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In this article, numerical study for the fractional Cable equation which is fundamental equations
for modeling neuronal dynamics is introduced by using weighted average of finite difference
methods. The stability analysis of the proposed methods is given by a recently proposed proce-

2013 dure similar to the standard John von Neumann stability analysis. A simple and an accurate
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stability criterion valid for different discretization schemes of the fractional derivative and arbi-
trary weight factor is introduced and checked numerically. Numerical results, figures, and com-
parisons have been presented to confirm the theoretical results and efficiency of the proposed
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Introduction

The Cable equation is one of the most fundamental equations
for modeling neuronal dynamics. Due to its significant devia-
tion from the dynamics of Brownian motion, the anomalous
diffusion in biological systems cannot be adequately described
by the traditional Nernst—Planck equation or its simplification,
the Cable equation. Very recently, a modified Cable equation
was introduced for modeling the anomalous diffusion in spiny
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neuronal dendrites [1]. The resulting governing equation, the
so-called fractional Cable equation, which is similar to the tra-
ditional Cable equation except that the order of derivative with
respect to the space and/or time is fractional.

Also, the proposed fractional Cable equation model is better
than the standard integer Cable equation, since the fractional
derivative can describe the history of the state in all intervals,
for more details see [1,2] and the references cited therein.

The main aim of this work is to solve such this equation
numerically by an efficient numerical method, fractional
weighted average finite difference method (FWA-FDM).

In recent years, considerable interest in fractional calculus
has been stimulated by the applications that this calculus finds
in numerical analysis and different areas of physics and engi-
neering, possibly including fractal phenomena. The applica-
tions range from control theory to transport problems in
fractal structures, from relaxation phenomena in disordered

2090-1232 © 2013 Cairo University. Production and hosting by Elsevier B.V. All rights reserved.
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Table 1 The absolute error of the numerical solution of Eq.
(35).

X The absolute error
0.1 0.3063 x 1073
0.2 0.5826 % 1073
0.3 0.8019x 103
0.4 0.9427 x 1073
0.5 0.9912 x 1073
0.6 0.9427 % 1073
0.7 0.8019 x 1073
0.8 0.5826 x 1073
0.9 0.3063 x 103

media to anomalous reaction kinetics of subdiffusive reagents
[2,3]. Fractional differential equations (FDEs) have been of
considerable interest in the literatures, see for example [4-13]
and the references cited therein, the topic has received a great
deal of attention especially in the fields of viscoelastic materials
[14], control theory [15], advection and dispersion of solutes in
natural porous or fractured media [16], anomalous diffusion,
signal processing and image denoising/filtering [17].

In this section, the definitions of the Riemann—Liouville
and the Griinwald-Letnikov fractional derivatives are given
as follows:

Definition 1. The Riemann-Liouville derivative of order o of
the function y(x) is defined by

py . Ld [t y()
ny(X) - F(}’l _ O() dxn /(; (X _ T)a—n+l d‘L’,

where 7 is the smallest integer exceeding « and I' (.) is the Gam-
ma function. If « = n € N, then (1) coincides with the classical
n'™ derivative y™(x).

x>0, (1)

Definition 2. The Griinwald—Letnikov definition for the frac-
tional derivatives of order o > 0 of the function y(x) is defined by
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Fig. 1 The behavior of the exact solution and the numerical
solution of (35) at 2 =0 for =0.2,=0.7,Ax =5, A1 = 5,
with T = 2.

