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We investigate some properties of graphs whose cycle space has a basis constituted of 
triangles ('null-homotopic' graphs). We obtain characterizations in the case of planar graphs, 
and more generally, of graphs not contractible onto Ks. These characterizations involve 
separating subsets and decompositions into triangulations of discs. 

The notion of homotopy in graphs was introduced by the authors [3]. Another 
notion of homotopy in graphs has been considered by Quilliot [4]. 

Cycles in graphs are viewed algebraically, i.e., they are considered as vectors in 
GF(2) e, where E is the edge-set of the graph. We say that two cycles C and C' 
are homotopic in a graph G = (V, E) if there are triangles T~ (i = 1 , . . . ,  k) such 
that C = C' + E~=I T~. 

The relationship between the null-homotopy property (i.e., 'any two cycles are 
homotopic') and properties relative to connectedness have been considered in the 
context of topological spaces (see Whyburn [6, chap. XI] for details). Inspired by 
these concepts we investigate in the present paper some properties of graphs of a 
similar flavour. We mention that the graph properties we obtain are not reducible 
to topological properties. 

In the case of graphs not contractible onto K5, we prove in Section 3 the 
equivalence between the null-homotopy property and the property that any two 
induced subgraphs whose union is the whole graph have a connected intersection. 
This last property is characterized in two ways in Section 1. The equivalence is 
not true in general (Section 2). 

Graphs considered in this paper are finite, without loops or multiple edges. For 
a graph G = (V, E) and A ~_ V, GA denotes the subgraph of G induced by 
A:GA = (A, E N 2A). For G = (V, E) and G'  = (V',  E ' )  we write G U G'  for the 
graph (V LI V', E U E').  The graph G f3 G'  is defined similarly. 

1. Well-connected graphs 

Le t  G = (V, E) be a connected graph. By a minimal relative cutset in G, or 
a m.r.-cutset for short, we mean a cutset C of G (i.e., a separating subset of V) 
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for which there exist two vertices x, y such that C is inclusion-minimal with 
the property of separating x and y. 

An inclusion-minimal cutset is a m.r.-cutset, but the converse is not true in 
general (see Corollary 3.4.). 

A subset S of V is connected if the subgraph G induced by S is connected. 
For a outset S of G, let C1""  Cp be the connected components of Gv~s. The 

induced subgraphs Gsu~ are S-pieces of G. 

Definition 1.1. A graph G is said to be well-connected if G is connected and 
every minimal relative cutset of G is connected. 

As easily seen, every contraction of a well-connected graph produces a 
well-connected graph. We recall that an elementary contraction in G is the 
identification of two adjacent vertices of G and that a contraction is a succession 
of elementary contractions. A graph obtained from G by some contraction is 
called a contraction of G. 

More precisely we have 

Theorem 1.2. A graph G is well-connected if and only if G is connected and is not 
contractible onto the complete bipartite graph Kp,q, for any p, q >1 2. 

Proof. In order to prove the necessity of the condition, we consider a contraction 
of G = (V, E) onto Kp.q (p, q ~ 2). Let { a t ' - "  aj,}, {bt- • • bq} be the bipartition 
of Kp, q. By the definition of a contraction V admits a partition A t , . . . ,  Ap, 
Bt, • • •, Bq into p + q connected subsets such that: 

no edge joins two Ai's or two B/s, and 
Ai O Bjis connected for every i and j, 1 ~< i ~<p, 1 ~<j ~< q. 

We see that At O.  • • O A j, is a cutset of G. This cutset contains a disconnected 
m.r.-cutset of G, separating for instance Bt and B2. 

Conversely, suppose G is contraction-minimal with the property to have a 
disconnected m.r.-cutset. Let S be a disconnected m.r.-cutset with minimum 
cardinality. 

The minimality of G with respect to contraction implies that the connected 
components of S are singletons {si}, 1 <~ i <<-p. By the same argument, we see that 
the connected components C~.--  Cq of Gv~s are also singletons {cj}. Finally, by 
the minimality of [S], each cj is adjacent to si for 1 <~ i <-p, 1 <~j <- q. [] 

Theorem 1.3. A necessary and sufficient condition for a connected graph G to be 
well-connected is that for every pair o f  connected induced subgraphs Gt, (72 whose 
union is, G, the graph (31 t.J G2 is connected. 
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Proof. Suppose G admits a pair of induced subgraphs CA, Ge such that 

GAne = GA n GB is not connected, ( . )  

GA and Ge are connected and G = GA U GB. (**) 

Note that condition (**) implies that A n B separates in G the sets A \B  and 
B \ A .  

