CONNECTED CUTSETS OF A GRAPH AND TRIANGLE BASES OF THE CYCLE SPACE

P. DUCHET, M. LAS VERGNAS and H. MEYNIEL
Université Pierre et Marie Curie (Paris VI), U.E.R. 48-Mathématiques, 75005 Paris, France

Received 19 November 1985

Abstract

We investigate some properties of graphs whose cycle space has a basis constituted of triangles ('null-homotopic' graphs). We obtain characterizations in the case of planar graphs, and more generally, of graphs not contractible onto K_{5}. These characterizations involve separating subsets and decompositions into triangulations of discs.

The notion of homotopy in graphs was introduced by the authors [3]. Another notion of homotopy in graphs has been considered by Quilliot [4].

Cycles in graphs are viewed algebraically, i.e., they are considered as vectors in GF(2) ${ }^{E}$, where E is the edge-set of the graph. We say that two cycles C and C^{\prime} are homotopic in a graph $G=(V, E)$ if there are triangles $T_{i}(i=1, \ldots, k)$ such that $C=C^{\prime}+\sum_{i=1}^{k} T_{i}$.

The relationship between the null-homotopy property (i.e., 'any two cycles are homotopic') and properties relative to connectedness have been considered in the context of topological spaces (see Whyburn [6, chap. XI] for details). Inspired by these concepts we investigate in the present paper some properties of graphs of a similar flavour. We mention that the graph properties we obtain are not reducible to topological properties.

In the case of graphs not contractible onto K_{5}, we prove in Section 3 the equivalence between the null-homotopy property and the property that any two induced subgraphs whose union is the whole graph have a connected intersection. This last property is characterized in two ways in Section 1. The equivalence is not true in general (Section 2).

Graphs considered in this paper are finite, without loops or multiple edges. For a graph $G=(V, E)$ and $A \subseteq V, G_{A}$ denotes the subgraph of G induced by $A: G_{A}=\left(A, E \cap 2^{A}\right)$. For $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ we write $G \cup G^{\prime}$ for the graph ($V \cup V^{\prime}, E \cup E^{\prime}$). The graph $G \cap G^{\prime}$ is defined similarly.

1. Well-connected graphs

Let $G=(V, E)$ be a connected graph. By a minimal relative cutset in G, or a m.r.-cutset for short, we mean a cutset C of G (i.e., a separating subset of V)

0012-365X/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)
for which there exist two vertices x, y such that C is inclusion-minimal with the property of separating x and y.

An inclusion-minimal cutset is a m.r.-cutset, but the converse is not true in general (see Corollary 3.4.).

A subset S of V is connected if the subgraph G induced by S is connected.
For a cutset S of G, let $C_{1} \cdots C_{p}$ be the connected components of $G_{V \backslash s}$. The induced subgraphs $G_{S \cup c_{i}}$ are S-pieces of G.

Definition 1.1. A graph G is said to be well-connected if G is connected and every minimal relative cutset of G is connected.

As easily seen, every contraction of a well-connected graph produces a well-connected graph. We recall that an elementary contraction in G is the identification of two adjacent vertices of G and that a contraction is a succession of elementary contractions. A graph obtained from G by some contraction is called a contraction of G.

More precisely we have

Theorem 1.2. A graph G is well-connected if and only if G is connected and is not contractible onto the complete bipartite graph $K_{p, q}$, for any $p, q \geqslant 2$.

Proof. In order to prove the necessity of the condition, we consider a contraction of $G=(V, E)$ onto $K_{p, q}(p, q \geqslant 2)$. Let $\left\{a_{1} \cdots a_{p}\right\},\left\{b_{1} \cdots b_{q}\right\}$ be the bipartition of $K_{p, q}$. By the definition of a contraction V admits a partition A_{1}, \ldots, A_{p}, B_{1}, \ldots, B_{q} into $p+q$ connected subsets such that:
no edge joins two A_{i} 's or two B_{j} 's, and $A_{i} \cup B_{j}$ is connected for every i and $j, 1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q$.
We see that $A_{1} \cup \cdots \cup A_{p}$ is a cutset of G. This cutset contains a disconnected m.r.-cutset of G, separating for instance B_{1} and B_{2}.

Conversely, suppose G is contraction-minimal with the property to have a disconnected m.r.-cutset. Let S be a disconnected m.r.-cutset with minimum cardinality.

