = 1, . . . ,4) remained to be obtained.

Known values for bending moment and shear force at the left-
node initially allowed for the determination of coefficients C and
D from Eqs. (49) and (51), respectively. Since Di � D and Ci � C
these two values were further valid for all remaining segments.

Afterwards, known nodal rotation and displacement at the left-
node further allowed for the determination of coefficients B1 and
A1 from Eqs. (58) and (59), respectively. Further by implementing
Eqs. (60) and (61) the remaining coefficients Ai and Bi were sequen-
tially evaluated for the second and also all further segments, in a
very straightforward manner. All the calculated coefficients are gi-
ven in Table 4.

This structure was also analysed by implementing the COSMOS/
M finite element program. The computational model consisted of
14,400 2D quadrilateral plane finite elements with almost 45,000
nodal points. In each node, two degrees of freedom were taken into
account – vertical and horizontal displacements. The model’s ver-
tical and horizontal displacements were obtained in discrete points
by solving approximately 90,000 linear equations.

Fig. 9 thus represents the distribution of transverse displace-
ments from both analysis. Furthermore, the discrete values of some
representative quantities are summarized in Table 5.

It is evident from Fig. 9 that the implementation of GDE solu-
tions (in the form of Eq. (42)) reflects an excellent agreement of
the results, as no discrepancies are visually detectable. The abso-
lute difference for displacement increases according to the dis-
tance from the clamped-end. The maximum difference which
appears at the free-end is about 0.31%, whilst the difference at first
crack is about 0.18%.

The considered cantilever was further modelled as a stepped-
beam implementing various distances of the interface between
two neighbouring steps. The geometric coefficients b were evalu-
ated by the genuine Eq. (5), thus representing approximations of
the exact values that would follow from exact integrals (Eqs.
(10)–(12) and (26)). This study was accomplished for two reasons.
The first, and also the main reason, was that in this way the partic-



Table 5
Comparison of the results for the second example’s first load case using different
computational approaches.

Parameter MCSBFE COSMOS/M
14,400 2D FE

Vertical reaction at the left
support (A)

1000 N 1000.13 N

Bending moment at the left
support (A)

8000 Nm 7999.79 Nm

Displacement at the first crack
location (x = 2 m)

�0.3085 mm �0.3080 mm

Displacement at the second crack
location (x = 4 m)

�1.881 mm �1.877 mm

Displacement at the third crack
location (x = 6 m)

�4.693 mm �4.679 mm

Displacement at the right end �8.466 mm �8.440 mm
Rotation at the right end �1.9572 � 10�3 rad �1.9507 � 10�3 rada

a Not computed directly but evaluated from displacements of neighbouring
nodes.

Table 7
The coefficients required for calculating of transverse displacements.
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ularly derived expressions for the geometric coefficients b were
indirectly verified. The second reason was to demonstrate that in
such models the discrepancies of the results can be neglected from
the engineering point of view if the lengths of geometric sections
are adequately selected. Therefore, Table 6 summarises the results
from several situations differing in the number of geometric sec-
tions. In each presented situation, the cantilever was divided into
segments of equal length.

It is clear from Table 6 that the convergence of all results (coef-
ficients b as well as of the displacement at the right, free end) is
obvious. It is further clear that the results converge towards the re-
sults obtained by implementing exact analytical expressions for b
coefficients. The discrepancy against exact results evidently de-
creases simultaneously with any increase in the segments’ num-
ber. Thus, by solely implementing 3 segments the error decreases
below 3%, whilst the implementation of 5 segments yields an error
just slightly higher than 1%. In conclusion, by implementing 10 or
more segments the discrepancy obtained is 0.257% or less, which
can already be neglected from the engineering point of view.

