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INTRODUCTION

MV-algebras were defined by C. C. Chang [6] as algebras corresponding
to the Lukasiewicz infinite valued propositional calculus. In [12], D.
Mundici established a categorical equivalence between the category of
MV-algebras and the category of abelian I-groups with strong unit, and in
[10] A. Di Nola and A. Lettieri proved that the category of perfect
MV-algebras [2] is equivalent with the category of abelian I-groups.

Using the Mundici functor I, a concept of convergence in MV-algebras
was studied in [11] related to the order-convergence in abelian I-groups [9].

The aim of this paper is to investigate how the Di Nola—Lettieri functors
2 and A [10] allow us to study the convergence in perfect MV-algebras.

We refer to [6], [10], and [12] for all the unexplained notions and results
on MV-algebras.
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1. PRELIMINARIES ON MV-ALGEBRAS AND [-GROUPS

Let{A, ®,-, ,0,1) be an MV-algebra. For x, y € 4 denote xy instead
of x -y and define

xXVy=xy @y, xAy=(xoy)y. (1)

Thus (A4, VvV, A,0,1) is a bounded distributive lattice. The distance func-
tiond: A*> > A is defined by d(x, y) = xj @ Xy. The following properties of
d can be found in [6]:

d(x,y) =0 iff x =y, (2)
d(x,0) =x, d(x,1) =%, (3)
d(%,7) =d(x,y), (4)

d(x,z) <d(x,y) ®d(y, z), (5)
d(x®u,ydv)<d(x,y) ®d(u,v), (6)
d(xu,yv) <d(x,y) ®d(u,v), (7)

for any x, y, z, u,v € A. Using Chang’s representation theorem for MV-al-
gebras [7] it can be shown that

d(x,y) =9V B. (8)

We say that I € A is an MV-ideal if the following conditions are
satisfied:

(i) fx<yandyelthen x eI;
(i2) ifxelandyelthenxoyel

The radical Rad A of A is the intersection of the maximal ideals of A.
An MV-algebra is perfect if A = Rad A U Rad A, where Rad 4= {¥|x
Rad A4} (see [2] and [10]. If x € Rad 4 and y € Rad A4 then x <y. If
x € Rad 4 and y € Rad 4 then xy € Rad 4.

Let {G,u) be an abelian I-group with strong unit u. Then the interval
I'(G, u) = [0, u] has a canonical structure of an MV-algebra:

x@y=(x+y)Au, xwy=(x+y-u)vo0, I=u-x, (9)

where + is the group operation on G and Vv and A correspond to the
lattice structure of G.

For any MV-algebra A there exists an abelian I-group (G, u) with a
strong unit u such that A is isomorphic to I'(G, u). In fact, the Mundici
functor I" is a categorical equivalence between the category of abelian
I-groups with strong unit and the category of MV-algebras [12].
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For an abelian I-group G consider the lexicographic product Z X G and
the perfect MV-algebra A(G) =T(Z X G,(1,0)) [10]. Each element of
A(G) has either the form (0, g) with g > 0 in G, or the form (1, g) with
g < 0in G. The operations on A(G) are defined as follows:

(z,8) ® (t,h) =(1,0) A(z+¢t,g+h), (10)
(z,8) =(1,0) = (z,8) = (1 —z,—g), (11)
(z,8) (t,h) =(0,0) V(z+t—1,g+h), (12)

where + is the group operation on G.

If G is an I-group and g € G, then denote g*=g Vv 0, g7=(—g) v 0,
lgl=g"+ g . Werecall that g=g"—g".

With these definitions, the distance function in A(G) become’s

d((z,g).(t,h))
=(1,0) A((0,0) V(z—t,g—h)+(0,0) V(t—2z,h—g))
= (1,0) A (Iz —tl,Ig — Al).
It follows that

(0,1g — Al), if z=1,
(1,0), otherwise.

d((z,8), (¢, h)) = (13)

We remark that (1, 0) is a strong unit of Z X G and
Rad A(G) = {(0, x)|x > 0}, Rad A(G) = {(1, x)lx < 0}.