We denote by d e ( X ,  Y)  the distance of two disjoint subsets X, Y in a graph G, 
i.e., the minimum length of a path connecting X and Y in G. We denote by dA 
and de respectively the distance functions in GA and GB. 

Among all connected components of GAnB, we choose a pair X, Y of 
components minimizing the value of dA(X, Y ) +  de(X ,  Y). Let  ol = X A , . . . ,  YA 

and fl = xe, • • •,  Ye be shortest paths respectively in GA and GB with XA, XB in X 
and YA, Ye in Y. a~ (resp. fl) must contain a vertex a of A \ B  (resp. a vertex b of 
B \A).  Moreover, by the minimality of dA(X, Y)  + de(X ,  Y),  we have 

and 
{xa, . . . , a, . . . , ya} n B = {xa, ya} 

{XB, . . . , b, . . . , YB} n A = {xn, Ye}. 

There is a path connecting XA to XB in Gx (resp. YA to YB in Gy). Thus a and b 
are connected in G by two vertex-disjoint paths # and v respectively included in 
( A \ B ) U X U ( B \ A )  and ( A \ B )  O Y U ( B \ A ) .  

The existence of the paths/z and v implies that a minimal cutset relative to a 
and b included in the cutset A n B necessarily meets X and meets Y. Hence such 
a m.r.-cutset is not connected and G is not well connected. 

Conversely, suppose that G is not well-connected. By Theorem 1.2 above, G 
admits a partition into connected subsets A1, • • • ,  AI,, B1, • . . ,  Bq (p, q >I 2) such 
that Ai O Bj is connected but neither Ai  O A r  nor Bj O Bf  are, for 1 ~< i < i '  ~<p, 
1 ~< j < ] '  ~< q. Then, set 

and 
A=A UA2U.--UA  U U-.-UB  

B = A 1 U A 2 U ' " U A p U B 1 .  

The graphs GA and GB are connected and GA U GB = G. But A I'I B = A1 U .  • • U 
Ap does not induce a connected subgraph. I-1 

As  corollaries, we mention two 'glueing lemmas' that will be useful in Section 

3. 

Corollary 1.4. Suppose G1 and G2 are two induced subgraphs o f  a graph 
G = G1 U G2 such that G1 n G2 is connected. I f  G1 and G2 are well-connected, then 
G is well-connected. 
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Proof. Let G, (31, G2 be graphs satisfying the hypothesis of Corollary 1.4. Every 
contraction G'  of (31 U G2 is a union of a contraction G~ of G1 and a contraction 
G~ of G2. The graphs G' ,  G~, G~ satisfy the hypothesis of Corollary 1.4. Hence, 
by Theorem 1.2, it suffices to show that G1 U G2 cannot be a complete bipartite 
graph Kt,,q (p, q >I 2). This verification is easy since every well-connected induced 
subgraph of Kp.q is a star. [] 

Corollary 1.5. Suppose G~ and G2 are two induced subgraphs of a graph 
G = G1 O G2 such that G t n  G2 is well-connected. Then G is well-connected if and 
only if both G1 and G2 are well-connected. 

Proof. The 'if' part follows from Corollary 1.4. Conversely suppose G = Gs U G2 
is well-connected but G1 is not. We assume G1 n G2 is connected, so that G~ and 
G2 are connected. We show that G1 n G2 is not well-connected. 

Set G: = (V~, E O, G2 = (V2, E2). 
Contractions of edges in G2\VI do not affect the situation. Thus we may 

suppose G2\V1 has no edge: the connected components of G \ V1 are singletons. 
By Theorem 1.3 G~ is a union of two connected induced subgraphs GA and Gs 

such that A n B is not connected in G~, hence in G. Let S~,... ,  Sp be the 
connected components of A n B in G~. The contraction of an edge in some Gsi 
does not modify our hypothesis. So we may assume that every Si is a singleton 
{si} (because if some contraction of G1 n G2 is not well-connected, the same 
holds for G1 U G2). 

Let A2 (resp. B2) be the set of all vertices in V2\ V~ that are adjacent to A (resp. 
to B). Put A '  = A U A 2 and B' = B U BE. The graphs GA, and Gs, are connected 
and G = GA, U Gs,. Since G is well-connected, the subgraph GA'nB' must be 
connected (Theorem 1.3). Every si is therefore connected to some vertex in 
A2AB2 . Since V~AV2 separates VI\V2 and V2\V1, every si is in V2: we have 
AAB~_V2 .  