[i]
Bl T 12 (2)
D y(x) - %,IE(}/W /(:()nk y(x - hk)7 x =0, (2)

where [/—ﬂ means the integer part of 5 and w,(f‘) are the normal-

ized Griinwald weights

()

The Griinwald-Letnikov definition is simply a generaliza-
tion of the ordinary discretization formula for integer order
derivatives. The Riemann-Liouville and the Griinwald—
Letnikov approaches coincide under relatively weak
conditions; if y(x) is continuous and y'(x) is integrable in the
interval [0,x], then for every order 0 < o < 1 both the
Riemann-Liouville and the Griinwald-Letnikov derivatives
exist and coincide for any value inside the interval [0, x]. This
fact of fractional calculus ensures the consistency of both
definitions for most physical applications, where the functions
are expected to be sufficiently smooth [15,18].

which are defined by w(’ =

The plan of the paper is as follows: In the second section,
some fractional formulae and some discrete versions of the
fractional derivative are given. Also, the FWA-FDM is
developed. In the third section, we study the stability and the
accuracy of the presented method. In section Numerical
results” numerical solutions and exact analytical solutions of a
typical fractional Cable problem are compared. The paper
ends with some conclusions in section “Conclusion and
remarks.”

We consider the initial-boundary value problem of the
fractional Cable equation which is usually written in the
following way

u(x,t) =D} Puy (x,0) — uD} *u(x,1), a<x<b,
0<t<T, A3)
where 0 < o, f < 1, uis a constant and D, is the fractional

derivative defined by the Riemann—Liouville operator of order
1 — vy, where y = a, . Under the zero boundary conditions

u(x.t)

O Excat Solution

#  Numerical Solution " 4
0 01 02 03 04 05 06 07 08 09 1
X

Fig. 2 The behavior of the exact solution and the numerical
solution of (35) at 2 = 0.5 for x=0.1,#=0.3,Ax = {55, Ar = 3,
with 7= 0.5.
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Fig. 3 The behavior of the approximate solution of (35) at

A=05 for Ax =5, At =15, with T=105, o =08, f =038,

—09,8=090=1p4=1.
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Fig.4 The behavior of the unstable solution of (35) at A = 1 for

0=0.1,=09,Ax =1L As with T = 1.

— L
80 =0 T 140

u(a, t) = u(b, 1) =0, (4)
and the following initial condition
u(x,0) = g(x). )

In the last few years, appeared many papers to study
this model (3)—(5) [5,19-22], the most of these papers study
the ordinary case of such system. In this paper, we study
the fractional case and use the FWA-FDM to solve this
model.

035

03

Fig. 5 The behavior of the numerical solution of (35) at A = 0

fora=02,=0.7Ax =5, A1 = 4.

Finite difference scheme for the fractional Cable equation

In this section, we will use the FWA-FDM to obtain the dis-
cretization finite difference formula of the Cable Eq. (3). We
use the notations Az and Ax, at time-step length and space-step
length, respectively. The coordinates of the mesh points are
X; = a + jAx and t,, = mAt, and the values of the solution
u(x,7) on these grid points are u(x;, t,,) = u' = U

For more details about discretization in fractional calculus
see [5].

In the first step, the ordinary differential operators are dis-
cretized as follows [23]

m+1 m

ou mtd Ut —

ou — 5. A= 5 A

i, Sl + O(A) -+ 0(A), (6)
and

Ful s s o(ax) = T2 L av? ()
ox|,, - (Ax)? '

In the second step, the Riemann—Liouville operator is dis-
cretized as follows

D! u(x, t)‘x L= 5;""u]’-” + O(Ae), (8)
where

1 . L& -
S Tyt = - w, Pu(xg, b, — kAt

t J (At)lfy ; k ( ] )

U 0, ek
= — Y w, U, 9)
(A" = !
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04l -Solution at T=0.5
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Fig. 6 The numerical
0=0.5p=05Ax=

(37) where

%, At = 45 with different values 7.

2 =0,

Table 2 The maximum absolute error for different values of
Ax and At

Ax At Maximum error
i $ 0.00751
0 5 0.00716
1?0 @ 0.00428
™ ™ 0.00234
l—?o @ 0.00095
B0 Bs0 0.00010
0.14 - - - -
==~ Solution at =0.1 i
Solution at B=0.4
0.12 ; ]
)
i
0.1} ||‘ 4
_ 008} lj i 4
z /|
> ooe} (1 ]
A\
004} Y/ N\ 1
002} / Y ]
,/ \
0 ——’!'_‘-/’/1 1 1 1 1 1 : \-—.!__
0 1 2 3 4 5 6 7 8 9 10
X
Fig. 7 The numerical solution of (37) where A=0,