If A4 is a perfect MV-algebra then (Rad A4, @ ,0) is a cancellative
abelian monoid [10]. Define the following congruence © on Rad A4 X
Rad A:

(x,y) © (u,v) iffxev=udy; (14)

and denote by [x, y] the congruence class of (x, y) € Rad A X Rad A.
Denote 2(A) = (Rad A X Rad 4)/, and define

[x,y] +[u,v]=[x®u,yeuv] (15)
[x,y] <[u,v] iffxev<uoy. (16)

Thus 2(A) becomes an abelian I-group such that

[x.y] A fu o] = [(x@v) A(uey)yer], (17)
[x,y]VI[uv]=[x0u (x00v)A(udYy)]. (18)
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The Di Nola-Lettieri functors 9: # - ., A: .o/ — 2 realize a categor-
ical equivalence between the category & of perfect MV-algebras and the
category &7 of abelian I-groups [10].

If [x,y] =1[0,0] in 2(A) then [x, y] =[x,0], so 2(A)*={[x,0]x
Rad A}. We also have —[x, y] = [y, x].

LEMMA 1. If A is a perfect MV-algebra and x, y € Rad A then [x, y]" =
[49,0], [x, y]” =[xy, 0], and [x, yll = [d(x, y),0].

Proof. We have [x, y]"=[x,y] vV [0,0] =[x, x A y] =[x(x Ay),0] =
[xp,0] because [x, x A y]>[0,0]and x(x Ay)=x(X Vy) =xx Vxy =xy.

In the same manner, [x, y] = —[x,y] v [0,0] = [y, x] Vv [0, 0] = [yx, 0]
and [x, y]l = [x, y]"+[x, y]” = [d(x, y),0].

In order to study the convergence in perfect MV-algebras, we shall
prove some preliminary results that establish a connection between arbi-
trary suprema and infima in A4 and arbitrary suprema and infima in 2().
The following lemma is well known.

LEMMA 2. Assume X C Rad A such that there exists x = V< x y. Then
x € Rad A.

Proof. If x € Rad A then x < a for any a € Rad A because y < a for
any y € X. Thus x <y,s0 y <X forany y € X. This results in x < x. But
X € Rad 4 and x € Rad A4, so we obtain a contradiction.

LEMMA 3. Ifx, x; € Rad A fori € I then the following are equivalent:
@ x=V,.;x in4;
() [x,0] = V,c;[x;,0]in 2(A);
© [0,x]= A,c; [0, x;1in D(A).

Proof. For (a) = (b) we have [x,,0] <[x,0], i €. Assume [x;,0]
[a,0] for any i € I, so x; < a, for any i € I, therefore x < q, i.e., [x,0]
[a, 0]

The implication (b) = (a) follows similarly and (b) < (c) follows by
I-group theory.

<
<

Remark 4. In an I-group G we have x = V,_, x; iff x*=V,_, x/
and x = A,c; x;.

ProposITION 5. Let A be a perfect MV-algebra and let x,y, x;,y; €
Rad A, for any i € I. The following are equivalent:

@ [x,yl= Ve, [x,ylin 2(4),
() =V, xyandyx = A\;c; y;x; in A.

Proof. By the previous remark, [x,yl= V., [x; y] iff [x,y]"=
Vie;[x,»]" and [x,y]7= A,c, [x;,y;]7. Using Lemmas 1 and 3,
[x,y]"= V,c; [x;, 17 in (A iff xp = V,.,; xy,in A. Similarly, by the
dual of Lemma 3, [x, y]1 = A;c; [x;, 3,17 iff yx = Ao yxs
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Let f: A — B be a morphism of perfect MV-algebras. We say that f
preserves the countable suprema in Rad A if for any countable subset S of
Rad A we have f(V .5 s) = V,cs f(s). Similarly, we define when f
preserves the countable infima in Rad A.

PropPosITION 6. Let f: A — B be a morphism of perfect MV-algebras.
The following are equivalent:

(@) f preserves the countable suprema in A;

(b) f preserves the countable infima in A;

(c) f preserves the countable suprema and infima in Rad A4;
(d)  2(f) preserves the countable suprema in 2(A);

(&) 9(f) preserves the countable infima in Z(A).

Proof. The equivalences (a) < (b) and (d) < (e) are obvious.

() = (d) Recall from [10] that 2 (f)([x, yD = [f(x), f(y)] for any
[a, b] € 2(A). Assume countable suprema [x, y] = V,;c; [x;, y;,]1in 2(A4),
so, by Proposition 5, xy = V,.; xy; and yx = A,.; yx; in A. Thus
fOf(y)= () = fVic; xy) = Vie; f(Df(y;) and, similarly,
FOf(x)= A;c; fDf(x;). Again using Proposition 5, [f(x), f(y)] =
Ve Lf(x), f(y)], so 2(f) preserves countable suprema in Z(A).

(d) = (c¢) Straightforward, using Lemma 3 and its dual.

