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Abstract

Quasi-Monte Carlo (QMC) methods have been successfully used to compute high-dimensional integrals arising in many applica-
tions, especially in finance. To understand the success and the potential limitation of QMC, this paper focuses on quality measures
of point sets in high dimensions. We introduce the order-�, superposition and truncation discrepancies, which measure the quality
of selected projections of a point set on lower-dimensional spaces. These measures are more informative than the classical ones. We
study their relationships with the integration errors and study the tractability issues. We present efficient algorithms to compute these
discrepancies and perform computational investigations to compare the performance of the Sobol’nets with that of the sets of Latin hy-
percube sampling and random points. Numerical results show that in high dimensions the superiority of the Sobol’nets mainly derives
from the one-dimensional projections and the projections associated with the earlier dimensions; for order-2 and higher-order projec-
tions all these point sets have similar behavior (on the average). In weighted cases with fast decaying weights, the Sobol’ nets have a
better performance than the other two point sets. The investigation enables us to better understand the properties of QMC and throws
new light on when and why QMC can have a better (or no better) performance than Monte Carlo for multivariate integration in high
dimensions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many practical problems can be transformed into the computation of multivariate integrals

Is(f ) =
∫

[0,1]s
f (x) dx, x = (x1, . . . , xs).
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The dimension s can be very large. The classical methods based on product rules are not suitable for large s because
of the curse of dimensionality. Monte Carlo (MC) or quasi-Monte Carlo (QMC) estimates of Is(f ) take the form

Qn,s(f ) = 1

n

n∑
i=1

f (xi ), xi ∈ [0, 1]s .

MC methods are based on random samples and have a convergence order of O(n−1/2) for square integrable functions,
independently of s, while QMC methods (which in practice are either low discrepancy sequences [16] or good lattice
methods [24]) use deterministic points having better uniformity properties.

Our purpose in this paper is to study the low-dimensional projections of low discrepancy sequences in high dimen-
sions, aiming at answering the question of when and why QMC can have a better (or no better) performance than MC.
We introduce new quality measures of a point set and explain their importance for understanding the success of QMC
in some applications. Note that some projection properties of low discrepancy sequences were studied in [7,14,23].

A classical QMC error bound is the Koksma–Hlawka inequality (see [16]):

|Is(f ) − Qn,s(f )|�D∞,∗(P ) VHK(f ),

where D∞,∗(P ) is the L∞-star discrepancy and VHK(f ) is the variation in the sense of Hardy and Krause. Traditionally,
a sequence is called a low discrepancy sequence if the L∞-star discrepancy of the first n points satisfies

D∞,∗(P )�c(s)
(log n)s

n
.

There are several known low discrepancy sequences, such as Halton [9], Sobol’ [28], Faure [8], Niederreiter [16]
and Niederreiter–Xing [17]. A QMC algorithm based on a low discrepancy sequence has a deterministic error bound
O(n−1(log n)s) for functions of bounded variation, which is asymptotically better than that of MC. However, the QMC
error bound increases with n until n equals approximately es . For large s, the Koksma–Hlawka bound does not imply
any advantage of QMC for practical values of n.

Empirical investigations have shown that QMC is significantly more efficient than MC for high-dimensional integrals
in some applications, especially in finance (see [1,3,18,21,22]). The question of how to explain the success of QMC has
been extensively investigated. Caflisch et al. [3], Owen [20] and Wang and Fang [31] studied the effective dimensions.
Sloan and Woźniakowski [27] introduced weighted function spaces and showed the existence of QMC algorithms for
which the curse of dimensionality is not present under some conditions on the weights. Good shifted lattice rules
which achieve strong tractability error bounds were constructed in Sloan et al. [25]. Hickernell and Wang [12] and
Wang [30] showed that Halton, Sobol’ and Niederreiter sequences achieve error bounds with the optimal convergence
order O(n−1+�) (for arbitrary � > 0) independently of the dimension under appropriate conditions. Sloan et al. [26]
showed that the convergence rate of QMC becomes essentially independent of the dimension for functions for which
the “interactions” of many variables together are small enough.

The efficiency of an algorithm depends on both the point set and the integrand. The success of QMC for some high-
dimensional problems indicates that there must be some inherent properties of low discrepancy point sets and/or there
must be some special features in the integrands. About the integrands, it is known that many high-dimensional problems
in finance are of low effective dimension in the superposition sense, i.e., the functions can be well approximated by sums
of low-dimensional functions (but the effective dimension in the truncation sense can be large), see [3,32]. Moreover, if
dimension reduction techniques are used, such as the Brownian bridge [15] and the principal component analysis [1],
the integrands are likely to be of low effective dimension in the truncation sense [31]. For functions of small effective
dimension (in the superposition or truncation sense), the integration errors are determined by the discrepancy of the
low-order projections or the projections of the initial coordinates. Note that most results on effective dimensions are
empirical and most discussions on the relation of the effective dimension with the QMC errors are of qualitative nature.

This paper focuses on the quality of QMC point sets in high dimensions. In deciding which of two point sets is the
better, the usual preference is for the one with smaller discrepancy (such as the classical L∞-star or L2-star discrepancy,
see [16]). Computational investigations of the classical discrepancy confirmed the superiority of low discrepancy point
sets over random point sets only in low dimensions (say s�12), but failed to demonstrate any superiority of QMC
in high dimensions (see [14]). Indeed, in high dimensions the classical discrepancies of low discrepancy point sets
are found to behave initially like O(n−1/2), the same as for random points, while an order close to O(n−1) can only
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be observed for huge n, with the transition value of n appearing to grow exponentially with the dimension s. Thus,
the classical discrepancies are not good enough for measuring the quality of point sets in high dimensions. Another
popular empirical method to study the uniformity of QMC point sets is to plot their two-dimensional projections [14].
However, there are too many projections for a point set in high dimensions, and one can almost always find some good
and some bad projections. This indicates the need of new methodology to study the uniformity of point sets.

This paper is organized as follows. In Section 2, after an overview of the classical discrepancies, we introduce new
quality measures: the order-�, superposition and truncation discrepancies. Their generalizations and tractability issues
are studied in Section 3. Efficient algorithms for computing these discrepancies are presented in Section 4, whereas
computational investigations are performed in Section 5. The investigations throw new light on the efficiency and
potential limitations of QMC in high dimensions, and indicate when and why QMC may have a better or no better
performance than MC and indicate ways of how to enhance the superiority of QMC.

2. Superposition and truncation discrepancies

2.1. The classical discrepancies

We start with the classical star discrepancy. Let P := {xi = (xi,1, . . . , xi,s) : i = 1, . . . , n} be a set of n points in
[0, 1]s . For a vector y = (y1, . . . , ys) ∈ [0, 1]s , let [0, y) = [0, y1) × · · · × [0, ys). Define the local discrepancy as

disc(y) := y1 · · · ys − 1

n

n∑
i=1

X[0,y)(xi ), (1)

where X[0,y) is the characteristic function of [0, y). The classical L∞-star discrepancy is the L∞-norm of the local
discrepancy function:

D∞,∗(P ) := sup
y∈[0,1)s

|disc(y)|.

The classical L2-star discrepancy is the L2-norm of the local discrepancy function

D∗(P ) :=
(∫

[0,1]s
disc2(y) dy

)1/2

. (2)

An important property of the classical L2-star discrepancy is its relation to the average-case error of the algorithms
Qn,s(f ), as shown in [34]:

D2∗({1 − xi}) =
∫

F

[Is(f ) − Qn,s(f )]2�(df ),

where F = C([0, 1]s) is the class of continuous functions defined over [0, 1]s , and � is the classical Wiener sheet
measure.