There is an additional significance apparent from the table. A
very detailed approximation with short step lengths (less than
1 mm) namely shows that the solutions are numerically stable
even when the distance between the two consecutive steps is
diminishing.
Coefficient Value Coefficient Value

C �32000 D 8000
B1 �0.1383382 A1 3.4407477
B2 �0.1392427 A2 3.4425566
B3 �0.1397898 A3 3.4447453
B4 �0.1399868 A4 3.4459272
6.2.2. Second load case – vertical uniform continuous downward load
q

In the second load case the structure was loaded by a down-
ward vertical uniform load q = 1000 N/m along the complete struc-
Table 6
Convergence of the coefficients b and displacement at the right end.

n b1 b2

1 3.511659808 � 10�7 1.404663923 � 10�6

2 4.139786200 � 10�7 2.041586870 � 10�6

3 4.299527517 � 10�7 2.212272425 � 10�6

4 4.360752311 � 10�7 2.278675114 � 10�6

5 4.390193077 � 10�7 2.310807013 � 10�6

10 4.430639689 � 10�7 2.355169766 � 10�6

20 4.440977524 � 10�7 2.366550022 � 10�6

50 4.443889025 � 10�7 2.369758200 � 10�6

100 4.444305564 � 10�7 2.370217295 � 10�6

500 4.444438889 � 10�7 2.370364247 � 10�6

1000 4.444443056 � 10�7 2.370368840 � 10�6

2000 4.444444097 � 10�7 2.370369988 � 10�6

5000 4.444444389 � 10�7 2.370370309 � 10�6

10000 4.444444431 � 10�7 2.370370355 � 10�6
ture. The load vector for this load case was obtained (from Eqs. (32)
and (33)) in the following form:

fFg ¼
�3478:637587 N
3892:747600 Nm

	 


It allowed for evaluating the discrete value of the vertical displace-
ment and rotation of the free-end. The element’s stiffness matrix
and the vector of nodal displacements and rotations further allowed
for evaluation of nodal forces and moments and, consequently, the
reactions at clamped end. These values additionally allowed for
evaluation of transverse displacements between the nodes.

The structure had three cracks and, consequently, four elastic
segments had to be analysed in order to acquire vertical displace-
ments’ distribution along the structure. Due to the presence of con-
tinuous load in this load case the term q4(x) in Eq. (42) had to be
reevaluated and then obtained the form:

q4ðxÞ ¼ �3:7925926 � 10�2 � x� 1:8204444 � Lnð16� xÞ

þ 4:8545185þ 3:7925926 � 10�2 � ð16 � xþ x2Þ � Lnð16� xÞ
x� 16

Furthermore, for the complete structure 10 coefficients (C, D, Ai and
Bi, i = 1, . . . ,4) remained to be obtained.

Known values for bending moment and shear force at the left-
node allowed for the determination of coefficients C and D,
respectively.

After that, known nodal rotation and displacement at the left-
node further allowed for the determination of coefficients B1 and
A1, respectively. Further, by implementing Eqs. (60) and (61) the
remaining coefficients Ai and Bi were sequentially evaluated for
the second and also all further segments. All the calculated coeffi-
cients are given in Table 7.

The distributions of transverse displacements from both com-
putational models are compared in Fig. 10. Furthermore, the dis-
crete values of some representative quantities are summarized in
Table 8. It is apparent from Fig. 10 and also Table 8 that the simpli-
fied model produces excellent results also for the distributed load.
b3 b4 Displacement

7.491540924 � 10�5 4.494924554 � 10�5 �10.7888 mm
1.191692301 � 10�5 7.458691718 � 10�5 �9.0434 mm
1.329877055 � 10�5 8.529058107 � 10�5 �8.7167 mm
1.385801169 � 10�5 8.981287673 � 10�5 �8.6053 mm
1.413303354 � 10�5 9.207745201 � 10�5 �8.5546 mm
1.451753166 � 10�5 9.528892477 � 10�5 �8.4882 mm
1.461707195 � 10�5 9.612905526 � 10�5 �8.4718 mm
1.464520056 � 10�5 9.636712058 � 10�5 �8.4672 mm
1.464922825 � 10�5 9.640123246 � 10�5 �8.4666 mm
1.465051760 � 10�5 9.641215370 � 10�5 �8.4664 mm
1.465055789 � 10�5 9.641249503 � 10�5 �8.4664 mm
1.465056797 � 10�5 9.641258036 � 10�5 �8.4664 mm
1.465057079 � 10�5 9.641260426 � 10�5 �8.4664 mm
1.465057119 � 10�5 9.641260767 � 10�5 �8.4664 mm
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Fig. 10. Comparison of transverse displacements from both applied models.

