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This paper contains some general existence theorems for critical points of 
a continuously differentiable functional Z on a real Banach space. The strongest 
results are for the case in which I is even. Applications are given to partial 
differential and integral equations. 

This paper develops dual variational methods to prove the existence 
and estimate the number of critical points possessed by a real valued 
continuously differentiable functional I on a real Banach space E. 
Our strongest results are obtained for the case in which I is even. 
I need neither be bounded from above nor below. This study was 
motivated by existence questions for nonlinear elliptic partial differ- 
ential equations and several applications in this direction will be 
given as well as to integral equations. 

To illustrate the sort of situation treated here, suppose I is even 
with I(0) = 0 and 1> 0 near 0 in some uniform fashion. Then u = 0 
is a local minimum for I. If I is also negative near oz when restricted 
to finite dimensional subspaces of E and satisfies a version of the 
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Palais-Smale condition, then I possesses infinitely many distinct pairs 
of critical points. In fact for each m E N we find a pair of critical 
values 0 < c,, < b, of I which are obtained by taking respectively 
the max-min and the min-max of I over certain dual families of 
subsets of E. The sets are dual in the sense that each member of the 
first family has nonempty intersection with each member of the 
second family and conversely. A precise description of the sets is given 
in Section 2. When the critical values are degenerate, i.e., b,, = --a = 
bj = 6 for j > m, multiplicity statements guarantee that I has an 
infinite number of distinct critical points corresponding to the critical 
value b. 

Some results are also obtained for the noneven case. The more 
delicate situations where I is not positive near 0 or is not negative near 
co are also studied. The methods used to prove these results are 
modifications of those occuring in the Ljusternlik-Schnirelman theory 
of critical points. 

Our abstract results were motivated by investigating the existence 
of solutions of the nonlinear elliptic partial differential equation 

Lu = - f (44 %Jq + c(x)u = p(x, u), XEQ, 
i,j=l 

u = 0, xEai-2, 
P-1) 

where p is odd in u and Q is a smooth bounded domain contained in 
R”. The solutions of (0.1) are critical points of the functional 

where P is the primitive of p and I is defined on an appropriate Hilbert 
space (E = W+2(52)). 

Only conditions governing the asymptotic behavior of p(x, z) at 
z = 0 and z = co need be imposed to verify that I satisfies the con- 
ditions at 0 and co mentioned above. In particular if p(x, a) = o( 1 x I) 
at z = 0, p(~, z) z- r+ co as z + co, and some additional technical 
conditions are satisfied, then (0.1) possesses infinitely many distinct 
pairs of solutions and I has an unbounded sequence of critical values. 
For the nonodd case, new existence results for positive solutions of 
(0.1) are given. If p(~, a) is replaced by a(x)x + p(x, a) with a > 0 
in .0 the corresponding I is no longer positive near 0 making this case 
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more subtle but the same conclusions as above obtain. Another 
interesting situation treated is (0.1) with p replaced by hp where h E R, 
now p(~, x) z-l -+ co as z --t 00, and zp(x, z) is positive near 0. Then 
in general there will only be finitely many solutions of (O.l), say 
say Hi , h_uj with I(?$) > 0 > I&), 1 <i < k, the number K 
increasing as h increases. Note that for this case the solutions occur in 
pairs aside from oddness. 

Preliminary technical material is given in Section 1, the abstract 
results are contained in Section 2, and the applications to partial 
differential equations are in Section 3. A Galerkin argument is used in 
Section 4 to give another development of some the results of Section 3. 
Finally, in Section 5 applications of the theory of Section 2 are made 
to obtain new existence theorems for nonlinear integral equation of 
the form 

where again it is the behavior of 4(x, z) at z = 0 and co that is of 
importance. 

There is a sizable literature on the study of critical points of real 
valued even functionals I on Hilbert or Banach manifolds which are 
oddly diffeomorphic to a sphere. See e.g. [l-6] and the bibliography 
in [6]. The basic ideas go back to the work of Ljusternik and Schnirel- 
man [l] and are also used in our work here. Since we are dealing with 
I on a Banach space, no Lagrange multiplier occurs when the gradient 
of I is equated to 0 at critical points of I, unlike the case arising when 
dealing with spherelike manifolds. Clark [7] has recently studied the 
existence of critical points of I on E under a rather different set of 
hypotheses. Use is made of one of his results in Section 2. We do not 
know of any other investigations which work with classes of sets such 
as ours or which have such dual characterizations for critical values. 

Earlier existence theorems for (0.1) of the same nature as our work 
but generally under more restriction hypotheses have been obtained 
by several people [8-151. Th ose closest to the results presented here 
are in [15] where a Galerkin argument dual to that of Section 4 was 
employed. The method of [15] is such that unlike our work one gets 
neither a variational characterization of solutions nor a multiplicity 
statement for degenerate critical values. We also give a much more 
complete treatment of case II- of [15] and a simpler proof of some of 
the results of [14] on the existence of pairs of positive solutions of 
(0.1) with X present. 
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Some of our applications to (0.3) improve the results of [16], 
[S]-[9] while the remainder are related to results for (0.1) which seem 
to have no analog in the integral equations literature. 

1. PRELIMINARIES 

Some of the background material needed for Section 2 will be 
presented here. In particular the notion of genus and some of its 
properties are introduced and an appropriate “deformation” lemma 
related to flow homotopies is given. 