For a point set P := {xi = (xi,1, . . . , xi,s) : i = 1, . . . , n} in [0, 1]s , an explicit formula is available for D∗(P )

(see [33]):

D2∗(P ) =
(

1

3

)s

− 2

n

n∑
i=1

s∏
j=1

(
1

2
− x2

i,j

2

)
+ 1

n2

n∑
i=1

n∑
k=1

s∏
j=1

[1 − max(xi,j , xk,j )]. (3)

Many computational investigations were based on this. A faster algorithm was presented in [10]. The classical L2-star
discrepancy fails to properly discriminate among different (low discrepancy or random) point sets in high dimensions.
One important reason is that it ignores the lower-order projections.

In order to define new notions of discrepancies, we introduce some notation. Let A = {1, . . . , s} and let 1 :
� = {1, . . . , �}. For any subset u ⊆ A, let |u| denotes its cardinality (or order). For x ∈ [0, 1]s , let xu be the |u|-
dimensional vector containing xj for j ∈ u. By (xu, 1) we mean the s-dimensional vector with the same components
as x for indices in u and the rest of the components replaced by 1.
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For any non-empty subset u of A, let Pu={(xi )u : i =1, . . . , n}. According to (2), the square of the classical L2-star
discrepancy of Pu is

D2∗(Pu) :=
∫

[0,1]|u|
disc2(xu) dxu, (4)

where disc(xu) is defined as in (1). Suppose now that we are given a sequence of non-negative weights {�u : u ⊆ A}
with �∅ = 1. The squared (fully) weighted L2-star discrepancy is defined as (see [11,27])

D2(P ; K∗
s ) :=

∑
∅�=u⊆A

�uD
2∗(Pu). (5)

(The reason for the label K∗
s will be clear soon.)

The purpose of introducing weights is to allow a greater or smaller emphasis to various terms in (5). Two kinds of
weights will be of particular interest. One is the product weights

�∅ = 1, �u :=
∏
j∈u

�j for ∅ �= u ⊆ A; (6)

the other is the order-dependent weights

�∅ = 1, �u := �(�) if |u| = �, (7)

where �1, . . . , �s and �(1), . . . ,�(s) are non-negative numbers. The product weights (6), introduced in [27], are the
simplest to handle. Their drawback is that they are not sufficiently flexible: the “interaction” among xj with j ∈ u is
automatically determined by the product

∏
j∈u�j . In the order-dependent case, introduced in [6], the weights depend

on u only through the order |u|. This choice is more appropriate if all variables are (nearly) equally important. The
order-dependent weights are of the product form iff �(�) = �� for some �.

For the product weights (6), an explicit formula is available for the weighted L2-star discrepancy [27]. For the
order-dependent weights (7), a formula will be given in Section 4.

The weighted L2-star discrepancy involves all projections. The relative importance of different projections depends
strongly on the weights. It would seem better to separate the projections and to examine the uniformity of each projection
separately. However, there are 2s − 1 projections, a huge number for large s. Such considerations lead us to define new
discrepancies, which measure the uniformity over selected aggregations of projections. We introduce new discrepancies
based on the geometric interpretation and then generalize them via the reproducing kernel approach.

2.2. The order-�, superposition and truncation discrepancies

The quality of the projections of low discrepancy point sets varies significantly with the order |u| (this is made
mathematically precise in Section 3). It is desirable to distinguish different orders of projections.

Definition 1. For � = 1, . . . , s the order-� (weighted L2-star) discrepancy of the point set P , denoted by D(�)(P ), is
defined by

D2
(�)(P ) :=

∑
u⊆A,|u|=�

�uD
2∗(Pu), (8)

where D∗(Pu) is the classical L2-star discrepancy of Pu.

The order-� discrepancy D(�)(P ) is a measure of the uniformity of the order-� projections all taken together. The
classical L2-star discrepancy in (2) is actually the order-s discrepancy with �A=1, which only measures the uniformity
of the highest order projection (this exposes a deficiency of the classical L2-star discrepancy). Moreover, from (5) and
(8) it follows that D2(P ; K∗

s ) = ∑s
�=1D

2
(�)(P ).

For many low discrepancy point sets in dimension s, each projection of order-� is an �-dimensional low discrepancy
point set (see Theorem 3). The result shows that for two important low discrepancy point sets and for a fixed small �,
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the order-� discrepancy has asymptotically better behavior than a random point set. However, this asymptotically better
behavior may not appear for practical values of n. Indeed, as mentioned in [14], even order-2 projections of common
low discrepancy point sets may have bad distribution properties. Later we will show in a numerical experiment that the
Sobol’ net may have larger order-2 discrepancy than a random point set does, if s is large and n is relatively small. (In
the experiment s = 64 and n�212.)

Definition 2. For � = 1, . . . , s the superposition (weighted L2-star) discrepancies of P, denoted by SD�(P ), are
defined by

SD2
�(P ) =

�∑
k=1

D2
(k)(P ) =

∑
u⊆A,|u|��

�uD
2∗(Pu).

The superposition discrepancies SD�(P ) is an aggregate measure of the uniformity of all projections with order |u|
from 1 up to �. Clearly, we have SDs(P ) = D(P ; K∗

s ).

Definition 3. For � = 1, . . . , s the truncation (weighted L2-star) discrepancies of P, denoted by TD1:�(P ), are
defined by

TD2
1:�(P ) :=

∑
∅�=u⊆1:�

�uD
2∗(Pu).

The truncation discrepancy TD1:�(P ) is the weighted L2-star discrepancy of P1:�, the projection of P on the first
� dimensions; moreover, TD1:s(P ) is just the weighted L2-star discrepancy D(P ; K∗

s ) in (5), i.e., TD1:s(P ) =
D(P ; K∗

s ).

2.3. Relations to QMC integration error

We now make use of the theory of reproducing kernel Hilbert spaces (RKHS). For general properties of RKHS, we
refer the reader to [2]. If H(K) is a RKHS of functions defined on [0, 1]s with the reproducing kernel K(x, y) and
norm ‖ · ‖H(K), then

|Is(f ) − Qn,s(f )|�D(P ; K)‖f ‖H(K), ∀f ∈ H(K),

where

D(P ; K) := sup{|Is(f ) − Qn,s(f )| : f ∈ H(K), ‖f ‖H(K) �1}, (9)

is called the discrepancy of P ={x1, . . . , xn} with respect to K(x, y), or the worst-case error of the algorithm Qn,s(f )

in the unit ball of H(K). Since H(K) is a RKHS, it can be shown that (see [11,27])

D2(P ; K) =
∫

[0,1]2s
K(x, y) dx dy − 2

n

n∑
i=1

∫
[0,1]s

K(x, xi ) dx + 1

n2

n∑
i,k=1

K(xi , xk). (10)

Now we consider a specific reproducing kernel

K∗
s (x, y) =

∑
u⊆A

�uKu(xu, yu), (11)

where K∅ = 1, �∅ = 1 and

Ku(xu, yu) =
∏
j∈u

min(1 − xj , 1 − yj ) for u �= ∅.
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It is known (see [11,27]) that for this kernel the discrepancy (9) is just the weighted L2-star discrepancy D(P ; K∗
s )

defined by (5) (this is the reason for the notation D(P ; K∗
s ) in (5)). Thus, D(P, K∗

s ) in (5) may be interpreted as the
worst-case error in the RKHS H(K∗

s ) in which the square of the norm is known to be

‖f ‖2
H(K∗

s ) =
∑
u⊆A

�−1
u

∫
[0,1]|u|

(
�|u|

�xu
f (xu, 1)

)2

dxu.

It is shown in [12] that the RKHS H(K∗
s ) can be written as the direct sum of the orthogonal spaces H(Ku) (the

RKHS with the kernel Ku):

H(K∗
s ) =

⊕
u⊆A

H(Ku), (12)

and every function f ∈ H(K∗
s ) has a unique decomposition

f (x) =
∑
u⊆A

fu(xu) with fu ∈ H(Ku).