We know that GA U Gsuv2 = G. The graphs GA and BBuv2 are connected (since 
both Gs and G2 are connected. By Theorem 1.3 again, GAn(Bu~) must be 
connected. Similarly Gz~n(Auv2) is connected. From A n B _ V2 we get A n (B u 
V2) = A n 1/2 and B n (A O V2) = B n V2. Thus GAnv~ and GBnv~ are connected 
and GAnv2 U GBnv2 ---- Gvlnv~ (since GA U Gs = Gt). Hence GAnv2 n GBnv~ = 
GAnB is not connected. By Theorem 1.3, G~A G2 = Gvl O Gv2 is not well- 
connected. [] 

Remark. Corollary 1.5 does not hold in general if the hypothesis that (31 and G2 
are induced subgraphs of G1 U G2 is removed. But it can be shown that Corollary 
1.4 is still valid under the weaker hypothesis: G = G1 U G2, G~ n G2 connected, 
G1 and 62 well-connected. 
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2. Null-homotopic graphs 

Definition 2.1. A graph G is said to be null-homotopic if every cycle in G is 
homotopic to the zero cycle. 

In other terms a graph is null-homotopic if and only if its cycle space admits a 
basis constituted of triangles. 

A simple example of null-homotopic graphs is given by triangulated graphs 
(graphs such that every cycle of length 4 possesses a chord. A larger class is the 
class of dismantelable graphs, characterized by Quilliot [4] and Novakowski and 
Winkler [8] as graphs in which the pursuit game is won by the pursuer. We say 
that a vertex v of a graph G with at least two vertices is removable if there is a 
vertex w of G adjacent to v such that every vertex of G adjacent to v and 
different from v is also adjacent to w. 

A dismantelable graph G = (V, E) is defined by the property: there is a linear 
order VI ' ' 'Vn  of V such that vi is remov, able from the subgraph induced by 
{Vl""" vi} for 2~i<~n. 

The proof that every dismantelable graph is null-homotopic is left to the 
reader. The converse is false. 

As in the topological context, we have the following property. 

Theorem 2.2. A connected null-homotopic graph is well-connected. 

Proof. Let S be a m.r.-cutset of a connected graph G = (V, E) and suppose S is 
not connected. 

By definition, there exist two vertices x and y separated by S such that S is 
inclusion minimal with this property. 

Denote by Cx and Cy the connected components of Gvxs containing respec- 
tively x and y. By the minimality of S, Cx and Cy are adjacent to every vertex and 
hence to every connected component of S. So, choosing two such components $1 
and $2, we are sure of the existence of a cycle C included in $1 LI $2 LI Cx LI Cy that 
passes successively through $1, Cx, $2, Cy. 

Let T be the set of edges linking $1 and C~. We remark that every triangle of G 
has an even number of edges in T. On the contrary, C possesses an odd number 
of edges in T. Hence C cannot be an algebraic sum of triangles: G is not 
null-homotopic. [] 

Remark 2.3. The converse of Theorem 2.2 is not true in general. The graph C~,+q 
(1 ~ q  ~<p) with vertex-set Z/(3p + q)7/ and edges xy for y - x  e { + 1 , . . . ,  +p} 
(mod 3p + q) is well connected but is not null-homotopic. 

Proof. The graph C~,+q is well connected since every separating subset must 
contain two disjoint 'circular interval' (i.e., subsets of the form {a, a + 
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1 , . . . ,  a + b} (mod3p + q) with at least p vertices each. Two such intervals 
induce a connected graph which is also a dominating subset. Hence every 
separating subset of C~,+q is connected. [] 

In order to see that C~p+q is not null homotopic, consider the set T of edges xy 
with x e { 2 p + q + l ,  2 p + q + 2 , . . . , 3 p + q }  and y e { 1 , 2 , . . . , p } .  Every tri- 
angle of the graph contains an even number of edges in T. Thus the cycle 
1, 2 , . . . ,  2p + q, 1, containing only one edge in T, is not a sum of triangles. 

We conclude this section with some lemmas on null-homotopic graphs. 

Lemma 2.4. Every contraction of  a null-homotopic graph produces a null- 
homotopic graph. Every power 1 of  a null-homotopic graph is a null-homotopic 
graph. 

Lemma 2.5. Suppose G is a connected graph with a connected cutset S. I f  every 
S-piece is null homotopic, then G is null-homotopic. 

The proofs are left to the reader. 

Lemma 2.6. Let G = (V, E) be a null-homotopic graph and S be a cutset of G. 
Assume the induced subgraph Gs is null-homotopic. Then every S-piece is 
null-homotopic. 