The minimality of G with respect to contraction implies that the connected components of S are singletons $\left\{s_{i}\right\}, 1 \leqslant i \leqslant p$. By the same argument, we see that the connected components $C_{1} \cdots C_{q}$ of $G_{V \backslash s}$ are also singletons $\left\{c_{j}\right\}$. Finally, by the minimality of $|S|$, each c_{j} is adjacent to s_{i} for $1 \leqslant i \leqslant p, 1 \leqslant j \leqslant q$.

Theorem 1.3. A necessary and sufficient condition for a connected graph G to be well-connected is that for every pair of connected induced subgraphs G_{1}, G_{2} whose union is, G, the graph $G_{1} \cup G_{2}$ is connected.

Proof. Suppose G admits a pair of induced subgraphs G_{A}, G_{B} such that

$$
\begin{align*}
& G_{A \cap B}=G_{A} \cap G_{B} \text { is not connected, } \tag{*}\\
& G_{A} \text { and } G_{B} \text { are connected and } G=G_{A} \cup G_{B} . \tag{**}
\end{align*}
$$

Note that condition (**) implies that $A \cap B$ separates in G the sets $A \backslash B$ and $B \backslash A$.
We denote by $d_{G}(X, Y)$ the distance of two disjoint subsets X, Y in a graph G, i.e., the minimum length of a path connecting X and Y in G. We denote by d_{A} and d_{B} respectively the distance functions in G_{A} and G_{B}.
Among all connected components of $G_{A \cap B}$, we choose a pair X, Y of components minimizing the value of $d_{A}(X, Y)+d_{B}(X, Y)$. Let $\alpha=x_{A}, \ldots, y_{A}$ and $\beta=x_{B}, \ldots, y_{B}$ be shortest paths respectively in G_{A} and G_{B} with x_{A}, x_{B} in X and y_{A}, y_{B} in Y. α (resp. β) must contain a vertex a of $A \backslash B$ (resp. a vertex b of $B \backslash A)$. Moreover, by the minimality of $d_{A}(X, Y)+d_{B}(X, Y)$, we have

$$
\left\{x_{A}, \ldots, a, \ldots, y_{A}\right\} \cap B=\left\{x_{A}, y_{A}\right\}
$$

and

$$
\left\{x_{B}, \ldots, b, \ldots, y_{B}\right\} \cap A=\left\{x_{B}, y_{B}\right\} .
$$

There is a path connecting x_{A} to x_{B} in G_{x} (resp. y_{A} to y_{B} in G_{Y}). Thus a and b are connected in G by two vertex-disjoint paths μ and v respectively included in $(A \backslash B) \cup X \cup(B \backslash A)$ and $(A \backslash B) \cup Y \cup(B \backslash A)$.
The existence of the paths μ and v implies that a minimal cutset relative to a and b included in the cutset $A \cap B$ necessarily meets X and meets Y. Hence such a m.r.-cutset is not connected and G is not well connected.

Conversely, suppose that G is not well-connected. By Theorem 1.2 above, G admits a partition into connected subsets $A_{1}, \ldots, A_{p}, B_{1}, \ldots, B_{q}(p, q \geqslant 2)$ such that $A_{i} \cup B_{j}$ is connected but neither $A_{i} \cup A_{i^{\prime}}$ nor $B_{j} \cup B_{j^{\prime}}$ are, for $1 \leqslant i<i^{\prime} \leqslant p$, $1 \leqslant j<j^{\prime} \leqslant q$. Then, set

$$
A=A_{1} \cup A_{2} \cup \cdots \cup A_{p} \cup B_{2} \cup \cdots \cup B_{q}
$$

and

$$
B=A_{1} \cup A_{2} \cup \cdots \cup A_{p} \cup B_{1} .
$$

The graphs G_{A} and G_{B} are connected and $G_{A} \cup G_{B}=G$. But $A \cap B=A_{1} \cup \cdots \cup$ A_{p} does not induce a connected subgraph.

As corollaries, we mention two 'glueing lemmas' that will be useful in Section 3.

Corollary 1.4. Suppose G_{1} and G_{2} are two induced subgraphs of a graph $G=G_{1} \cup G_{2}$ such that $G_{1} \cap G_{2}$ is connected. If G_{1} and G_{2} are well-connected, then \boldsymbol{G} is well-connected.