The squared norm of fu in H(Ku) can be expressed as (see [12])

‖fu‖2
H(Ku)

=
∫

[0,1]|u|

(
�|u|

�xu
f (xu, 1)

)2

dxu. (13)

The norm of fu in H(Ku) is related to its norm in H(K∗
s ) by ‖fu‖2

H(Ku)
= �u‖fu‖2

H(K∗
s ).

The truncation discrepancy TD1:�(P ) is the �-dimensional version of the weighted L2-star discrepancy D(P ; K∗
s ),

thus it is the worst-case error in the RKHS H(K∗
� ) with the kernel K∗

� (x1:�, y1:�), i.e.,

TD1:�(P ) = D(P1:�, K∗
� ). (14)

Note that, based on the orthogonal decomposition (12), for f ∈ H(K∗
� ) its norm in H(K∗

� ) is the same as that in
H(K∗

s ) because of the orthogonality (see [12]).
It can be verified by using (10) and (3) that the order-� discrepancy D(�)(P ) is the worst-case error for the RKHS

with the kernel

K(�)(x, y) =
∑

u⊆A,|u|=�

�uKu(xu, yu),

i.e.,

D(�)(P ) = D(P, K(�)). (15)

Similarly, for the superposition discrepancy we have

SD�(P ) = D

(
P,

�∑
k=1

K(k)

)
. (16)

Moreover, the order-�, superposition and truncation discrepancies appear as pieces in the general integration error
bound (9) for f ∈ H(K∗

s ). From the Hlawka–Zaremba identity

Is(f ) − Qn,s(f ) =
∑

∅�=u⊆A

(−1)|u|
∫

[0,1]|u|
disc(xu, 1)

�|u|

�xu
f (xu, 1) dxu,

together with the Cauchy–Schwarz inequality, (4) and (13), it follows that

|Is(f ) − Qn,s(f )|�
∑

∅�=u⊆A

D∗(Pu)‖fu‖H(K∗
s ). (17)
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Based on this, on applying the Cauchy–Schwarz inequality once again (after multiplying and dividing by �1/2
u ), we

obtain

|Is(f ) − Qn,s(f )|�
s∑

�=1

D(�)(P )V(�)(f ), (18)

where

V2
(�)(f ) =

∑
u⊆A,|u|=�

�−1
u ‖fu‖2

H(Ku)
.

In terms of the superposition discrepancy, from (18) we have the error bound (for � = 1, . . . , s)

|Is(f ) − Qn,s(f )|�SD�(P )

(
�∑

k=1

V2
(k)(f )

)1/2

+
s∑

k=�+1

D(k)(P )V(k)(f ). (19)

Similarly, from (17) we have, for � = 1, . . . , s,

|Is(f ) − Qn,s(f )|�TD1:�(P )V1:�(f ) +
∑

u⊆A, u�1:�
D∗(Pu)‖fu‖H(Ku), (20)

where

V2
1:�(f ) =

∑
∅�=u⊆1:�

�−1
u ‖fu‖2

H(Ku)
.

We summarize the results in the following.

Theorem 1. The order-�, superposition and truncation discrepancies of P are the worst-case errors in the RKHS with
the kernels K(�)(x, y),

∑�
k=1K(k)(x, y) and K∗

� (x1:�, y1:�), respectively, i.e.,

D(�)(P ) = D(P, K(�)) = sup{|Is(f ) − Qn,s(f )| : f ∈ H(K(�)), ‖f ‖H(K∗
s ) �1},

SD�(P ) = D

(
P,

�∑
k=1

K(k)

)
= sup

{
|Is(f ) − Qn,s(f )| : f ∈ H

(
�∑

k=1

K(k)

)
, ‖f ‖H(K∗

s ) �1

}
,

TD1:�(P ) = D(P1:�, K∗
� ) = sup{|Is(f ) − Qn,s(f )| : f ∈ H(K∗

� ), ‖f ‖H(K∗
s ) �1}.

Moreover, for f ∈ H(K∗
s ) the QMC error can be bounded in terms of order-�, superposition or truncation discrepancy

as in (18) or (19) or (20).

3. Generalizations and tractability issues

3.1. Generalizations via reproducing kernel approach

The star discrepancy is based on rectangles with one vertex at the origin. Correspondingly, the reproducing kernel K∗
s

has an “anchor” at the opposite vertex (1, . . . , 1). There are other ways of defining discrepancies (see [11]). Consider
the RKHS H(Ks) with the kernel

Ks(x, y) =
∑
u⊆A

�uKu(xu, yu), (21)

where K∅ = 1, �∅ = 1 and

Ku(xu, yu) =
∏
j∈u

�j (xj , yj ) for u �= ∅. (22)

We are interested in the following two choices for the function �j (x):
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Choice (a):

�j (x, y) =
{

min(|x − aj |, |y − aj |) for (x − aj )(y − aj ) > 0,

0 otherwise,
(23)

where (a1, . . . , as) ∈ [0, 1]s is a given point (the anchor). If (a1, . . . , as)= (1, . . . , 1), then �j (x, y)= min(1 − x, 1 −
y), which corresponds to star discrepancy. If (a1, . . . , as) = ( 1

2 , . . . , 1
2 ), then one obtains the centered discrepancy,

see [11].
Choice (b):

�j (x, y) = 1
2B2({x − y}) + (x − 1

2 )(y − 1
2 ), (24)

where B2(x) = x2 − x + 1/6 is the Bernoulli polynomial of degree 2 and {x} means the fractional part of x.
We shall call the corresponding RKHS an anchored Sobolev space or unanchored Sobolev space, respectively.

According to [12], in both cases the RKHS H(Ks) can be written as the direct sum of H(Ku):

H(Ks) =
⊕
u⊆A

H(Ku),

where H(Ku) is the RKHS with the kernel Ku; moreover, an arbitrary function f ∈ H(Ks) has a unique projection
decomposition:

f (x) =
∑
u⊆A

fu(xu) with fu ∈ H(Ku), (25)

and fu(xu)=(f, Ku(·, xu))Ku . Note that for choice (a) the projection decomposition of a function is in general different
from its ANOVA decomposition, on which some concepts of effective dimension are based [3]. For choice (b) these
two decompositions coincide [5,11].

Define

K(�)(x, y) :=
∑

u⊆A,|u|=�

�uKu(xu, yu), (26)

and

K�(x1:�, y1:�) :=
∑
u⊆1:�

�uKu(xu, yu). (27)

Motivated by the relations of the order-�, superposition and truncation discrepancies with the worst-case errors for the
special kernel K∗

s (x, y), we introduce the following generalizations of (14)–(16).

Definition 4. The order-�, superposition and truncation discrepancies with respect to the general kernel Ks(x, y) are
defined by

D(�)(P ) := D(P ; K(�)),

SD�(P ) := D

(
P ;

�∑
k=1

K(k)

)
,

TD1:�(P ) := D(P1:�; K�),

respectively, where D(P ; K) denotes the discrepancy of the point set P with respect to the kernel K, see (10).

As in Section 2, relations exist among the new discrepancies. The superposition and truncation discrepancies can be
written in terms of the order-� discrepancies as

SD2
�(P ) =

�∑
k=1

D2
(k)(P ), (28)
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and

TD2
1:s(P ) =

s∑
�=1

D2
(�)(P ) = SD2

s (P ) = D2(P ; Ks).

Each of the discrepancies can be interpreted as a worst-case error as in (9). Relations similar to (18)–(20) can be
established for the general order-�, superposition and truncation discrepancies with respect to the general kernels. We
omit the details.