(¢) = (@) Consider x = V,;.; x;. If (x,),c, € Rad 4 then, by
Lemma 2, the thesis follows from (c). If (x;);,.; € Rad A then x = A,_, x,,
so we again apply (c).

Assume J = {i € I|x; € Rad A} # Jand K = {i € I|x; € Rad A} # &.
Because x; < x, for every j €J and k € K we obtain x = V,_¢ x;, sO
the thesis follows by the above remark.

The rest of the proof is obvious.

2. CONVERGENCE IN PERFECT MV-ALGEBRAS

In [11], the functor T is the main tool in obtaining a convergence theory
for arbitrary MV-algebras. However, using the functors 2 and A we
obtain a new look at convergence in perfect MV-algebras. In particular, a
characterization of the Cauchy completion of a perfect MV-algebra in
terms of these functors is obtained.

The concepts and results on order-convergence in abelian I-groups [9]
will be used without mention. Let (x,) be a sequence in an MV-algebra A.
Denote by x, 1 (respectively, x, | ) that (x,) is an increasing (respectively,
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decreasing) sequence. By x, |0 is meant that (x,) is decreasing and
A x,, = 0. The same notation will be used for sequences in I-groups.

LEMMA 7. If (x,) is a sequence in a perfect MV-algebra A and x,, | 0 then
there is a natural number n, such that x,, € Rad A for n > n,.

Proof. Because Rad A is an MV-ideal, it suffices to show that there is
n such that x, € Rad 4. Assume x, ¢ Rad A4 for all n. If Rad 4 # {0}
then there is a nonzero element a € Rad 4, so a < x, for all n, which
contradicts A x, = 0. If Rad 4 = {0} then Rad 4= {1}, so x, = 1 for all
n, which is again a contradiction.

LEMMA 8. If A is a perfect MV-algebra and (x,) € Rad A then x, |0 in
A iff [x,,011[0,0] in Z(A).

Proof.  Assume (x,) is decreasing and A x, =0, so ([x,,0]) is a de-
creasing sequence in 2(A4). If[0,0] < u < [x,,0] for any n then u =[x, 0]
for some x € Rad A4, hence x <x, for any n. Thus x = 0 and u = [0, 0],
hence Alx,,0] = [0, 0]. The converse assertion follows similarly.

DerFiniTIoN 9 [11].  Let (x,) be a sequence in an arbitrary MV-algebra
A. Then (x,) converges to x € A (x,, — a) if there is a sequence (c,,) such
that ¢, |0 and d(x,, x) < ¢, for any n.

LEMMA 10[11].  Ifx, » xandy, > yin Athenx,—> X, x, ® y, > x &y,
X, Y, =X, X, Vy, >xVyandx, Ny, >x Ay. Ifx, <y, foralln, then
x, >xandy, — yimpliesx <y.

LEMMA 11. Let A be an arbitrary MV-algebra and let (x,) c Rad A. If
x, = x then x € Rad A.

Proof. Recall that x € Rad 4 iff kx <x for all k. Let k be an
arbitrary nonzero integer. Thus kx, < x, for all n so, by Lemma 10,
kx < Xx, hence x € Rad A4.

COROLLARY 12.  If A is a perfect MV-algebra, (x,) € Rad 4, and x, — x
then x € Rad 4.

Proof.  We have (x,) € Rad 4 and apply the previous lemma.

LeEmmA 13. Let A be a perfect MV-algebra and let x, — x in A. If
x € Rad A then there is n, such that x,, € Rad A for n > n,.

Proof.  Assume for any natural number n there is k, > n such that
x; & Rad A. In this way one can find a sequence (x, ) in Rad A which is
convergent to x € Rad A, contradicting the previous corollary.

CoRroOLLARY 14. If A is a perfect MV-algebra, x, — x in A, and x
€ Rad A then there is n, such that x, € Rad A for n = n,.



102 GEORGESCU AND LEUSTEAN

Let G be an I-group, let (x,) € G, and let x € G. We shall denote
x, = x the fact that the sequence (x,) order-converges to x.

ProrosITION 15.  If A is a perfect MV-algebra and (x,) € Rad A then the
following are equivalent:

@ x,—>xinA;
(0 (x,,0D > [x,0]in 2(A).