Proof. Let G, G_{1}, G_{2} be graphs satisfying the hypothesis of Corollary 1.4. Every contraction G^{\prime} of $G_{1} \cup G_{2}$ is a union of a contraction G_{1}^{\prime} of G_{1} and a contraction G_{2}^{\prime} of G_{2}. The graphs $G^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}$ satisfy the hypothesis of Corollary 1.4. Hence, by Theorem 1.2, it suffices to show that $G_{1} \cup G_{2}$ cannot be a complete bipartite graph $K_{p, q}(p, q \geqslant 2)$. This verification is easy since every well-connected induced subgraph of $K_{p, q}$ is a star.

Corollary 1.5. Suppose G_{1} and G_{2} are two induced subgraphs of a graph $G=G_{1} \cup G_{2}$ such that $G_{1} \cap G_{2}$ is well-connected. Then G is well-connected if and only if both G_{1} and G_{2} are well-connected.

Proof. The 'if' part follows from Corollary 1.4. Conversely suppose $G=G_{1} \cup G_{2}$ is well-connected but G_{1} is not. We assume $G_{1} \cap G_{2}$ is connected, so that G_{1} and G_{2} are connected. We show that $G_{1} \cap G_{2}$ is not well-connected.

Set $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$.
Contractions of edges in $G_{2} \backslash V_{1}$ do not affect the situation. Thus we may suppose $G_{2} \backslash V_{1}$ has no edge: the connected components of $G \backslash V_{1}$ are singletons.

By Theorem $1.3 G_{1}$ is a union of two connected induced subgraphs G_{A} and G_{B} such that $A \cap B$ is not connected in G_{1}, hence in G. Let S_{1}, \ldots, S_{p} be the connected components of $A \cap B$ in G_{1}. The contraction of an edge in some $G_{S_{i}}$ does not modify our hypothesis. So we may assume that every S_{i} is a singleton $\left\{s_{i}\right\}$ (because if some contraction of $G_{1} \cap G_{2}$ is not well-connected, the same holds for $G_{1} \cup G_{2}$).

Let A_{2} (resp. B_{2}) be the set of all vertices in $V_{2} \backslash V_{1}$ that are adjacent to A (resp. to B). Put $A^{\prime}=A \cup A_{2}$ and $B^{\prime}=B \cup B_{2}$. The graphs $G_{A^{\prime}}$ and $G_{B^{\prime}}$ are connected and $G=G_{A^{\prime}} \cup G_{B^{\prime}}$. Since G is well-connected, the subgraph $G_{A^{\prime} \cap B^{\prime}}$ must be connected (Theorem 1.3). Every s_{i} is therefore connected to some vertex in $A_{2} \cap B_{2}$. Since $V_{1} \cap V_{2}$ separates $V_{1} \backslash V_{2}$ and $V_{2} \backslash V_{1}$, every s_{i} is in V_{2} : we have $A \cap B \subseteq V_{2}$.

We know that $G_{A} \cup G_{B \cup V_{2}}=G$. The graphs G_{A} and $B_{B \cup V_{2}}$ are connected (since both G_{B} and G_{2} are connected. By Theorem 1.3 again, $G_{A \cap\left(B \cup V_{2}\right)}$ must be connected. Similarly $G_{B \cap\left(A \cup V_{2}\right)}$ is connected. From $A \cap B \subseteq V_{2}$ we get $A \cap(B \cup$ $\left.V_{2}\right)=A \cap V_{2}$ and $B \cap\left(A \cup V_{2}\right)=B \cap V_{2}$. Thus $G_{A \cap V_{2}}$ and $G_{B \cap V_{2}}$ are connected and $G_{A \cap V_{2}} \cup G_{B \cap V_{2}}=G_{V_{1} \cap V_{2}}$ (since $G_{A} \cup G_{B}=G_{1}$). Hence $G_{A \cap V_{2}} \cap G_{B \cap V_{2}}=$ $G_{A \cap B}$ is not connected. By Theorem 1.3, $G_{1} \cap G_{2}=G_{V_{1}} \cap G_{V_{2}}$ is not wellconnected.

Remark. Corollary 1.5 does not hold in general if the hypothesis that G_{1} and G_{2} are induced subgraphs of $G_{1} \cup G_{2}$ is removed. But it can be shown that Corollary 1.4 is still valid under the weaker hypothesis: $G=G_{1} \cup G_{2}, G_{1} \cap G_{2}$ connected, G_{1} and G_{2} well-connected.

2. Null-homotopic graphs

Definition 2.1. A graph G is said to be null-homotopic if every cycle in G is homotopic to the zero cycle.