3.2. The tractability issues

As benchmarks, we give the expected values for the new discrepancies for random points. For a given kernel of the
general form (21), let

Bj :=
∫

[0,1]2
�j (x, y) dx dy, Aj :=

∫
[0,1]

�j (x, x) dx. (29)

For choice (a) above we have

Bj = a2
j − aj + 1

3 , Aj = a2
j − aj + 1

2 , (30)

whereas for choice (b)

Bj = 0, Aj = 1
6 . (31)

If P is a set of random points, the expected value of the squared order-� discrepancy is

E[D2
(�)(P )] = 1

n

(∫
[0,1]s

K(�)(x, x) dx −
∫

[0,1]2s
K(�)(x, y) dx dy

)
.

By direct calculation, from (21) and (22) we have

E[D2
(�)(P )] = 1

n

⎛
⎝ ∑
u⊆A,|u|=�

�u
∏
j∈u

Aj −
∑

u⊆A,|u|=�

�u
∏
j∈u

Bj

⎞
⎠ . (32)

Based on (28), we have

E[SD2
�(P )] =

�∑
k=1

E[D2
(k)(P )] = 1

n

⎛
⎝ ∑
u⊆A,|u|��

�u
∏
j∈u

Aj −
∑

u⊆A,|u|��

�u
∏
j∈u

Bj

⎞
⎠ .

Similarly, the expected value of the squared truncation discrepancy is

E[TD2
1:�(P )] = 1

n

⎛
⎝ ∑
u⊆1:�

�u
∏
j∈u

Aj −
∑
u⊆1:�

�u
∏
j∈u

Bj

⎞
⎠ . (33)

For the product weights (6), this can be written as

E[TD2
1:�(P )] = 1

n

⎛
⎝ �∏

j=1

(1 + �jAj ) −
�∏

j=1

(1 + �jBj )

⎞
⎠ .

The root mean square expected order-�, superposition and truncation discrepancies behave like O(n−1/2).
We briefly study the tractability issues. Since the superposition discrepancy corresponds to the situation of finite-

order weights in [26], all results there apply to superposition discrepancy. At the same time, the order-� discrepancy
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corresponds to finite-order weights with �u = 0 for |u| �= �. We start with the anchored space and study the bounds on
the normalized order-� discrepancy. By the normalized order-� discrepancy, we mean D(�)(P )/D(�)(∅), where

D2
(�)(∅) =

∫
[0,1]2s

K(�)(x, y) dx dy =
∑

u⊆A,|u|=�

�u
∏
j∈u

Bj

is the squared initial order-� discrepancy. (Of course this is interesting only if Bj �= 0 for all j, thus choice (b) is
excluded from the present discussion.) Given � > 0, we look for the smallest n=n(�, s, �) for which there exists a point
set P such that D(�)(P )��D(�)(∅). That is,

n(�, s, �) = min{n : ∃P, |P | = n, such that D(�)(P )��D(�)(∅)}.
We ask how n(�, s, �) behaves with respect to �−1, s and �. The following result is related to the results for finite-order
weights [26], but can be proved in a simpler way.

Theorem 2. Consider the order-� discrepancy with respect to an anchored Sobolev space.

(i) For arbitrary weights �u and n�1, there exists a point set P such that

D2
(�)(P )

D2
(�)(∅)

� 1

n
(3� − 1).

Hence,

n(�, s, �)�
⌈

3� − 1

�2

⌉
.

(ii) For arbitrary weights �u and n�1, and for an arbitrary point set P,

D2
(�)(P )

D2
(�)(∅)

�
[

1 −
(

8

9

)�

n

]
.

Hence,

n(�, s, �)�(1 − �2)

(
9

8

)�

.

Proof. For the first part, note that for the anchored Sobolev space, Aj and Bj are given by (30). It follows that for an
arbitrary anchor a = (a1, . . . , as) ∈ [0, 1]s we have

min Bj = 1
12 , Aj = Bj + 1

6 . (34)

Note that from (32) the expected value of the squared order-� discrepancy can be written as

E[D2
(�)(P )] = 	s,� − 1

n
D2

(�)(∅), (35)

where

	s,� =
∑
u⊆A,|u|=��u

∏
j∈uAj∑

u⊆A,|u|=��u
∏

j∈uBj

.

From (34), it follows that

	s,� =
∑
u⊆A,|u|=��u

∏
j∈uBj (1 + 1/6Bj )∑

u⊆A,|u|=��u
∏

j∈uBj

� max
u⊆A,|u|=�

∏
j∈u

(
1 + 1

6Bj

)
�3�,
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where we used the fact that min Bj = 1
12 . Based on (35), there exists a point set P, such that

D2
(�)(P )/D2

(�)(∅)�E[D2
(�)(P )]/D2

(�)(∅)� 1

n
(3� − 1).

Now we prove the second part. Since the kernel K(�)(x, y) in the anchored case is always non-negative, we may use
Lemma 4 of [27], which for the special case of the kernel K(�) states that

D2
(�)(P )�(1 − n
2)D2

(�)(∅), (36)

where


2 = max
x∈[0,1]s

h2
(�)(x)

D2
(�)(∅)K(�)(x, x)

, h(�)(x) =
∫

[0,1]s
K(�)(x, y) dy. (37)

In the same way as in [26, Theorem 6], we may prove that


2 �
∑
u⊆A,|u|=��u

∏
j∈uWj∑

u⊆A,|u|=��u
∏

j∈uBj

,

where

Wj = max

(
8a3

j

27
,

8(1 − aj )
3

27

)
.

For aj ∈ [ 1
2 , 1], we have

Wj

Bj

= 8a3
j

27(a2
j − aj + 1/3)

∈
[

4

9
,

8

9

]
, j = 1, . . . , s.

Thus


2 �
∑
u⊆A,|u|=��u

∏
j∈uBj

∏
j∈u

Wj

Bj∑
u⊆A,|u|=��u

∏
j∈uBj

�
(

8

9

)�

.

The second result in Theorem 2 now follows from (36). �

The upper bound on n(�, s, �) limits how good a well chosen point set can be and the lower bound tells how hard the
problem is. We observe that n(�, s, �) can be bounded above independently of the dimension s and the weights, so the
normalized order-� discrepancy is strongly tractable for any fixed � and any weights. However, the number n(�, s, �)
depends exponentially on �, thus for large � we may have trouble.

It is important to know how the order-� discrepancies of the Sobol’ sequence and the Niederreiter sequence behave
with respect to s, � and n. The following results can be deduced from the results in [26].

Theorem 3. Let PSobol and PNied be the point sets of the first n points of the s-dimensional Sobol’ sequence and the
Niederreiter sequence in base b, respectively. For order-� discrepancy with respect to the anchored Sobolev space
(associated with the choice (a) of the RKHS), we have for arbitrary weights �u that

D(�)(PSobol)�C1 n−1s�[log2(s + 1)log2log2(s + 3)log2(2n)]�D(�)(∅),

and

D(�)(PNied)�C2 n−1s�[log2(s + b)log2(nb)]�D(�)(∅),

where C1 and C2 are constants independent of s and n.
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Sometimes we may be interested in the absolute error criterion in which we want to guarantee that the order-�
discrepancy D(�)(P ) is at most �. Let N(�, s, �) be defined as

N(�, s, �) := min{n : ∃P, |P | = n, such that D(�)(P )��}.

We assume that �u��∗ for some constant �∗.
Unlike the normalized order-� discrepancy, the upper bound on the absolute order-� discrepancy depends on s and

the weights. For the anchored Sobolev space, the squared initial order-� discrepancy is of the order s�. Therefore, based
on Theorem 2, we have D(�)(P )=O(n−1/2s�/2) for a good choice of P, implying an exponential dependence on �, but a
polynomial dependence on s. For the Sobol’ or Niederreiter nets, based on Theorem 3 we have D(�)(P )=O(n−1s3�/2),
ignoring the logarithmic factors.