Proof. (@) = (b) Suppose d(x,,x) <c, for all n, where (c¢,) is a
sequence in A such that c,|0. By Lemma 7 one can assume that
(c¢,) € Rad 4, so [c,,0]1[0,0] in accordance with Lemma 8. Applying
Lemma 1 we obtain [x,,0] — [x,0]l = [x,, x]l = [d(x,, x),0] < [c,, 0] for
all n. Hence ([ x,, 0] order-converges to [ x, O].

(b) = (@) The proof is similar to that for (a) = (b).

DerFINITION 16 [11].  Let (x,) be a sequence in an arbitrary MV-algebra.
We say that (x,) is a Cauchy sequence if there is a sequence (c,) such that

c,l0and d(x,, x,,,) <c, forall n,p.

ProrosITION 17.  If A is a perfect MV-algebra and (x,) € Rad A then the
following are equivalent:

@ (x,) is a Cauchy sequence in A,
() (x,,0D is an order-Cauchy sequence in Z(A).

Proof. The proof is similar to the proof of Proposition 15.

LEMMA 18. If (x,) is a Cauchy sequence in a perfect MV-algebra then
there is no such that {x,|n > n,} € Rad 4 or {x,In = ny} € Rad A4.

Proof. By definition, there is ¢, | 0 such that d(x,, x,,,) <c, for all
n, p and, by Lemma 7, there is n, such that ¢, € Rad 4 for n > n,.
Assume there is n > n, and p such that x, € Rad 4 and x,,, € Rad 4
S0 X,., <X, Thus x,=x,,, ®d(x,x,,,) with x,, ,dx,x,,)E
Rad A. This results in x, € Rad A and the contradiction is obvious. If
x,€Rad4 and x,,,€RadA4, then x,<x,,, and x,,,=x,®

d(x,, x,.,) € Rad 4, which is a contradiction.
An MV-algebra is Cauchy complete if any Cauchy sequence is conver-
gent.

ProposiTION 19. If A is a perfect MV-algebra then the following are
equivalent:

(@ A is Cauchy complete;
(b) 2(A) is an order-Cauchy complete I-group.
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Proof. (@) = (b). Assume ([x,, y,] is an order-Cauchy sequence in
2(A) so (x,,y,]1") and ((x,, y,]7) are order-Cauchy. By Lemma 1 and
Proposition 17, (x,y,) and (yx,) are Cauchy sequences in A, so, by
Lemma 2, x,y,— ¢; and y,x,— ¢, for some ¢;, ¢, € Rad A. By Proposi-
tion 15 and Lemma 1, [x,,y,]"—= [¢;,0] and [x,, y,]” = [c,,0]. Since
[cy, ¢, = [cq,0] = [c,,0] one gets [x,,y,] = [c;,c,] and 2(A4) is order
complete.

(b) = (@) Let x, be a Cauchy sequence in 4. By Lemma 18, one
can assume that (x,) € Rad A4 or (x,) c Rad 4. If (x,) € Rad A4 then
([x,, 0] is order-Cauchy in Z(A) so there is x € Rad A4 such that ([x,, 0])
order-converges to [x, 0]. From Proposition 15, x, — x in A.

If (x,) € Rad A4 then (x,) € Rad A and, by Definition 16 and (4), (x,) is
a Cauchy sequence in A.

DerINITION 20 [11]. Consider an embedding 4 — B of MV-algebras.
We say that B is a Cauchy completion of A if

(@) B is a Cauchy complete MV-algebra,
(b) A — B preserves the countable suprema,

(c) for each b = B there exist two sequences (a,),(c,) in A such
that ¢, |0 and d(a,, b) < c, for all n.

Lemma 21. If A <= B is an embedding of perfect MV-algebras then
condition (c) in Definition 20 can be replaced by:

(¢’) for each b € Rad B there exist two sequences (a,),(c,) in Rad A
such that ¢, |0 and d(a,, b) < c, for all n.

Proof. (c) = (¢’). Assume b € Rad B and two sequences (a,), (c,) in
A such that ¢, 0 and d(a,,b) <c, for all n. By Lemma 7 one can
assume that ¢, € Rad A for all n. If there exists an a, € Rad A< Rad B
then b <a, so a, = b & d(a,, b) with b and d(a,, b) in Rad B. Results
a, €A N Rad B =Rad A [1]. The contradiction is obvious so (a,)
Rad A.

(c)=1() If beRadA then b € Rad A4 so there are (a,),c, C
Rad A4 such that ¢, |0 and d(a,, b) < c, for all n. It follows that d(a,, b)
=d(a,,b) < c, for all n.

By [11] any MV-algebra 4 has a unique Cauchy completion. The
following result gives a description of the Cauchy completion of a perfect
MV-algebra in terms of functors & and A.