Ax =4, At = 55,0 = 0.5, with different values of fat 7 = 0.1.

where [&] means the integer part of 2 and for simplicity,

we choose i = At. There are many choices of the weights

w,(f) [5,15], so the above formula is not unique. Let us de-

0.2
~=-Solution at =03
0.18 [ = Solution at «=0.6 ﬁ
0.16 h
0.14 'i
0.12
X 01
FY
0.08
0.06 //“| “\\
VAN
004 ‘/ Y \ \\
7 N\
0.02 Fad \Y
4 AN
0 N sl . . . M.
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X
Fig. 8 The numerical solution of (37) where A=0,

Ax =&, Ar =5, f = 0.2 with different values of & at T = 0.1.

note the generating function of the weights w,(f‘) by w(z,a),
ie.,

w(z,a) = iwf)zk. (10)
=0

If

w(z,a) = (1 —2)% (11)

then (9) gives the backward difference formula of the first or-
der, which is called the Griinwald—Letnikov formula. The coef-

ficients wi,“) can be evaluated by the recursive formula

1
w = (1 - —a;g )W/(:?lv

For y = 1 the operator D!™7 becomes the identity opera-
tor so that, the consistency of Eqgs. (8) and (9) requires
wéo) =1, and w,io) =0 for k > 1, which in turn means that
w(z,0) = 1.

Now, we are going to obtain the finite difference scheme of
the Cable Eq. (3). To achieve this aim, we evaluate this equa-
tion at the intermediate point of the grid (x;, 7, + %)

w® = 1. 12
0

[u:(x, 1) — D} Pu(x, [)]x,-.thr% + uD) " u(x;, 1) = 0. (13)

Then, we replace the first order time-derivative by the for-
ward difference formula (6) and replace the second order
space-derivative by the weighted average of the three-point
centered formula (7) at the times ¢,, and ¢,,+

o™ = {70 Powat? + (1 = o oag ' } 4 o)y

= TE", (14)

1. .
with 2 is being the weight factor and TE;"+2 is the resulting
truncation error. The standard difference formula is given by
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Fig. 9 The numerical solution of (37) where o =0.5,

B =0.5Ax =L At =L with different values of 1 at T = 0.1.

50 30°
8 = {38 15,U7 + (1= )8 15, U7 | + a7 U7 =0

(15)

Now, by substituting from the difference operators given by
(6), (7) and (9), we get

U]r_n+1 _ IJ;_n 1 m (1-f) U;”l]r _ 214717" 4 U;ijr—l;
— A > 2
At (A) 74 (Ax)
1
—(1-2
(=4 (Ar)'!
m m+1 . m+1 m—+1—r
) Y il (Ujjl 2 — O )
r=0 (AX)
1 m . .
g U =0 (16)
r=0

Put Ny = %,Nu = (A0, ¢ = (1 — 2)Ng, and under some
simplifications we can obtain the following form
_d)[]]"’fql + (1 +2¢)[J}n+l _ d)UTH»l _ R7 (]7)

J+1

where

m
R=U7+ Ny [l (1= il [ =207 + 0y

i+
r=0
- ulelvﬁl’“) v (18)
r=0

Eq. (17) is the fractional weighted average difference
scheme. Fortunately, Eq. (17) is tridiagonal system that
can be solved using conjugate gradian method. In the case
of =1 and 1= %, we have the backward Euler fractional
quadrature method and the Crank—Nicholson fractional

quadrature methods, respectively, which have been
studied, e.g., in [24], but at 4 = 0 the scheme is called fully
implicit.

Stability analysis

In this section, we use the John von Neumann method to study
the stability analysis of the weighted average scheme (17).