Proof. Let P be an S-piece and C a cycle of Ge. Let 3 be a set of triangles of G 
such that C = Et~-t  (mod 2). Denote by 3"1 (resp. 3"2) the set of all triangles of 3" 
that are included in P \ S  (resp. that meet both S and P\S).  Every triangle in 
3"1 O 3"2 is in P. Moreover all the edges of the cycle C' = C + ~ er 1 t + ~ er~ t are in 
S. Thus, the cycle C' is null-homotopic in Gs, and C is null-homotopic in Ge. 

Remark 2.7. A graph obtained from a null-homotopic graph by adding a new 
edge closing at least one triangle is deafly also null-homotopic. We conjecture 
that all null-homotopic graphs are obtained by a sequence of such operations, 
starting from a tree. In other words 

Conjecture 2.8. In every null-homotopic graph G there is at least one edge e such 
that G \e  is null-homotopic. 

3. Planar graphs and graphs not contractible onto Ks 

By Remark 2.3 the converse of Theorem 2.2 does not hold in general. 
However a converse holds for planar graphs and more generally for graphs not 
contractible onto Ks, the complete graph on 5 vertices. 

1 Two vertices are joined in the kth power of a graph when their distance in the graph is at most k. 



Connected cutsets of a graph and triangle bases of the cycle space 151 

The following definition is due to Wagner [5]: a k-decomposition of a graph G 
is a sequence of p I> 2 graphs such that 

G = G~ U . . .  U Up, (3.1) 

For 1 ~< i ~<p, Gi+l and G1 U.  • • U Gi are two pieces of the 
graph GI U. • • U Gi+~ with respect to some cutset which has (3.2) 
at most k vertices. 

A k-decomposition is said to be simplicial (resp. connected) when all cutsets in 
(3.2) are complete (resp. connected) subgraphs. 

A disc-triangulation is a connected planar graph such that every face is a 
triangle, except possibly one. 

Theorem 3.3. Let G be a connected planar graph. Then the following assertions 
are equivalent: 

(i) G is null-homotopic, 
(ii) G is well-connected, 

(iii) G admits a simplicial 3-decomposition into disc-triangulations. 

Proof. (i)--~(ii) and (iii)--~(i) are implied by Theorem 2.2 and Lemma 2.5 
respectively. We prove (ii)--~ (iii) by induction on the number of vertices of G. 
The theorem is obvious for graphs having less than 4 vertices. 

Let G be a planar well-connected graph with n ~> 4 vertices. If S is a minimal 
cutset of G with less than 4 vertices, Us is connected hence must be 
well-connected. By Corollary 1.5, every S-piece is also well-connected. If Gs is 
K1, K2 or K3 the conclusion follows immediately from the induction hypothesis. 
Otherwise Gs is a path of length 2. By Kuratowski's theorem there are only two 
S-pieces (otherwise G would contain an homeomorph of K3,3). The vertices of S 
are on a non triangular face of each S-piece. 

By the induction hypothesis, there are simplicial 3-decomposition of these two 
pieces into disc-triangulations. It is easily seen that the glueing by S of these 
decompositions yields a similar simplicial 3-decomposition as well. 

So we may assume G is 4 connected. Suppose that G is not a disc-triangulation. 
Then G possesses at least two non-triangular faces F~ and F2. 

By a well known Corollary of the Menger theorem, G contains four pairwise 
disjoint paths A,  B, C, D joining four distinct vertices of F~ to four distinct 
vertices of F2. Let a l e  FI and a2 6 F2 be the endvertices of A and let bl, b2, Cl, C2, 
dl, d2 be similarly defined. We may suppose that a~, b~, c~, dl occur in that order 
on F~. Clearly the vertices in A U C separate b~ and c~. 

We see that every cutset contained in A U C, and minimal with the property of 
seParating b~ and d~, necessarily contains a~ and c~. Such a m.r.-cutset is 
therefore not connected. This fact contradicts the well-connectedness of G and 
concludes the proof. [] 
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Corollary 3.4. A 3-connected planar graph G is null-homotopic if and only if: 
every minimal cutset o f  G is connected. 

Proof. If every minimal cutset of a 3-connected planar graph is connected, then 
every m.r.-cutset is connected. (Since no subdivided K3,3 is planar). 

The corollary fails for 2-connected graphs as shown by the graph drawn in Fig. 
1. 

Fig. 1. 