Next we consider the unanchored Sobolev space. For the unanchored Sobolev space we have Bj = 0 and Aj = 1
6

for j = 1, . . . , s. The initial order-� discrepancy is D(�)(∅) = 0. There is no sense to consider the normalized order-
� discrepancy, so we consider the absolute order-� discrepancy. Based on (32), there exists a point set P such that
D(�)(P )=O(n−1/2s�/2). For the Sobol’nets and the Niederreiter nets, it follows from [26] that their order-�discrepancies
for the unanchored Sobolev space satisfy the same bounds as in Theorem 3, but with the factor D(�)(∅) replaced by 1.
Therefore, their order-� discrepancies are of order O(n−1s�), ignoring the logarithmic factors.

Therefore, for the Sobol’ nets and the Niederreiter nets, their order-� discrepancies achieve a faster asymptotic
convergence rate than random points do, but their upper bounds have polynomial dependence on s. It is unknown
where the asymptotic regime begins. One purpose of this paper is to investigate, for practical n and large s, whether and
when the order-� discrepancies of QMC point sets are smaller than these for random point sets. This is done empirically
in Section 5.

4. Efficient computational algorithms

We consider the general kernel given by (21) and (22). For general weights, we face a problem to compute the
order-�, superposition and truncation discrepancies. For example, the computation of D(�)(P ) based on the formula
(8) is equivalent to the computation of the classical L2-star discrepancy for each projection u with |u| = � separately.
Since P has

(
s
�

)
projections Pu with order |u| = �, and the calculation of D∗(Pu) requires O(�n2) operations, a direct

computation of D(�)(P ) would require O
((

s
�

)
�n2

)
operations. Consequently, computing all D(�)(P ) for � = 1, . . . , s,

requires O(s2s−1n2) operations, which depends exponentially on s, and thus is an impossible task even for moderate
size of s.

Below we show that for the product weights (6) and the order-dependent weights (7), it is unnecessary to deal with
each projection separately and efficient algorithms for the truncation and order-� discrepancies exist. Computing the
superposition discrepancy is based on the formula (28).

Theorem 4. Consider the reproducing kernel (21) and (22). Put Bj := ∫
[0,1]2 �j (x, y) dx dy and Bij := ∫

[0,1]
�j (x, xi,j ) dx. Let P = {xi = (xi,1, . . . , xi,s), i = 1, . . . , n} ⊂ [0, 1]s . We have

(i) For the product weights (6) and for � = 1, . . . , s,

TD2
1:�(P ) =

�∏
j=1

(1 + Bj �j ) − 2

n

n∑
i=1

�∏
j=1

(1 + Bij �j ) + 1

n2

n∑
i,k=1

�∏
j=1

[1 + �j�j (xi,j , xk,j )],

D2
(�)(P ) =

∑
u⊆A,|u|=�

∏
j∈u

(Bj �j ) − 2

n

n∑
i=1

∑
u⊆A,|u|=�

∏
j∈u

(Bij �j )

+ 1

n2

n∑
i,k=1

∑
u⊆A,|u|=�

∏
j∈u

[�j�j (xi,j , xk,j )].
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(ii) For the order-dependent weights (7) and for � = 1, . . . , s,

D2
(�)(P ) = �(�)

⎛
⎝( s

�

)∏
j∈u

Bj − 2

n

n∑
i=1

∑
u⊆A,|u|=�

∏
j∈u

Bi,j + 1

n2

n∑
i,k=1

∑
u⊆A,|u|=�

∏
j∈u

�j (xi,j , xk,j )

⎞
⎠ , (38)

TD2
1:�(P ) =

�∑
k=1

D2
(k)(P1:�).

Proof. If the weights have the product form (6), then the reproducing kernel (27) can be written as the product

K�(x1:�, y1:�) =
�∏

j=1

(1 + �j�j (xj , yj )).

The formula for the truncation discrepancy in (i) follows immediately from the formula (10). The formulas for
the order-� discrepancies in both (i) and (ii) are also based on the formula (10) and on the explicit form of the
kernel (26). �

Remark 1. The order-� and superposition discrepancies with different order-dependent weights are related to each
other. For order-dependent weights (7), it is clear from (38) that

D(�)(P ) = �1/2
(�) D(�)(P ; 1), � = 1, . . . , s,

where we temporarily use D(�)(P ; 1) to denote the order-� discrepancy with the specific order-dependent weights:
�(1) = · · · = �(s) = 1. In terms of D(�)(P ; 1), the square superposition discrepancy corresponding to general weights
�(1), . . . ,�(s) can be expressed as

SD2
�(P ) =

�∑
k=1

D2
(k)(P ) =

�∑
k=1

�(k)D
2
(k)(P ; 1), � = 1, . . . , s.

Thus, the order-� and superposition discrepancies with arbitrary order-dependent weights can be easily obtained from
D(k)(P ; 1) for k = 1, . . . , �.

For product weights or order-dependent weights, the formulas for the order-� discrepancy and the formula (32)
involve quantities of the form∑

u⊆A,|u|=�

∏
j∈u

Cj for some C1, C2, . . . , Cs . (39)

It is crucial to be able to compute such quantities efficiently. Define

T (m, �, {Cj }sj=1) := T (m, �) :=
∑

u⊆1:m,|u|=�

∏
j∈u

Cj , (40)

for m = 1, . . . , s and � = 1, . . . , m. We can view T as an s × s lower triangular matrix. Obviously, T (m, 1) =∑m
j=1Cj

and T (m, m) = ∏m
j=1Cj for m = 1, . . . , s. The elements of the last row of T are T (s, �) = ∑

u⊆A,|u|=�

∏
j∈uCj for

� = 1, . . . , s, which are the quantities in (39). The following lemma gives a recursive relation for T (m, �).

Lemma 5. Let T (m, �) be defined by (40), then

T (m, �) = T (m − 1, �) + CmT (m − 1, � − 1) for m�3, ��2. (41)
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Proof. From the definition of T (m, �), it follows that

T (m, �) =
∑

u⊆1:m,|u|=�

∏
j∈u

Cj

=
∑

u⊆1:(m−1),|u|=�

∏
j∈u

Cj +
∑

m∈u⊆1:m,|u|=�

∏
j∈u

Cj

= T (m − 1, �) + CmT (m − 1, � − 1). �

Based on the recursive relation (41), we can easily compute the elements of the last row of T: T (s, 1), T (s, 2), . . . ,

T (s, s). Computing all these element requires O(s2) operations.
Lemma 5 makes an efficient computation of the order-� discrepancy possible. For example, the order-� discrepancy

with order-dependent weights in Theorem 4 can be written as

D2
(�)(P ) = �(�)

⎡
⎣T (s, �, {Bj }sj=1) − 2

n

n∑
i=1

T (s, �, {Bij }sj=1) + 1

n2

n∑
i,k=1

T (s, �, {�j (xi,j , xk,j )}sj=1)

⎤
⎦ .

The number of operations needed for computing all the elements D(�)(P ), �=1, . . . , s, is O(s2n2). By using symmetry
the computing cost can be cut in half.

5. Computational investigations

We investigate empirically the order-�, superposition and truncation discrepancies of the Sobol’ nets and compare
them with the mean values for the sets of random points and of Latin hypercube sampling (LHS). The LHS will be
introduced below. Note that in the generation of the Sobol’ nets, we choose the direction numbers such that certain
additional uniformity properties are satisfied [29].

We consider the reproducing kernel (21) with �j given by choice (b), see (24). We prefer this kernel, since in this case
the projection decomposition (25) and the ANOVA decomposition of a function are identical. The quantities involved
in the formulas of the order-� and truncation discrepancies are given in (31) and Bij = ∫

[0,1] �j (x, xi,j ) dx = 0. The
computation is based on Theorem 4. The mean values for random point sets are given in (32) and (33). The mean values
for LHS are given below.