Theorem 1. The fractional weighted average finite difference
scheme (WADS) derived in (17) is stable at 0 < . < % under the
following stability criterion

N _ B
—= = @iz l)i (19)
Ny T o1-p2

Proof. By using (18), we can write (17) in the following form

_d)U;-TE] +(1+ 2¢)U71+I _ ¢U71jl _ U,;’n — _'uNazwgl—a) U;_nfr
r=0
N [;wl*/‘) (- z)wﬁi‘l’”] [U;iq" —2Ur + U;’;’].
r=0

(20)

In the fractional John von Neumann stability procedure,
the stability of the fractional WADS is decided by putting
Uy = &,,e2 Inserting this expression into the weighted aver-
age difference scheme (20) we obtain

_¢€m+leiq071mx +(1 + 2¢)ém+leiqu - ¢ém+leiq(j+lmx - émeiqu

= Nﬂz [/Auwf,]*ﬂ) + (1 - A)Wﬁ:m} [efq(/;])Ax
r=0

m

_ zeiq/Ax + eiq(/’+])Ax]ém7r _ ,uszwilii) ém,re[qu, (21)
r=0

substitute by ¢ = (1 — 2)Ng and divide (21) by VA we get

Fig. 10 The numerical

B=05Ax=%4Ar=1

solution of (37) where «=0.5,
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_(1 - A)Nﬁénwlei’wx + (1 + 2(1 - /I)Nﬁ)énwl
- (1 - /’L)NﬁfinJrleiqAx - ém

m

— N/;Z {/LM} (1- ﬁ

m

+ HNLxZwSl?D() Cfm—r =0. (22)

r=0

1 - }) [e ’qAx - 2 + eiqAX]éVH*V'

Using the known Euler’s formula ¢ = cosf +isinf we
have

[142(1 — 4)Ng —
- Nﬁz {Aw (=A 4

+ “Nmzl¢’517%) ém—r =0. (23)
r=0

2(1 - /I)N/f COS(qAx)}éerl - fm

l—i)w D=2 4 2cos(gAX)]E,

Under some simplifications, we can write the above equa-
tion in the following form

. Ax\ ], SN ,
|:] + 4(1 - ;‘)Nﬁ San (qT)j| Sm+1 + NNO(ZW;(-I g()ém—r — Cm

r=0
A, m
+ 4N sin® (%)Z[mg‘ D4 (1= Dwl; ]gm L=0.  (24)
r=0

The stability of the scheme is determined by the behavior of
&,»- In the John von Neumann method, the stability analysis is
carried out using the amplification factor 5 defined by

5111+1 = Vlém (25)

Of course, 1 depends on m. But, let us assume that, as in
[13], n is independent of time. Then, inserting this expression
into Eq. (24), one gets

. Ax & ,
|:1 + 4(1 - ;")Nﬂ Sln2 (qT)j| ’16:11 + HNXZ%{lia)',Iﬂfm - ém
r=0

Ax m
+ 4N sin® <%)Z[AW5‘*/‘> + (1= ]n*rém =0, (26)

r=0

divide by &, to obtain the following formula of 5

1 — 4Ny sin (“A‘)Em [}m“ P4+ (1- >M /‘)} 0 — uN, S w0y

= 1+ 4(1 = )N, sin” (%) (27)
The scheme will be stable as long as |7l <1, i.e.,
1 —4Nysin® ("A‘)ZT [)w“ A4 (1 - ))n (- /f] = uN Y
s 1+4(1 — Z)Nysin® (13Y) <!
(28)
considering the time-independent limit value = —1 and since

1 +4(1 — 2)Ngsin® (%) > 0, then

A
—1 —4(1 - 2)Ngsin <‘12A)
Ax\ & ,
< 1—4Ngsin® (%)Z(-l)*’ pwf“-/” + (1= AP

r=0
— N,y wi (=
r=0

From the above 1nequa11ty, we can obtaln

—2 — 4(1 — 2)Nysin® ( )+uN Zw (-

Ax\ & '
+ 4Ny sin’ (%)Z[iw’(yﬂ) +(1- ;”)W;(l;lﬁ)] (1) <0.

r=0

Put 0 = Ngsin ("A‘) we find

—2—4(1-2)0+ ,uNawa,l’“)