Theorem 3.3 generalizes to graphs not contractible onto Ks. The proof uses the 
decomposition theorem of Wagner [5] (short proof in [7]). 

Theorem 3.5. Let G be a connected graph not contractible onto 1(5. The following 
assertions are equivalent. 

(i) G is nuU-homotopic, 
(ii) G is well-connected, 

(iii) G admits a connected 3-decomposition whose members are disc- 
triangulations o f  discs. 

Proof. ( i ) '>  (ii) by Theorem 2.2 (iii)--> (i) by Lemma 2.5. We prove (ii)--> (iii) by 
induction on the number of vertices of G. This is obvious for small graphs. 
Suppose G is a well-connected graph not contractible onto Ks. 

Adding edges to G, we eventually obtain a graph G'  maximal with the 
property to be not contractible onto /(5. By Wagner's theorem, the graph G'  
either admits a simplicial 3-decomposition or is maximal planar or is La, the 
octagon with its four diameters., 

If G '  is not decomposable, since every well-connected subgraph of Ls is planar, 
then G is planar and the conclusion follows from Theorem 3.3. If G '  has a 

F simplicial 3-decomposition G'  = G~ LI- • • t.J Gp, p t> 2, G admits a 3- 
decomposition G = G1 t3- - -  t3 Gp. 

The graph H = (G1 U- -- LI G~,_~) tq G~, is connected via Theorem 1.3. Since H 
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has at most 3 vertices H is also weft-connected. Thus by Corollary 1.5, the graphs 
GI U.  • • U Gp_l and Gp are well-connected. Applying the induction hypothesis to 
the graphs G1 U- • • U Gj,_I and Gp, we obtain the conclusion. [] 

A criterium for contractibility on to / (5  is the following result. 

Theorem 3.6. Let G be a connected graph with at least one edge. Suppose every 
edge o f  G is contained in at least 3 triangles. Then G is contractible onto Ks. 

Proof. We apply Wagner's theorem. Suppose G satisfies the hypothesis of 
Theorem 3.6 and is not contractible onto/ (5 .  By the argument used in the proof 
of Theorem 3.5, G admits a 3-decomposition G = G1 U G2 U- • • U Gp whose 
members are planar. We may suppose that Gp is not 3-decomposable; The graph 
Gp contains an edge not in G1 U. • • U Gp_x. Necessarily there are 3 triangles of 
Gp containing this edge. In a planar graph if three triangles have an edge in 
common, one of them is a cutset: hence Gp is 3-decomposable, a 
contradiction. [] 

Remark 3.7. If every edge is contained in at least 2 triangles every vertex is of 
degree i>3. So, by a theorem of Dirac [2], the graph is contractible onto K4. 

This suggests the following problem: what is the maximal value of t such that if 
G has at least one edge and every edge of G contained in at least t triangles, then 
G is contractible onto K,+2? We conjecture that this property holds for t = 4. 

It does not hold for t sufficiently large as a consequence of the following 
theorem of [1]: for every fixed constant c, there exists an integer t > 0 and a graph 
G with n vertices and more than tn edges which is not contractible onto Ktaj.  If 
some edge e of G is in less than t triangles then the contraction of e produces a 
graph with n - 1 vertices and more than t(n - 1) edges. Repeating this operation 
we obtain a graph G '  not contractible onto K ta j in which every edge belongs to 
at least t triangles. We do not know what happens when every edge of the graph 
is supposed to be in exactly t triangles. 

Note added in proof 

Our Conjecture 2.8 was recently disproved by C. Champetier who considered a 
triangulation of a certain 2-manifold. 

References 

[1] W. Fernandez De La Vega, On the maximum density of graphs with no subcontraction to K s, 
Discrete Math. 46 (1983) 109-110. 



154 P. Duchet, M. Las Vergnas, H. Meyniel 

[2] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. London 
Math. Soc. 27 (1952) 85-92. 

[3] P. Duchet, M. Las Vergnas and H. Meyniel, Homotopy and convexity in graphs, Communication 
at the Coll. to the memory of K. Kuratowski, Lagow (1981), Poland. 

[4] A. Quiiliot, Th6se d'Etat, Paris (1983). 
[5] K. Wagner, Bemerkungen zu Hadwigers Vermutung, Math. Ann. 141 (1960) 433-451. 
[6] G.T. Whyburn, Analytic Topology, AMS Coll. Pub. Vol. XXVIII (AMS, Providence, 1942). 
[7] H.P. Young, A quick proof of Wagner's equivalence theorem, J. Lond. Mat. Soc. (2) 3 (1971) 

661-664. 