Table 8
Comparison of the results for the second example’s second load case using different
computational approaches.

Parameter MCSBFE COSMOS/M
14,400 2D FE

Vertical reaction at the left
support (A)

8000 N 8001.785 N

Bending moment at the left
support (A)

32000 Nm 32004.998 Nm

Displacement at the first crack
location (x = 2 m)

�1.129 mm �1.141 mm

Displacement at the second crack
location (x = 4 m)

�6.040 mm �6.052 mm

Displacement at the third crack
location (x = 6 m)

�13.432 mm �13.424 mm

Displacement at the right end �21.832 mm �21.791 mm
Rotation at the right end �4.2332 � 10�3 rad �4.2123 � 10�3 rada

a Not computed directly but evaluated from displacements of neighbouring
nodes.

Table 9
Comparison of the representative values for first frame structure.

Parameter MCSBFE’s Standard FEs COSMOS/M

No. elements 3 8 16980
No. nodes 4 9 52961
No. equations 6 21 105770
Displacement uB 9.700 mm 9.703 mm 9.830 mm
Displacement uC 9.712 mm 9.712 mm 9.841 mm
Force HA 6792.303 N 6792.336 N 6771.320 N
Moment MA 11532.497 Nm 11532.655 Nm 11360.490 N
Force HD 3207.697 N 3207.664 N 3228.630 N
Moment MD 3768.863 Nm 3768.863 Nm 3798.107 N
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Although the absolute differences for displacements are compara-
ble to those for the concentrated load’s case, the maximum differ-
ence (which appears at the first crack) is 1.03% which is slightly
higher (whilst the difference at maximal displacement is about
0.19%).
6.3. Example 3 – simple cracked-frame structures

In the third example, three multi-cracked 1 bay frames were
considered. The frames studied differed not only in the geometries
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0.40 m

3.99 m 

0.1 m
5000 N 

0.40 m 

0.40 m 

0.40 m 

0.40 m 

0.40 m 0.15 m 

0.20 m 

4.35 m

A

B 

Fig. 11. Frame structure with tw
of the columns but also in the locations of cracks. The material
properties were taken as E = 30 GPa, = 0.3, whilst the cross-sec-
tional width was b = 0.1. The load for each frame consisted of
two horizontal forces F = 5000 N.

Each frame structure was analyzed using three different com-
putational models. The first model consisted of three beam finite
elements. The non-cracked horizontal beam was modelled by stan-
dard Euler–Bernoulli beam finite element, whilst the columns were
modeled either as multi-stepped elements or elements with line-
arly-varying heights. This model thus represents the smallest com-
putational model as only three finite elements were utilised. The
second computational model solely consisted of standard Euler–
Bernoulli beam finite elements (with a single crack where re-
quired). Whilst for the multi-stepped columns the number of beam
finite elements was equal to the number of steps, the columns with
linearly-varying heights were modelled by a series of finite ele-
ments of uniform heights in order to simulate the actual variation
of height. The last model consisted of 2D quadrilateral plane finite
elements implementing the COSMOS/M finite element program.
6.3.1. First frame structure – two multi-stepped columns
The first frame structure consisted of two different multi-

stepped columns with seven cracks altogether, each with 0.5 rel-
ative depths (Fig. 11). In both beam finite-element models, the
columns were assumed to be of 2.5 m in length, whilst the
adopted length for the beam was 4.175 m. The model’s data
(number of finite elements, number of nodes, number of equa-
tions), as well as some representative results (horizontal dis-
placements of beam’s ends and the reactions at the supports)
are summarised in Table 9.
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Fig. 12. Frame structure with multi-stepped column and column with linearly-varying height.