CON

+40%° [mg'*/ﬂ +(1— /1)w§‘+;/‘>] (1) <0, (29)
r=0

which can be written ’iﬂn the form
“2—4(1 =)0+ pN,y Wl (=1)"

r=0

+40[ (1 =223 (=1 w4 a4 (-1 (1 - ;L)WLL{”} <0.
r=1
Put
1 H{@ D= ST+ = aul
M, 2= uN, " (=1 7
(30)
one finds that the mode is stable when
1 1
7z (31)

Although, M,, depends on m, it turns out that M,, tends
toward its limit value

1 1
—=1 32
M )71520 Mm ( )
In this limit the stability condition is
1 1
0” M
44 (22-1) { (71)'71w(1’/f) + lim (—1)"(1 = 2wl }
—1 m—o0

2 — uN, Zwl D(=1)"
(33)
but from Egs. (10) and (11) with z = —1 one sees that
S (=1)'wl=) =277 50 that

L 4[@A- 027 fim (170 P s
M 2— uN2" " , (34)

since 0 = N sin® (4Y), replacing sin” (43*) by its highest value
and since lim,,_..(—1)"(1 — A)wi,,;ﬂ) =0, therefore we find
that the sufficient condition for the present method to be stable
and this completes the proof of the theorem.

Remark 1. For 1 < 1< 1, the stability condition (19) can be

satisfied under spe01ﬁc values of Ny =

note from the results which presented in Table 1.

Numerical results

In this section, we present two numerical examples to illustrate the
efficiency and the validation of the proposed numerical method
when applied to solve numerically the fractional Cable equation.
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Example 1. Consider the following initial-boundary problem
of the fractional Cable equation
ul(x7 t) = Dtliﬁuxx(x: Z) - Dtlixu(xv t) +f(x7 t)v (35)

on a finite domain 0 < x < 1, with 0 << 7T, 0<a, f <1
and the following source term

2B £+l

r2+p) I2+a)

fx, 1) = 2(t + > sin(7x), (36)
with the boundary conditions u(0,7) = u(1,f) = 0, and the ini-
tial condition u(x,0) = 0.

The exact solution of Eq. (35) is u(x,7) = #sin(mx).

The behavior of the exact solution and the numerical
solution of the proposed fractional Cable Eq. (35) by means of
the FWA-FDM with different values of 4, «, ff, At, Ax and the
final time T are presented in Figs. 1-5.

In Table 1, we presented the behavior of the absolute
error between the exact solution and the numerical solution of Eq.

(35)ati=1,a=009,f=09,Ax = &, At = gk and T = 0.01.

Also, in Table 2, we presented the maximum error of the
numerical solution for 2 = 0,2 = 0.2, f = 0.7, T = 0.1 with
different values of Ax and At.

Example 2. Consider the following initial-boundary problem
of the fractional Cable equation

u,(x,1) =D;_ﬁuxx(x, 1) — O,SD}_“u(x, 1),
0<x<10, 0<t<T, (37)

with u(0,7) = u(10,7) = 0 and u(x,0) = 105(x — 5), where 5(x)
is the Dirac delta function.

The numerical solutions of this example are presented in
Figs. 6-10 for different values of the parameters 4, o, f§, Ax, At
and the final time 7.

Conclusion and remarks

This paper presented a class of numerical methods for solving the
fractional Cable equations. This class of methods is very close to
the weighted average finite difference method. Special attention is
given to study the stability of the FWA-FDM. To execute this
aim, we have resorted to the kind of fractional John von Neumann
stability analysis. From the theoretical study, we can conclude
that this procedure is suitable and leads to very good predictions
for the stability bounds. The presented stability of the fractional
weighed average finite difference scheme depends strongly on
the value of the weighting parameter 4. Numerical solutions
and exact solutions of the proposed problem are compared and
the derived stability condition is checked numerically. From this
comparison, we can conclude that the numerical solutions are in
excellent agreement with the exact solutions. All computations
in this paper are running using Matlab programming 8.
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