5.1. The discrepancies of LHS

LHS [13] provides a good set of points for integration. A LHS point set of size n, PLHS = {(xi,1, . . . , xi,s) :
i = 1, . . . , n}, is generated as

xi,j = �j (i) − Uij

n
, i = 1, . . . , n, j = 1, . . . , s, (42)

where �j are random permutations of {1, . . . , n}, each uniformly distributed over all n! possible permutations, and
Uij are uniform [0, 1] random variables; moreover, the permutations and the uniform random variates are mutually
independent. Note that LHS stratifies each individual dimension, but imposes no higher dimensional stratification. We
now derive formulas for the mean square truncation and order-� discrepancies of LHS.

Theorem 6. Let PLHS be a LHS set of size n. Consider the reproducing kernel (21) with �j (x, y) defined in (24).

(i) For the product weights (6) and for � = 1, . . . , s,

E[TD2
1:�(PLHS)] = −1 + 1

n

�∏
j=1

(
1 + �j

6

)
+
(

1 − 1

n

) �∏
j=1

[
1 + �j

(
1 − n

12n2

)]
.

E[D2
(�)(PLHS)] = 1

n

∑
u⊆A,|u|=�

∏
j∈u

(
�j

6

)
+
(

1 − 1

n

) ∑
u⊆A,|u|=�

∏
j∈u

(
(1 − n)�j

12n2

)
.
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(ii) For the order-dependent weights (7) and for � = 1, . . . , s,

E[D2
(�)(PLHS)] = �(�)

[
1

n6�
+
(

1 − 1

n

)(
1 − n

12n2

)�
]( s

�

)
,

E[TD2
1:�(PLHS)] =

�∑
k=1

E[D2
(k)(PLHS,1:�)].

Proof. We prove only the first formula. For the product weights (6), from Theorem 4 we have, using (24), (31) and
Bij = 0 for all i, j,

TD2
1:�(PLHS) = −1 + 1

n2

n∑
i,k=1

�∏
j=1

[
1 + �j

(
1

2
B2({xi,j − xk,j }) +

(
xi,j − 1

2

)(
xk,j − 1

2

))]
,

where the random variables xi,j are defined by (42). On separating the i = k terms and the i �= k terms, we
obtain

TD2
1:�(PLHS) = − 1 + 1

n2

n∑
i=1

�∏
j=1

[
1 + �j

(
1

2
B2(0) +

(
xi,j − 1

2

)2
)]

+ 1

n2

∑
i �=k

�∏
j=1

[
1 + �j

(
1

2
B2({xi,j − xk,j }) +

(
xi,j − 1

2

)(
xk,j − 1

2

))]
.

By taking expectations and by direct computation, we have

E[(xi,j − 1
2 )2] = 1

12 , E[(xi,j − 1
2 )] = 0,

E[B2({xi,j − xk,j })] = 1

6n2 − 1

6n
for i �= k,

and the result follows. �

5.2. Numerical comparisons

We consider two groups of weights:
Group (A) (order-dependent weights):

• (A1) �(1) = · · · = �(s) = 1 (or equivalently, �1 = · · · = �s = 1);
• (A2) �(1) = 1, �(2) = · · · = �(s) = 1

100 ;

• (A3) �(1) = 1, �(2) = · · · = �(s) = 1
10 000 .

Group (B) (product weights): �j = 1/2j−1, j = 1, . . . , s.
Note that for order-dependent weights, the order-� and superposition discrepancies for any weights �(�) can be

deduced from those for the basic case (A1) as mentioned in Remark 1; moreover, from Eq. (38) in Theorem 4 the
relative performance of the order-� discrepancies of any two point sets does not depend on the weights �(�). So we will
focus on the order-� discrepancy for the basic case (A1).
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The computational results for s = 64 are given in the appendix. The convergence rates for the order-�, super-
position and truncation discrepancies of the Sobol’ nets, i.e., the value a in an expression of the form O(n−a),
estimated from linear regression on the empirical data with n = 28, 210, 212, are also given (the convergence rates
give sufficient information on the behavior of the Sobol’ nets with the increasing of n). We observe the
following:

• In cases (A1) and (B) (see Tables 1 and 2), the order-1 discrepancies of the Sobol’ nets are much smaller than
those of LHS and random point sets (this is not surprising, see Remark 2). But for � = 2, 3, . . . , the advantage
for Sobol’ nets may no longer exist for relatively small n; in fact, in case (A1) the order-� (even the order-2)
discrepancies for all three kind of point sets are almost the same, which implies that the high-order (including order-
2) projections of the Sobol’nets are no more uniform than LHS and random point sets on the average. This is somewhat
surprising. In case (B), the superiority of order-� discrepancy of the Sobol’ nets is preserved up to at least order 4.
(This is because of the often observed property of the Sobol’ nets that the low-order projections involving earlier
dimensions are much better than these involving later dimensions, and this superiority for the earlier dimensions
is allowed to show itself because the later dimensions are associated with smaller weights.) Thus, the advantage
of Sobol’ nets in high dimensions is mainly provided by the order-1 projections and by projections of the earlier
dimensions.

• The performance of the superposition discrepancy (see Tables 3 and 4) depends on the weights. For order-dependent
weights, the ratio �(�)/�(1) (� > 1) determines the possible superiority of low discrepancy point sets. Only when
�(�) (� > 1) is much smaller than �(1) is the superposition discrepancy of the Sobol’ nets smaller than that of
LHS or random point set. Indeed, for the largest weights (A1) the superposition discrepancy even for � = 2 is
largest for Sobol’ nets, whereas for the weights (A3), where the effect of order-2 projections is much smaller,
the superposition discrepancy for Sobol’ nets is much smaller than for the other two. For the weights (B), the
Sobol’ nets always behave better or much better than LHS and random point sets do. Again this reflects the
fact that any superiority of the order-� projections of the Sobol’ nets for � > 1 is confined to the earlier
dimensions.

• The performance of truncation discrepancy (see Tables 5 and 6) also depends on the weights. For the basic case
(A1) the truncation discrepancy D1:�(P ) for the Sobol’ nets can be smaller or much smaller than that for LHS or
random point set only if � is relatively small (say ��10). For fast decaying weights (B), the truncation discrepancy
for Sobol’ nets behaves better or much better than for LHS or random point set in all dimensions (this is because the
contribution from the high-order projections is negligible due to the small weights �u). This is consistent with the
fact that the truncation discrepancy of Sobol’ nets can achieve O(n−1+�) convergence for arbitrary � > 0 in certain
weighted Sobolev spaces uniformly in � (see [30]).

Remark 2. The O(n−1) convergence of the order-1 discrepancy for the Sobol’ nets is not surprising. In fact, a sim-
ple formula can be derived for D(1)(PSobol), where PSobol is the s-dimensional Sobol’ net with n = 2m. For each
j = 1, . . . , s, the projection of PSobol on jth dimension coincides with the set P{1} = {xi = i/n : i = 0, . . . , n −
1}, whose discrepancy with respect to the kernel �(x, y) = 1

2B2({x − y}) + (x − 1
2 )(y − 1

2 ) can be calculated
directly

D(P{1}, �) = 1

n2

n∑
i,k=1

�(xi, xk) =
√

3

3n
.

Since the order-1 discrepancy D(1)(PSobol) is the discrepancy of PSobol with respect to the kernel K(1)(x, y) =∑s
j=1�{j}�(xj , yj ), with �{j} = 1 we have

D2
(1)(PSobol) = s

3n2 .

So D(1)(PSobol) has a O(n−1) convergence and depends linearly on
√

s (this result is slightly stronger than that of
Theorem 3 for � = 1).
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For a random point set Prand or a LHS set PLHS, from (32) and from Theorem 6 we have

E(D2
(1)(Prand)) = s

6n
, E(D2

(1)(PLHS)) = s(n2 + 2n − 1)

12n3 .

Both have the same weak dependence on s, but a worse dependence on n.
Similar formulas can be derived for the weights (B):

D2
(1)(PSobol) = G

3n2 , E[D2
(1)(Prand)] = G

6n
, E[D2

(1)(PLHS)] = G(n2 + 2n − 1)

12n3 .

where G = 2 − 21−s . All are uniformly bounded in s.