In other terms a graph is null-homotopic if and only if its cycle space admits a basis constituted of triangles.
A simple example of null-homotopic graphs is given by triangulated graphs (graphs such that every cycle of length 4 possesses a chord. A larger class is the class of dismantelable graphs, characterized by Quilliot [4] and Novakowski and Winkler [8] as graphs in which the pursuit game is won by the pursuer. We say that a vertex v of a graph G with at least two vertices is removable if there is a vertex w of G adjacent to v such that every vertex of G adjacent to v and different from v is also adjacent to w.
A dismantelable graph $G=(V, E)$ is defined by the property: there is a linear order $v_{1} \cdots v_{n}$ of V such that v_{i} is removable from the subgraph induced by $\left\{v_{1} \cdots v_{i}\right\}$ for $2 \leqslant i \leqslant n$.
The proof that every dismantelable graph is null-homotopic is left to the reader. The converse is false.

As in the topological context, we have the following property.
Theorem 2.2. A connected null-homotopic graph is well-connected.
Proof. Let S be a m.r.-cutset of a connected graph $G=(V, E)$ and suppose S is not connected.

By definition, there exist two vertices x and y separated by S such that S is inclusion minimal with this property.

Denote by C_{x} and C_{y} the connected components of $G_{V \backslash s}$ containing respectively x and y. By the minimality of S, C_{x} and C_{y} are adjacent to every vertex and hence to every connected component of S. So, choosing two such components S_{1} and S_{2}, we are sure of the existence of a cycle C included in $S_{1} \cup S_{2} \cup C_{x} \cup C_{y}$ that passes successively through $S_{1}, C_{x}, S_{2}, C_{y}$.
Let T be the set of edges linking S_{1} and C_{x}. We remark that every triangle of G has an even number of edges in T. On the contrary, C possesses an odd number of edges in T. Hence C cannot be an algebraic sum of triangles: G is not null-homotopic.

Remark 2.3. The converse of Theorem 2.2 is not true in general. The graph $C_{3 p+q}^{p}$ $(1 \leqslant q \leqslant p)$ with vertex-set $\mathbb{Z} /(3 p+q) \mathbb{Z}$ and edges $x y$ for $y-x \in\{ \pm 1, \ldots, \pm p\}$ $(\bmod 3 p+q)$ is well connected but is not null-homotopic.

Proof. The graph $C_{3 p+q}^{p}$ is well connected since every separating subset must contain two disjoint 'circular interval' (i.e., subsets of the form $\{a, a+$
$1, \ldots, a+b\}(\bmod 3 p+q)$ with at least p vertices each. Two such intervals induce a connected graph which is also a dominating subset. Hence every separating subset of $C_{3 p+q}^{p}$ is connected.

In order to see that $C_{3 p+q}^{p}$ is not null homotopic, consider the set T of edges $x y$ with $x \in\{2 p+q+1,2 p+q+2, \ldots, 3 p+q\}$ and $y \in\{1,2, \ldots, p\}$. Every triangle of the graph contains an even number of edges in T. Thus the cycle $1,2, \ldots, 2 p+q, 1$, containing only one edge in T, is not a sum of triangles.

We conclude this section with some lemmas on null-homotopic graphs.
Lemma 2.4. Every contraction of a null-homotopic graph produces a nullhomotopic graph. Every power ${ }^{1}$ of a null-homotopic graph is a null-homotopic graph.

Lemma 2.5. Suppose G is a connected graph with a connected cutset S. If every S-piece is null homotopic, then G is null-homotopic.

The proofs are left to the reader.
Lemma 2.6. Let $G=(V, E)$ be a null-homotopic graph and S be a cutset of G. Assume the induced subgraph G_{s} is null-homotopic. Then every S-piece is null-homotopic.

Proof. Let P be an S-piece and C a cycle of G_{P}. Let \mathscr{T} be a set of triangles of G such that $C=\Sigma_{t \in \mathscr{T}} t(\bmod 2)$. Denote by $\mathscr{T}_{1}\left(\right.$ resp. $\left.\mathscr{T}_{2}\right)$ the set of all triangles of \mathscr{T} that are included in $P \backslash S$ (resp. that meet both S and $P \backslash S$). Every triangle in $\mathscr{T}_{1} \cup \mathscr{T}_{2}$ is in P. Moreover all the edges of the cycle $C^{\prime}=C+\sum_{\mathscr{T}_{1}} t+\sum_{\mathscr{F}_{2}} t$ are in S. Thus, the cycle C^{\prime} is null-homotopic in G_{s}, and C is null-homotopic in G_{P}.