Let 4 be a perfect MV-algebra. By [9] there is a unique order-Cauchy
completion G of the abelian I-group Z(A). G is abelian so G =2(B) for
some perfect MV-algebra B = A(G). We have an embedding of perfect
MV-algebras A4 < B.
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THEOREM 22. B is the unique Cauchy completion of A.

Proof. We must prove that 4 — B satisfies the above conditions (a),
(b), and (c¢’). The condition (a) follows from Proposition 19 and condition
(b) from Proposition 6. In order to prove (¢’) consider b € Rad B so
h =1[b,0] > [0,0] in G =2(B). Then there exist the sequences (g,), (u,)
in 2(A) such that u, |0 and |g, — 4l < u, for all n. Hence |g — Al < g,
— hl < u, forall n. Since g, u, >[0,0]in 2(A4) there are a,, ¢, € Rad 4
such that g =[a,,0] and u, = [c,,0]. From Lemma 8, ¢, | 0. Applying
Lemma 1 we obtain |g} — Al = [a,, bl = [d(a,, b),0] < [c,,0] for all n, so
d(a,,b) < c, forall n.

THEOREM 23. Let A — B be an embedding of perfect MV-algebras, let
A =AG), let B=A(H), and let G — H be the corresponding abelian
I-groups embedding. The following are equivalent:

(@) B is the Cauchy completion of A,
(b) H is the order-Cauchy completion of G.

Proof. (a) = (b) From Proposition 19, H is order-Cauchy complete
and by Proposition 6 the embedding G — H preserves countable suprema.
Assume 4 > 0 in H. Then (0,h) € Rad B so there are (0,4,),(0,c,) €
Rad 4 such that (0,¢,)|(0,0) and d((0,a,),(0,h)) < (0,c,) for all n.
From the definition of the functor A and (13) it follows that
d«0, a,),(0, h)) = (0,|a, — hl. Then there are a,,c, € G, a, =0, ¢, |0
such that |a, — hl < c,,.

Now assume % is an arbitrary element of H, so h = h*— h™. Applying
the previous construction for 2™, A~ > 0 one gets the sequences (a,), (b,),
(c,), and (d,) in G* such that ¢, |0, d, |0, la, —h*| <c,, and |b, — h~|
<d,. If we denote x, =a, — b, and u, =c, +d, we have u, |0 and
lx, —hl=a, —h")+ " =b)l <la, —h*|+1|b, —h7|<c, +d, =
u, for all n. The last condition from the definition of the order-Cauchy
completion is verified.

(b) = (@ The implication results immediately from Theorem 22.

The previous results show that there exists a strong relation between the
convergence in a perfect MV-algebra 4 and the order-convergence in the
I-group 2(A). This relation seems to be more direct than the connection
established in [11] for arbitrary MV-algebras.

3. THE CONNECTION BETWEEN MV-ALGEBRAS AND
PERFECT MV-ALGEBRAS

Let A ={(A,®,-, ,0,1) be an MV-algebra and let a € A.
On A, = {x € A0 < x < a} we define the following operations: x &, y
=aAnx®y), —x=ax, xOy= -(=-x8 —y). Then (A4, &,,
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®,, =,0,a) is an MV-algebra [3]. We say that an MV-algebra B is a
pseudo-subalgebra of A if there is a € A such that B is isomorphic with
A,. In [3] it is proved that for every MV-algebra B there is a perfect
MV-algebra A4 and an element a € A such that a is a generator for
Rad A4 and B is isomorphic to 4.

A general problem is to investigate how the properties of the perfect
MV-algebra B can be transferred to the MV-algebra A.

In the sequel we shall establish some connections between convergence
on an MV-algebra A and convergence on A,, where a € 4.

Following (1), we define x vV, y = (xQ,=~y) &, yand x A, y = (x &,
- y)Q,y.

LEMMA 24. Letx,y € A,. Then

@ xO,y=ala®x)aay),

(b) xV,y=xVy,x A, y=xAYy,

© x<,yiffx<y,

d V,{xliell=V,c;x;, N{xliel}= A, x;, for every
family (x);c; € A,,

(e) d,(x,y)=d(x,y), where d is the distance in A and d, is the
distance in A,.

Proof. (@) xOy= —(-x¢, -y)=a@av(@exNaey)=aaVv
a@aex)aey)=aaex)aaoy).