Remark 3. The behavior of the order-� discrepancy in the most general case (A1) gives an indication of the circum-
stances for which QMC can be more efficient than MC for functions with a large number of equally important variables.
In such cases, the relative importance of the first-order part with respect to the higher-order part is an important indicator
of QMC performance. If the function is dominated by the first-order part, then good results can be expected from using
QMC. Consider an example (with large s, say s = 64)

f (x) =
s∏

j=1

(
1 + �s

(
xj − 1

2

))
,

where �s > 0 is a parameter. Then

f(1)(x) = �s

s∑
j=1

(
xj − 1

2

)
, f(2)(x) = �2

s

∑
i<j

(
xi − 1

2

)(
xj − 1

2

)

are the sums of the first-order and second-order ANOVA terms of f, respectively. Simple tests show that the Sobol’ nets
work much better than MC for f and f(1) + f(2) if �s is small (since the first-order terms dominate the functions), but
they work no better for f(2) and f −f(1), which include no first-order terms. This observation indicates the importance
of the additive structure of the integrands in explaining the success of QMC when there are many variables of nearly
equal importance.

6. Conclusions

Classical discrepancies are not good enough for measuring the quality of point sets in high dimensions. We there-
fore introduced more refined quality measures by focusing on selected aggregations of projections. Their connec-
tions with integration errors were studied, and bounds on the new discrepancies were established. In particular, we
showed that the Sobol’ sequence and the Niederreiter sequence have order-� discrepancies of order O(s�n−1(log n)�)

if logarithms are ignored. Efficient algorithms for computing the new discrepancies were presented (faster algo-
rithms are under development such that we could easily deal with much larger number of points. One possibility
is to use the algorithm in [10]). Computational investigations were performed in dimension s = 64, with the re-
sults that in comparison with the LHS and random point sets, the Sobol’ nets have perfect order-1 projections and
better order-2 projections for the earlier components (as can be expected), but have no better order-2 and higher-
order projections on the average for moderate values of n (this is somewhat surprising and pessimistic). It is un-
known how large n needs to be to ensure that the higher-order projections of Sobol’ nets are better than those of
random point sets. More studies are needed to fully understand the behavior of the higher-order projections of vari-
ous QMC point sets. Due to the advantages of the order-1 projections and the projections of the earlier dimensions,
the Sobol’ nets can have much smaller superposition and truncation discrepancies for fast decaying weights (this
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is fortunate, since many practical problems are indeed weighted, with the first few variables more important than
later ones).

The investigation indicates the possible advantages and potential limitations of QMC in high dimensions. The
answer to the question of whether QMC is superior to MC and how well QMC could work for high-dimensional
integrals depends strongly on the structure of the function. If a function is dominated by its first-order part, or if
the earlier variables are much more important than others, then good results can be expected from using QMC.
However, if higher-order ANOVA terms play an important role, then the superiority of QMC is not guaranteed for
relatively small n. It is important to construct QMC point sets in high dimensions, such that some higher-order
discrepancies (at least the order-2 discrepancies) are much smaller than those of random point sets. The new qual-
ity measures proposed in this paper are useful in constructing better QMC point sets. It is possible that some
randomization techniques, such as the scrambling [19] and the digital shift (see [4]), may improve the order-2
and higher-order projections. The new quality measures provide suitable means to assess the possible improve-
ment. One way would be to compute the expected order-� or superposition discrepancies for scrambling or digital
shift.

According to [32], many financial problems have low effective dimensions, since they are controlled by some
hidden weights which limit the contribution of higher-order ANOVA terms. Quite often, an ANOVA expansion
up to the second-order can provide a quite satisfactory approximation to the functions, with the first-order part
playing the major role (this might be called the QMC-friendly property). Interestingly, the QMC-friendly prop-
erty can often be enhanced by dimension reduction techniques, so that the truncation dimension is reduced
and the importance of the first-order part is increased, thereby further enhancing the superiority of QMC methods.
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Appendix A. Computational results

A.1. Comparisons of the order-� discrepancies (See Tables 1 and 2)

Table 1
The order-� discrepancies of Sobol’, Latin hypercube sampling and random point sets in dimension s=64 for the basic case (A1): �(1)=· · ·=�(s)=1

n Point set D(1) D(2) D(4) D(8) D(16) D(32) D(64)

28 Random 2.04e − 1 4.68e − 1 1.38e00 3.21e00 8.22e − 1 3.00e − 5 7.85e − 27
LHS 1.45e − 1 4.68e − 1 1.38e00 3.21e00 8.22e − 1 3.00e − 5 7.85e − 27
Sobol’ 1.80e − 2 5.51e − 1 1.42e00 3.19e00 8.11e − 1 2.82e − 5 4.84e − 27

210 Random 1.02e − 1 2.34e − 1 6.92e − 1 1.60e00 4.11e − 1 1.50e − 5 3.93e − 27
LHS 7.22e − 2 2.34e − 1 6.92e − 1 1.60e00 4.11e − 1 1.50e − 5 3.93e − 27
Sobol’ 4.51e − 3 3.05e − 1 7.13e − 1 1.61e00 4.12e − 1 1.56e − 5 4.60e − 27

212 Random 5.10e − 2 1.17e − 1 3.46e − 1 8.02e − 1 2.06e − 1 7.50e − 6 1.96e − 27
LHS 3.61e − 2 1.17e − 1 3.46e − 1 8.02e − 1 2.06e − 1 7.50e − 6 1.96e − 27
Sobol’ 1.13e − 3 1.44e − 1 3.57e − 1 8.07e − 1 2.10e − 1 8.41e − 6 2.41e − 27

a Sobol’ 1.00 0.48 0.50 0.50 0.49 0.49 0.25

The last row gives the convergence orders for the Sobol’ nets, estimated from linear regression on the empirical data with n = 28, 210, 212.
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Table 2
The same as Table 1, but for the weights (B): �j = 1/2j−1, j = 1, . . . , s

n Point set D(1) D(2) D(4) D(8) D(16) D(32)

28 Random 3.61e − 2 1.20e − 2 3.91e − 4 5.47e − 9 6.00e − 26 9.11e − 89
LHS 2.56e − 2 1.20e − 2 3.91e − 4 5.47e − 9 6.00e − 26 9.11e − 89
Sobol’ 3.18e − 3 3.95e − 3 3.90e − 4 5.12e − 9 5.02e − 26 9.45e − 89

210 Random 1.80e − 2 6.01e − 3 1.96e − 4 2.73e − 9 3.00e − 26 4.56e − 89
LHS 1.28e − 2 6.01e − 3 1.96e − 4 2.73e − 9 3.00e − 26 4.56e − 89
Sobol’ 7.97e − 4 1.15e − 3 1.67e − 4 2.63e − 9 2.88e − 26 6.12e − 89

212 Random 9.02e − 3 3.07e − 3 9.78e − 5 1.37e − 9 1.50e − 26 2.28e − 89
LHS 6.38e − 3 3.01e − 3 9.78e − 5 1.37e − 9 1.50e − 26 2.28e − 89
Sobol’ 1.99e − 4 5.74e − 4 6.03e − 5 1.33e − 9 1.59e − 26 2.71e − 89

a Sobol’ 1.00 0.70 0.67 0.49 0.42 0.45

A.2. Comparisons of the superposition discrepancies (See Tables 3 and 4)

Table 3
The superposition discrepancies in dimension s = 64 with n = 210 for the order-dependent weights of Group (A): (A1) �(1) = · · · = �(s) = 1; (A2)
�(1) = 1, �(2) = · · · = �(s) = 1/100; (A3) �(1) = 1, �(2) = · · · = �(s) = 1/10 000