Table 10
Comparison of the representative values for second frame structure.

Parameter MCSBFE’s Standard FEs COSMOS/M

No. elements 3 104 15900
No. nodes 4 105 49681
No. equations 6 309 99218
Displacement uB 7.102 mm 7.101 mm 6.908 mm
Displacement uC 7.102 mm 7.101 mm 6.908 mm
Force HA 5012.686 N 5012.370 N 4867.894 N
Moment MA 8488.781 Nm 8488.250 Nm 8104.225 Nm
Force HD 4987.314 N 4987.630 N 5131.030 N
Moment MD 9057.225 Nm 9057.418 Nm 9100.440 Nm
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Table 9 shows that the results from both line finite elements’
models clearly converge. It is further evident that the disagreement
of the results from 1D and 2D models is relatively small as maxi-
mum discrepancy (which appears with the bending-moment in
the left support) is just slightly higher than 1.5%.

The non-cracked structure was also analysed implementing all
three considered models and the agreement of the results (not pre-
sented) between 1D and 2D models was evidently even better.
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Fig. 13. Frame structure with two colu
6.3.2. Second frame structure – multi-stepped column and column
with linearly-varying height

The second frame structure consisted of a multi-stepped col-
umn and a column with linearly-varying height (Fig. 12). This
structure was obtained by replacing the multi-stepped right col-
umn from the previous frame structure by a column with line-
arly-varying height. Altogether six cracks were introduced to the
structure and the adopted length for the beam was 4.225 m. In
the second computational model, 100 beam finite elements of
equal length and uniform heights were implemented to model
the right column. The model’s data, as well as some representative
results are summarised in Table 10.

Similarly to the first frame structure it is evident from Table 10
that the results from both line finite elements’ models clearly con-
verge. However, it is further evident that the disagreement of the
results from the 1D and 2D models is now slightly higher. Thus
the maximum discrepancy for the displacement is 2.80%, whilst
the maximum error for horizontal reaction (appearing at the left
support) is 2.97%. Maximum discrepancy, again appearing at the
bending moment in left support is 4.75%, which is now higher.

However, it should be mentioned that even when the non-
cracked structure was analysed when implementing all three con-
sidered models, the agreement of the results (not presented)
0.3 m 

5000 N 0.1 m

0.60 m 

0.1 m

0.60 m 

0.60 m 

0.60 m 

0.1 m 

D

C

mns with linearly-varying height.



Table 11
Comparison of the representative values for third frame structure.

Parameter MCSBFE’s Standard FEs COSMOS/M

No. elements 3 201 14700
No. nodes 4 202 46046
No. equations 6 300 91988
Displacement uB 6.906 mm 6.908 mm 6.655 mm
Displacement uC 6.907 mm 6.909 mm 6.657 mm
Force HA 5117.479 N 5115.666 N 5008.542 N
Moment MA 8625.486 Nm 8618.330 Nm 8313.368 Nm
Force HD 4882.521 N 4884.334 N 4991.620 N
Moment MD 8850.031 Nm 8852.595 Nm 8828.633 Nm
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amongst the 1D and 2D models was essentially no better. This indi-
cates that the level of discrepancies is not influenced solely by
cracks and their modellings, but also by the modelling details of
the connection between the beam and columns with linearly-vary-
ing height.

6.3.3. Third frame structure – two columns with linearly-varying
height

In the last frame structure the multi-stepped left column from
the second frame structure was replaced by a column with line-
arly-varying height. The geometry of the newly-introduced column
differed from the geometry of the right column (Fig. 13). Altogether
six cracks were introduced to the structure and the adopted length
for the beam was 4.225 m. In the second computational model
each column was modeled by 100 beam finite elements of equal
length and uniform heights. The model’s data, as well as some rep-
resentative results are summarized in Table 11.