(b) We first observe that, by (a) and (1):
—xQy=a(a®y)(a®ax) =(aAy)(aVi)=x

because x,y <a. We obtain x V, y=x &, (~xQ,y) =a A (x ® Xy) =
aA(xVy =xVyandsimilarly x A, y =x A y.

(c) It is obvious from (b).

(d) Because x; <a for every i €I, we have that V,_.; x; <4, soO
V.c; x; €A, From (c) it results that V,_, x; is an upper bound for the
family (x,);,.; in A4,. Let z be in 4, such that x; <, z for all i € I. From
(c), we obtain that x; <z forall i € I,s0 V,_; x; < z. Again using (c) we
have V., x; <, 2,50 V,c; x; is the supremum in A,. The other equality
can be proved by duality.

©) d(xy)=(=x0y) & (O, -y) =Xy V, ¥ =3y Vi =
d(x, y).

In the sequel we shall denote by — convergence in A and by —,
convergence in A,.
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LEMMA 25. Let (x,) cA,, x, > x. Thenx € A,.

Proof. We have x, < a for all n and x, — x. By Lemma 10 it follows
that x < a.

LEMMA 26. Let (x,) C A, and x € A,. The following are equivalent:

@ x,—>x;
() x, -

. X

Proof. (a) = (b). If x, —»x then there is (c,) €A such that ¢, |0
and d(x,, x) < ¢, for all n. We observe that d(x,, x) < a because x,, x <
a. Denote ¢!, = ¢, A a. Then we have d(x,, x) = d(x,,x) = d(x,,x) A a
<c,Na=c,and Ac,=a A Ac,=0.

(b) = (a) It is obvious from Lemma 24(c) and (d).
LEMMA 27.  Let (x,) € A,. The following are equivalent:

(@ (x,) is a Cauchy sequence in A,

(b) (x,) is a Cauchy sequence in A,.

Proof. (a) = (b) If (x,) is a Cauchy sequence in A then there is
(c,) €A such that ¢, |0 and d(x,, x,,,) <c, for all n, p. If we denote
¢, = ¢, A a we obtain d(x,, x,,,) <c, forall n,pand Ac, =0.

(b) = (@) It is obvious from Lemma 24(c) and (d).
CoROLLARY 28. If A is Cauchy complete then A, is Cauchy complete.
Proof. The proof follows from Lemmas 26 and 27.

THEOREM 29. Let A be an MV-algebra, let a € A, and let B be the
Cauchy completion of A. Then B, is the Cauchy completion of A,.

Proof. Because A is embedded in B and 4 — B preserves countable
suprema it is obvious that A4, is embedded in B, and that A, < B,
preserves countable suprema. By the previous corollary, B, is Cauchy
complete. It is easy to see that the embedding preserves distance. We have
to prove that for any b € B, there are (b,),(e,) € A, such that e, | 0 and
d(b,,b) <e, for all n.

Let b € B,. Because B, C B, there are (a,),(c,) € A4 such that ¢, |0
and d(a,,b) <c, for all n. We take b, =a, Aa and ¢, =c, Aa. Itis
obvious that (b,),(e,) € A4, and e, | 0. We observe that ab = 0 because
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b < a. Then we have
d(b,,b) =d(a, A a,b)
- @ ~a)b v b(a, A a)
= (a, va)b Vv (a, Aa)b
=a,b v abV (a,b A ab)
= (a,b vV a,b) A (a,b V ab)
=d(a,,b) A (a,b V ab).

Froma,b <b <a, ab < a, and d(a,, b) < c, we obtain d(b,,b) <c, A a
=¢,. The last condition from the definition of Cauchy completion is
verified.

If we denote by A4* the unique Cauchy completion of the MV-algebra A4
then the previous result can be expressed in the following manner:

CoROLLARY 30. (A4*), = (A )*

Let 4 be an arbitrary MV-algebra. We denote by A4* the perfect
MV-algebra associated with A [3]. The above results show that the study
of convergence in A4 can be reduced to the study of convergence in the
perfect MV-algebra A*.

Let a be an element in A such that 4 = A*. From Corollary 30 it
follows immediately that:

COROLLARY 31. (A**) = (A*)* = A*.

In order to investigate some properties of * and # we have to recall the
construction of the Cauchy completion for abelian I-groups with strong
unit and for MV-algebras. See [11] and [9] for more details.

Remark 32. Let (G, u) be an abelian I-group with strong unit. For two
order-Cauchy sequences (g,) and (%,) in G we define

(g,) ~ (h,) ifflg, —h,l—>0inG.