Remark 2.7. A graph obtained from a null-homotopic graph by adding a new edge closing at least one triangle is clearly also null-homotopic. We conjecture that all null-homotopic graphs are obtained by a sequence of such operations, starting from a tree. In other words

Conjecture 2.8. In every null-homotopic graph G there is at least one edge e such that $G \backslash e$ is null-homotopic.

3. Planar graphs and graphs not contractible onto \boldsymbol{K}_{5}

By Remark 2.3 the converse of Theorem 2.2 does not hold in general. However a converse holds for planar graphs and more generally for graphs not contractible onto K_{5}, the complete graph on 5 vertices.

[^0]The following definition is due to Wagner [5]: a k-decomposition of a graph G is a sequence of $p \geqslant 2$ graphs such that

$$
\begin{equation*}
G=G_{1} \cup \cdots \cup G_{P}, \tag{3.1}
\end{equation*}
$$

For $1 \leqslant i \leqslant p, G_{i+1}$ and $G_{1} \cup \cdots \cup G_{i}$ are two pieces of the graph $G_{1} \cup \cdots \cup G_{i+1}$ with respect to some cutset which has at most k vertices.

A k-decomposition is said to be simplicial (resp. connected) when all cutsets in (3.2) are complete (resp. connected) subgraphs.

A disc-triangulation is a connected planar graph such that every face is a triangle, except possibly one.

Theorem 3.3. Let G be a connected planar graph. Then the following assertions are equivalent:
(i) G is null-homotopic,
(ii) G is well-connected,
(iii) G admits a simplicial 3-decomposition into disc-triangulations.

Proof. (i) \rightarrow (ii) and (iii) \rightarrow (i) are implied by Theorem 2.2 and Lemma 2.5 respectively. We prove (ii) \rightarrow (iii) by induction on the number of vertices of G. The theorem is obvious for graphs having less than 4 vertices.

Let G be a planar well-connected graph with $n \geqslant 4$ vertices. If S is a minimal cutset of G with less than 4 vertices, G_{S} is connected hence must be well-connected. By Corollary 1.5 , every S-piece is also well-connected. If G_{S} is K_{1}, K_{2} or K_{3} the conclusion follows immediately from the induction hypothesis. Otherwise G_{s} is a path of length 2. By Kuratowski's theorem there are only two S-pieces (otherwise G would contain an homeomorph of $K_{3,3}$). The vertices of S are on a non triangular face of each S-piece.

By the induction hypothesis, there are simplicial 3-decomposition of these two pieces into disc-triangulations. It is easily seen that the glueing by S of these decompositions yields a similar simplicial 3-decomposition as well.

So we may assume G is 4 connected. Suppose that G is not a disc-triangulation. Then G possesses at least two non-triangular faces F_{1} and F_{2}.
By a well known Corollary of the Menger theorem, G contains four pairwise disjoint paths A, B, C, D joining four distinct vertices of F_{1} to four distinct vertices of F_{2}. Let $a_{1} \in F_{1}$ and $a_{2} \in F_{2}$ be the endvertices of A and let $b_{1}, b_{2}, c_{1}, c_{2}$, d_{1}, d_{2} be similarly defined. We may suppose that $a_{1}, b_{1}, c_{1}, d_{1}$ occur in that order on F_{1}. Clearly the vertices in $A \cup C$ separate b_{1} and c_{1}.

We see that every cutset contained in $A \cup C$, and minimal with the property of separating b_{1} and d_{1}, necessarily contains a_{1} and c_{1}. Such a m.r.-cutset is therefore not connected. This fact contradicts the well-connectedness of G and concludes the proof.

Corollary 3.4. A 3-connected planar graph G is null-homotopic if and only if: every minimal cutset of G is connected.

Proof. If every minimal cutset of a 3-connected planar graph is connected, then every m.r.-cutset is connected. (Since no subdivided $K_{3,3}$ is planar).

The corollary fails for 2-connected graphs as shown by the graph drawn in Fig. 1.

Fig. 1.
Theorem 3.3 generalizes to graphs not contractible onto K_{5}. The proof uses the decomposition theorem of Wagner [5] (short proof in [7]).

Theorem 3.5. Let G be a connected graph not contractible onto K_{5}. The following assertions are equivalent.
(i) G is null-homotopic,
(ii) G is well-connected,
(iii) G admits a connected 3-decomposition whose members are disctriangulations of discs.