Similarly to the both previously examined frame structures, it is
evident from Table 11 that the results from both line finite ele-
ments’ models again clearly converge. Further, the discrepancies
of the results from the 1D and 2D models are somewhat compara-
ble to the second frame structure. The maximum discrepancy for
the displacement is now slightly higher (3.78%) whilst the discrep-
ancies for horizontal reaction and bending moment are smaller.
Thus, the maximum errors for horizontal reaction (appearing at
right support) and the bending moment (in left support) are
2.19% and 3.75%, respectively.

The 1D and 2D models also produced similar levels of discrep-
ancy for the non-cracked structure.

7. Conclusions

This paper studied multi-cracked slender-beams with the trans-
verse cracks represented by means of internal hinges endowed by
rotational springs. This simplified model was utilised for the deri-
vation of a corresponding beam finite-element of a stepped
cracked beam. The stiffness matrix, as well as the load vector due
to a uniform continuous load were derived at by implementing
the principle of virtual work. Despite the derivation’s straightfor-
wardness, all the obtained terms are written entirely in closed-
symbolic forms that make the geometric as well as the damage
parameters clearly observable. The provided expressions for geo-
metric coefficients can even be numerically evaluated for any geo-
metric variation of the beam’s height, thus allowing the
computational model to be expanded further than just stepped
beams.

In the cases of multi-stepped beams with multiple cracks, the
presented stiffness matrix, derived at by implementing the princi-
ple of virtual work, produces identical results to the solutions al-
ready proposed in the literature by other authors who have
implemented different approaches. Therefore, in order to expand
the topics, those beams with linearly-varying heights that appear
more frequently, are also covered separately.
The derived at expressions introduced further new insights. The
presented expressions namely condensed the complete damage
parameters’ impact into four coefficients only. Furthermore, the
beam’s geometric parameters are also covered by an additional
four coefficients. These eight coefficients are clearly observable
within the stiffness matrix and the load vector. The presented solu-
tions clearly show that the geometric coefficients are dependable
of the beam’s height variation, whilst the damage coefficients are
the same for arbitrary height’s geometry. In addition, as just three
damage coefficients impact on the stiffness matrix, this might even
open-up new perspectives for the inverse identification of cracks.

The derivations implemented did not require any transverse
displacements’ shape-functions. Therefore, to complete the subject
a computation of the considered model’s accurate displacement
functions was further accomplished where the expressions for
stepped beams and beams with linearly-varying heights were de-
rived at. Again, all the terms for both types of beams are presented
in closed-forms that facilitate their implementation.

Three numerical examples follow the derivations. They demon-
strated that elaborated solutions may be effectively implemented
for structural analyses as the presented expressions produced
excellent results that were confirmed independently by more thor-
ough 2D models.

The derived at expressions thus offer – although short and com-
pact – a reliable and efficient computational model. The presented
finite element is consequently an optimum alternative for model-
ling any flexural cracks of beams and columns which is, for exam-
ple, required by the European earthquake engineering design code
EC8. The presented solutions are namely more efficient than both
the alternative numerical solutions already available and allowed
by the code. In comparison with detailed 2D and 3D models the
solutions presented offer better computational efficiency without
any essential lack of results’ accuracy, whilst in contrast to the sim-
ple reduction of beam element’s flexural rigidity they offer much
better accuracy without any increase of the computational model.

The presented finite element can also be implemented within
pushover analysis of a frame-type structure (in conjunction with
concentrated plasticity’s theory). Since the models allow for the lo-
cal reduction of flexural rigidity this property can be implemented
to model potential plastic hinges within an existing computational
model with neither increase of the computational model nor addi-
tional remeshings.

Finally, as just three damage coefficients impact on the stiffness
matrix, this might even open-up new perspectives for the inverse
identification of multiple cracks.
References

Bamnios, Y., Douka, E., Trochidis, A., 2002. Crack identification in beam structures
using mechanical impedance. J. Sound Vib. 256 (2), 287–297.

Biondi, B., Caddemi, S., 2007. Euler–Bernoulli beams with multiple singularities in
the flexural stiffness. Eur. J. Mech. A/Solids 26 (5), 789–809.
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