The relation ~ is an equivalence relation on the set #(G) of all
order-Cauchy sequences of G.

Let G* = €(G)/ . and [(g,)] be the equivalence class of the sequence
(g,)- Then G* is an abelian I-group, G = G* via the embedding g — [(g)]
with [(g)] denoting the class of (g, g, g,...), and u* = [(w)] is a strong unit
in G*. The abelian I-group with strong unit (G*, u*) is the order-Cauchy
completion of (G, u) ([9)).
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Remark 33. Let A be an MV-algebra. For two Cauchy sequences (a,,)
and (b,) in A we define

(a,) ~ (b,) iff d(a,,b,) = 0in A.

The relation ~ is an equivalence relation on the set #(A4) of all Cauchy
sequences of A.

Let A* =%(A)/. and let [(a,)] be the equivalence class of the
sequence (a,). Then A* is an MV-algebra with respect to the operations
[(a,)] ® [(b)] = [(a, ® b)), [(a,)]-[(b)] = [(a, b)) [(a,)] = @]

If [a] is the class of (a4, a, a,...), then the map a — [(a)] is an embed-
ding of MV-algebras 4 — A*.

Remark 34. Let A be an MV-algebra and let (G, u) be an abelian
I-group with strong unit such that 4 = I'(G,u). Then A* = I'(G*, u*)
[11].

Let .# be the category of all MV-algebras and let .Z, be the subcate-
gory of .# which has the same objects but the morphisms are only those
which preserve the countable infima.

ProPoOSITION 35.  *: .#, —.# is a functor.

Proof. \We must define = on morphisms. Let 4, B be two MV-algebras
and let f: A — B be a morphism that preserves the countable infima. We
define f*: A* - B* by f*([(x,)D = [(f(x,))]. We have to prove that f* is
well defined. Let [(x,)] = [(y,)] for two Cauchy sequences (x,),(y,) C A.
It follows that d(x,,y,) — 0, which means that there is a sequence
(c,) €A, ¢,l0 such that d(x,,y,) <c, for all n. It follows that
d(f(x,), f(y,) < f(c,) and f(c,) |0 because f preserves the countable
infima. So, [(f(x, )] = [(f(y, )] and f* is well defined.

The rest of the proof consists of easy verifications.

We denote by £, the category of perfect MV-algebras with principal
radical [3]. The objects are pairs (A4, a) with A a perfect MV-algebra and
a € A such that a generates Rad A. It follows that Rad A is the set of the
elements x € A with the property that there is a natural number » such
that x < na, where

The morphisms in &, are f: (A4,a) — (B, b), where f is a morphism of
MV-algebras with f(a) = b.

In [3] it is proved that the category 2 is equivalent to the category .# of
all MV-algebras. One of the two functors that define the equivalence is
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#:. # — P, which is obtained in the following manner. Let 4 be an
MV-algebra and let (G, u) be an abelian I-group with strong unit such that
A =T'(G,u). Then A% = (A(G), a = (0,u)). The definition of functor #
on morphisms is straightforward. Moreover, A = A%

LEMMA 36. Let f: A — B be a morphism of MV-algebras. The following
are equivalent:

(a) f preserves the countable infima in A,

(b) f* preserves the countable infima in A*.

Proof. Let (G,u) and (H,v) be abelian_I-groups with strong unit such
that 4 = I'(G,u) and B = I'(H,v). Let f: G —» H be a morphism such
that I'(f) =f. From [11, Lemma 12] we have that f preserves the
countable infima in A iff f preserves the countable infima in G. From
Proposition 6 it follows that f preserves the countable infima in G iff f*
preserves the countable infima in A(G) = A*. Now, the intended result is
obvious.

LEMMA 37. Let A be a perfect MV-algebra and let a € A be an element
which generates Rad A. Then a* = [(a)] generates Rad A*.