Weights Point Set SD1 SD2 SD4 SD8 SD16 SD32 SD64

(A1) Random 1.02e − 1 2.55e − 1 8.56e − 1 2.83e00 4.32e00 4.34e00 4.34e00
LHS 7.22e − 2 2.45e − 1 8.53e − 1 2.83e00 4.32e00 4.34e00 4.34e00
Sobol’ 4.51e − 3 3.05e − 1 8.78e − 1 2.83e00 4.32e00 4.33e00 4.33e00

(1.00) (0.48) (0.48) (0.49) (0.49) (0.49) (0.49)

(A2) Random 1.02e − 1 1.05e − 1 1.33e − 1 3.00e − 1 4.44e − 1 4.45e − 1 4.45e − 1
LHS 7.22e − 2 7.59e − 2 1.12e − 1 2.92e − 1 4.38e − 1 4.40e − 1 4.40e − 1
Sobol’ 4.51e − 3 3.08e − 2 8.79e − 2 2.83e − 1 4.32e − 1 4.36e − 1 4.36e − 1

(1.00) (0.48) (0.49) (0.49) (0.49) (0.49) (0.49)

(A3) Random 1.02e − 1 1.02e − 1 1.02e − 1 1.06e − 1 1.11e − 1 1.11e − 1 1.11e − 1
LHS 7.22e − 2 7.23e − 2 7.27e − 2 7.76e − 2 8.42e − 2 8.42e − 2 8.42e − 2
Sobol’ 4.51e − 3 5.44e − 3 9.87e − 3 2.87e − 2 4.34e − 2 4.36e − 2 4.36e − 2

(1.00) (0.71) (0.58) (0.51) (0.50) (0.50) (0.50)

The convergence orders for Sobol’ nets (estimated from linear regression on the empirical data with n = 28, 210, 212) are given in the parentheses
for each case. The superposition discrepancies for n = 28 and 212 are omitted.

Table 4
The superposition discrepancies in dimension s = 64 for the product weights (B)

n Point set SD1 SD2 SD4 SD8 SD16 SD32 SD64

28 Random 3.61e − 2 3.80e − 2 3.81e − 2 3.81e − 2 3.81e − 2 3.81e − 2 3.81e − 2
LHS 2.56e − 2 2.83e − 2 2.84e − 2 2.84e − 2 2.84e − 2 2.84e − 2 2.84e − 2
Sobol’ 3.18e − 3 5.07e − 3 5.38e − 3 5.38e − 3 5.38e − 3 5.38e − 3 5.38e − 3

210 Random 1.80e − 2 1.90e − 2 1.91e − 2 1.91e − 2 1.91e − 2 1.91e − 2 1.91e − 2
LHS 1.28e − 2 1.41e − 2 1.41e − 2 1.41e − 2 1.41e − 2 1.41e − 2 1.41e − 2
Sobol’ 7.97e − 4 1.40e − 3 1.52e − 3 1.52e − 3 1.52e − 3 1.52e − 3 1.52e − 3

212 Random 9.02e − 3 9.51e − 3 9.53e − 3 9.53e − 3 9.53e − 3 9.53e − 3 9.53e − 3
LHS 6.38e − 3 7.05e − 3 7.08e − 3 7.08e − 3 7.08e − 3 7.08e − 3 7.08e − 3
Sobol’ 1.99e − 4 6.08e − 4 6.40e − 4 6.40e − 4 6.40e − 4 6.40e − 4 6.40e − 4

a Sobol’ 1.00 0.77 0.77 0.77 0.77 0.77 0.77

The convergence orders for Sobol’ nets (estimated from linear regression on the empirical data with n = 28, 210, 212) are also given.
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A.3. Comparisons of the truncation discrepancies (See Tables 5 and 6)

Table 5
The truncation discrepancy and the convergence order for the case (A1)

n Point set TD{1} TD1:2 TD1:4 TD1:8 TD1:16 TD1:32 TD1:64

28 Random 2.55e − 2 3.76e − 2 5.77e − 2 9.75e − 2 2.05e − 1 7.34e − 1 8.67e00
LHS 1.81e − 2 2.77e − 2 4.52e − 2 8.32e − 2 1.92e − 1 7.27e − 1 8.67e00
Sobol’ 2.25e − 3 4.34e − 3 1.10e − 2 3.80e − 2 1.60e − 1 7.24e − 1 8.61e00

210 Random 1.28e − 2 1.88e − 2 2.89e − 2 4.87e − 2 1.02e − 1 3.67e − 1 4.34e00
LHS 9.03e − 3 1.38e − 2 2.25e − 2 4.15e − 2 9.61e − 2 3.63e − 1 4.34e00
Sobol’ 5.63e − 4 1.09e − 3 3.08e − 3 1.40e − 2 9.86e − 2 3.70e − 1 4.33e00

212 Random 6.38e − 3 9.39e − 3 1.44e − 2 2.44e − 2 5.13e − 2 1.83e − 1 2.16e00
LHS 4.51e − 3 6.89e − 3 1.13e − 2 2.08e − 2 4.80e − 2 1.82e − 1 2.16e00
Sobol’ 1.41e − 4 2.90e − 4 9.12e − 4 4.90e − 3 4.21e − 2 2.15e − 1 2.19e00

a Sobol’ 1.00 0.98 0.90 0.74 0.48 0.44 0.49

Table 6
The same as Table 5, but for the weights (B)

n Point set TD{1} TD1:2 TD1:4 TD1:8 TD1:16 TD1:32 TD1:64

28 Random 2.55e − 2 3.21e − 2 3.67e − 2 3.80e − 2 3.81e − 2 3.81e − 2 3.81e − 2
LHS 1.81e − 2 2.34e − 2 2.72e − 2 2.83e − 2 2.84e − 2 2.84e − 2 2.84e − 2
Sobol’ 2.25e − 3 3.46e − 3 4.73e − 3 5.31e − 3 5.38e − 3 5.38e − 3 5.38e − 3

210 Random 1.28e − 2 1.61e − 2 1.83e − 2 1.90e − 2 1.91e − 2 1.91e − 2 1.91e − 2
LHS 9.03e − 3 1.17e − 2 1.36e − 2 1.41e − 2 1.42e − 2 1.42e − 2 1.42e − 2
Sobol’ 5.63e − 4 8.69e − 4 1.24e − 3 1.42e − 3 1.52e − 3 1.52e − 3 1.52e − 3

212 Random 6.38e − 3 8.02e − 3 9.16e − 3 9.51e − 3 9.53e − 3 9.53e − 3 9.53e − 3
LHS 4.51e − 3 5.82e − 3 6.77e − 3 7.07e − 3 7.08e − 3 7.08e − 3 7.08e − 3
Sobol’ 1.41e − 4 2.28e − 4 3.35e − 4 3.91e − 4 6.40e − 4 6.40e − 4 6.40e − 4

a Sobol’ 1.00 0.98 0.95 0.94 0.77 0.77 0.77
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[34] H. Woźniakowski, Average case of complexity of multivariate integration, Bull. Amer. Math. Soc. 24 (1991) 185–194.


	Low discrepancy sequences in high dimensions: How well are their projections distributed?
	Introduction
	Superposition and truncation discrepancies
	The classical discrepancies
	The order-, superposition and truncation discrepancies
	Relations to QMC integration error

	Generalizations and tractability issues
	Generalizations via reproducing kernel approach
	The tractability issues

	Efficient computational algorithms
	Computational investigations
	The discrepancies of LHS
	Numerical comparisons

	Conclusions
	Acknowledgments
	Appendix A. Computational results
	Comparisons of the order- discrepancies (See tbl1 tbl2Tables 1 and 2)
	Comparisons of the superposition discrepancies (See tbl3 tbl4Tables 3 and 4)
	Comparisons of the truncation discrepancies (See tbl5 tbl6Tables 5 and 6)

	References