Proof. (i) \rightarrow (ii) by Theorem 2.2 (iii) \rightarrow (i) by Lemma 2.5. We prove (ii) \rightarrow (iii) by induction on the number of vertices of G. This is obvious for small graphs. Suppose G is a well-connected graph not contractible onto K_{5}.

Adding edges to G, we eventually obtain a graph G^{\prime} maximal with the property to be not contractible onto K_{5}. By Wagner's theorem, the graph G^{\prime} either admits a simplicial 3-decomposition or is maximal planar or is L_{8}, the octagon with its four diameters.

If G^{\prime} is not decomposable, since every well-connected subgraph of L_{8} is planar, then G is planar and the conclusion follows from Theorem 3.3. If G^{\prime} has a simplicial 3-decomposition $G^{\prime}=G_{1}^{\prime} \cup \cdots \cup G_{p}^{\prime}, \quad p \geqslant 2, \quad G$ admits a 3decomposition $G=G_{1} \cup \cdots \cup G_{p}$.

The graph $H=\left(G_{1} \cup \cdots \cup G_{p-1}\right) \cap G_{p}$ is connected via Theorem 1.3. Since H
has at most 3 vertices H is also well-connected. Thus by Corollary 1.5 , the graphs $G_{1} \cup \cdots \cup G_{p-1}$ and G_{p} are well-connected. Applying the induction hypothesis to the graphs $G_{1} \cup \cdots \cup G_{p-1}$ and G_{p}, we obtain the conclusion.

A criterium for contractibility onto K_{5} is the following result.
Theorem 3.6. Let G be a connected graph with at least one edge. Suppose every edge of G is contained in at least 3 triangles. Then G is contractible onto K_{5}.

Proof. We apply Wagner's theorem. Suppose G satisfies the hypothesis of Theorem 3.6 and is not contractible onto K_{5}. By the argument used in the proof of Theorem 3.5, G admits a 3 -decomposition $G=G_{1} \cup G_{2} \cup \cdots \cup G_{p}$ whose members are planar. We may suppose that G_{p} is not 3-decomposable; The graph G_{p} contains an edge not in $G_{1} \cup \cdots \cup G_{p-1}$. Necessarily there are 3 triangles of G_{p} containing this edge. In a planar graph if three triangles have an edge in common, one of them is a cutset: hence G_{p} is 3-decomposable, a contradiction.

Remark 3.7. If every edge is contained in at least 2 triangles every vertex is of degree $\geqslant 3$. So, by a theorem of Dirac [2], the graph is contractible onto K_{4}.

This suggests the following problem: what is the maximal value of t such that if G has at least one edge and every edge of G contained in at least t triangles, then G is contractible onto K_{t+2} ? We conjecture that this property holds for $t=4$.
It does not hold for t sufficiently large as a consequence of the following theorem of [1]: for every fixed constant c, there exists an integer $t>0$ and a graph G with n vertices and more than $t n$ edges which is not contractible onto $K_{[c t]}$. If some edge e of G is in less than t triangles then the contraction of e produces a graph with $n-1$ vertices and more than $t(n-1)$ edges. Repeating this operation we obtain a graph G^{\prime} not contractible onto $K_{[c t]}$ in which every edge belongs to at least t triangles. We do not know what happens when every edge of the graph is supposed to be in exactly t triangles.

Note added in proof

Our Conjecture 2.8 was recently disproved by C. Champetier who considered a triangulation of a certain 2-manifold.

References

[1] W. Fernandez De La Vega, On the maximum density of graphs with no subcontraction to K^{s}, Discrete Math. 46 (1983) 109-110.
[2] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London Math. Soc. 27 (1952) 85-92.
[3] P. Duchet, M. Las Vergnas and H. Meyniel, Homotopy and convexity in graphs, Communication at the Coll. to the memory of K. Kuratowski, Łagow (1981), Poland.
[4] A. Quilliot, These d'Etat, Paris (1983).
[5] K. Wagner, Bemerkungen zu Hadwigers Vermutung, Math. Ann. 141 (1960) 433-451.
[6] G.T. Whyburn, Analytic Topology, AMS Coll. Pub. Vol. XXVIII (AMS, Providence, 1942).
[7] H.P. Young, A quick proof of Wagner's equivalence theorem, J. Lond. Mat. Soc. (2) 3 (1971) 661-664.

[^0]: ${ }^{1}$ Two vertices are joined in the k th power of a graph when their distance in the graph is at most \boldsymbol{k}.