Proof. Let [(x,)] € Rad A*. We have to prove that there is a natural
number k such that [(x,)] < k[(a)]. From [(x,)] € Rad A4* it follows that
[(x,)I(x,)] = [(0][1], so x,x, = 0 in A. From Lemma 13 it follows that
there is n, such that x,x, € Rad A for n > n,. From the definition of 4*
we obtain that (x,) is a Cauchy sequence in A, so, by Lemma 18, there is
n, such that {x,|n > n,} c Rad 4 or {x,|n > n,} € Rad 4. If we choose
the second option it follows that, for n > max(n,, n,), x, € Rad A and
x,x, € Rad A. It follows that x,x, is in Rad 4 and in Rad A4, which is a
contradiction. So, for every n > n,, we have x, € Rad A. Because (x,) is
a Cauchy sequence, there is a sequence (c,) in 4, ¢, |0 and d(x,, x,.,,)
<c, for every n, p. From Lemma 13 we have that there is n, such that
¢, € Rad A for n > n4, so there is a natural number r, such that ¢, < r,a
for n > n,. Define n, = max(n,, ny). We have that, for every n > n,,
x, € Rad 4 and d(x,,x,) <c, <r,a. On the other hand, there is a
natural number k, such that x, <k, a. For n>ng, it follows that
x,<(x,Vx,)®x,x,=x, ®dx,,x,)<k,a®r, a Define k=k,
+r,. For every n=>ng, x,<ka It follows that (x,ka) — 0, so

[(xD][(ka)] = [(0)], which means that [(x,)] < k[(a)]. The thesis is proved.

Denote by 2. the subcategory of £, which has the same objects but
the morphisms are only those which preserve countable infima. Lemma 36
shows that the functor #: .Z, — %, is well defined. Lemma 37 shows that
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the functor *: & — 2 is well defined. We have

A, > a5 2, (19)

57, 5, (20)

THEOREM 38. The functors *# and # = from the previous diagrams are
isomorphic.

Proof. We have to define a natural transformation between =*# and
#+. Let A be an MV-algebra and (G, u) an abelian I-group such that
A =T(G,u). By Remark 34, A* = I'(G*,u*), where G* is the order-
Cauchy completion of G and u* = [(u)]. It follows that A** =
(A(G™), (0, u™)).

On the other hand, A% = (A(G),(0,u)) and A** = (A(G)*, (0, u)*),
where (0, u)* = [((0, u))]. We recall that A(G*) = I'(Z x G*,(1,[(0)])) and
AG)* =T(Z x G,(1,0)*

Define ¢: A(G*) = A(G)* by o((z,[(g),D) =1z, g,)),], for every
order-Cauchy sequence (g,) in G and for every z € {0, 1}. We shall prove
that ¢ is an isomorphism of MV-algebras.

— ¢ is well defined. Let (g,),, (h,), be two order-Cauchy sequences
in G such that [(g,),]=I[(h,),] It follows that |g, — #,| > 0 in G, so,
using (13), d((z, g,),(z,h,)) = (0,|g, — h,) — 0in Z X G. It follows that
[((z,g),]=1[z,h)),]

— ¢ is a morphism. It is straightforward from the definition of the
operations on the Cauchy completion.

— ¢ isinjective. Let ¢((z,[(g,),D) = ((¢,[(h,),]), s0[(z, g,)),]=
[((z, h,)),] in A(G)*. It follows that d((z,g,), (¢, h,)) — (0,0) in A(G).
From (13) and Lemma 13 it is easy to see that z = ¢ and d((z, g,), (¢, h,))
=(0,lg, — h,D,s0lg, — h,] > 0in G. It follows that [(g,),] = [(A,),], so
¢ is injective.

— ¢ is surjective. Let [((z,, g,)), ] in A(G)*. It follows that ((z,,, g,)),
is a Cauchy sequence in A(G), so there is a sequence ((¢,, c,)), | (0,0) such
that d((z,, g,).(z,.g,) < (1,,c,) for every n and p > n. By Lemma 13,
there is n, such that (¢,, c¢,) € Rad A(G) for every n > n,, so t, = 0 for
every n > n,. It follows that ¢,l0 in G. For p>n>n, we have
d((z,,8,).(z,, g, <(0,c,), so, by (13), z, =z, and [g, — g,l < c,. It is
easy to see that z, =z, =z for every n>n, and that (g,), is a
order-Cauchy sequence in G. For n > n, (z,g,)=1(z,g,) SO
d(z, g,).(z,,8,)) — (0,0) and [(z,, g,),] = [((z, g,)),]. Now we can ob-
serve that ¢((z,[(g,), D) = [((z,, g,.),], so ¢ is surjective.
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We proved that A** = 4%*,
From the definition, ¢((0,[(z)]) = [(0, u)], so ¢ preserves the generator

of the radical.

To complete the definition of the natural transformation, it remains to

prove the condition for morphisms. This is straightforward.

a

Remark 39. In the conditions of the previous theorem, we denote
= (0,u) and a* = (0,u*). From the definition of #, we have that

A* = (A*)?.. By Corollary 31, it follows that

N -

10.

11.

12.

(A#)* = (A*)he.
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