C(X, Y) and Ci(X, Y) will d enote respectively the spaces of con- 
tinuous and continuously FrCchet differentiable maps from X into Y. 
The FrCchet derivative of I at the point u will be denoted by I’(U). 

Let E be a real Banach space and let 2(E) denote the class of closed 
(in E) subsets of E - (0) y s mmetric with respect to the origin. 

DEFINITION 1.1. A E Z(E) has genus 71 (denoted by r(A) = n) if 
n is the smallest integer for which there exists 4 E C(A, R” - IO}). 
y(A) = co if there exists no finite such n and y( 0) = 0. 

The following properties of genus are required in Section 2. The 
proofs of (l)-(6) can be found in [8] or [17]. 

LEMMA 1.2. Let A, B E .2?(E). 

(1) If there exists an odd4 E C(A, B), then r(A) < y(B); 

(2) If A C 4 r(4 < 144: 
(3) If there exists an odd homeomorphism h c C(A, B), then 

A4 = Y(B) = Yw))~ 

(4) If r(B) < ~0, r(A - B) 2 r(A) - r(B); 
(5) If A is compact , y(A) < co and there exists a uniform 

neighborhood N8(A) (a21 p oin t s within 6 of A) of A such that y(N,(A)) = 
r(A); 

(6) If A is homeomorphic by an odd homeomorphism to the 
boundary of a symmetric bounded open nezkhborhood of 0 in R”‘, 
r(A) = m; 

(7) Let A E C(E), V b e a k dimensional subspace of E, and VL 
an algebraically and topologically complementary subspace. If r(A) > k. 
thenAn VJ- # o. 
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Proof of 7. Let P denote the projection of E onto V along Ir-L. 
If A A 1/‘1 = 0, then P E C(A, V - (0)) since Pu = 0 for zc E A 
implies u E t’l. But then by (1) and the definition of genus, r(A) < k, 
a contradiction. Q.E.D. 

Next for I E Cl(E, R), let A, = {u E E I I(u) < c}, Ac = 
{U E E 1 I(U) > c>, and K, = {u E E 1 I(u) = c, I’(u) = O}. The fol- 
lowing result is quite similar to theorems to be found in the literature 
(e.g. [4, 71) but d oes not seem to be stated in this generality or form. 

LEMMA 1.3. Suppose I E Cl(E, R) satisJes (P - S): Any sequence 
(urn) for which / I( is bounded and II --+ 0 possesses a convergent 
subsequence. Let c E R and N be any neighborhood of K, . Then there 
exists vf(t, x) 3 ql(x) E [C(O, l] x E, E) and constants d1 > e > 0 
such that: 

(1) Q,(X) = xforaZZxEE; 

(2) ql(x) =xforx$I-l[c-dd,,c+d,]andaZZt~[O,l]; 

(3) qr is a homeomorphism of E onto E for all t E [0, 11; 

(4) I(T~(x)) < I(x) for all x E E, t E [0, I]; 

(5) r)dAc+ri~ - NJ C At-, ; 
(6) If K, = 0 > rll(Ac+d) C A,-, ; 
(7) If I is even, 7 t is odd in x. 

Proof. Although not all of the above is stated there explicitly, 
Lemma 1.3 is essentially contained in Theorem 4 of [7]. (Clark 
actually takes I to be even, c < 0, and an appropriately weaker version 
of(P- S), but given (P - S) the proof is unaffected). Therefore, in 
view of its length, we only indicate the small modifications of the proof 
of [7] necessary to get the lemma. Letting U, be as in [7], define g(x) = 0 
forxE U E,s , g(x) = 1 for x E E - Urll and g Lipschitz continuous on 
E with 0 < g < 1. Replace V of [7] by V = gV. Then V is a bounded 
locally Lipschitz continuous vector field on E. Therefore, the flow 
qf(x) generated by Y exists for all t G R [4]. The proof of Theorem 4 
of [7] then gives all but (3) above. But (3) follows from the semigroup 
property of r], . Q.E.D. 

Remark 1.4. If c > 0 (c < 0), (P - S) is only needed for 
{U E E 1 I(U) > 0} ({u E E I I(U) < 0)) as in [7]. Then d1 can be chosen 
so that d1 < c (dl < -c). If v is replaced by -r, the conclusions of 
Lemma 1.3 obtain with a sign reversal in (4), d replaced by -d in 
(5), (6), and A, replaced by &. 
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2. THE ABSTRACT THEORY 

Let E be an infinite dimensional Banach space over R. The finite 
dimensional case is also contained in what follows with some obvious 
changes in the statement of results. Let B, = {U E E / /I u 1) < r} and 
27, = aB, ; B, and S, will be denoted by B and S, respectively. Let 
I E C1(E, R). If I satisfies 1(O) = 0 and 

(Ii) there exists a p > 0 such that I > 0 in B, - (01 and 

I>cd>O on So, 

then u = 0 is a local minimum for I. We will develop additional 
conditions under which I possesses more critical points. Further 
assume 

(I,) there exists e E E, e # 0 with 1(e) = 0; 

(A) If (%A c E with 0 < I(u,), I(uJ bounded above, and 
II -+ 0, then (urn) possesses a convergent subsequence. 

(1J is a slightly weakened version of (P - S) [18]. The condition 
that 0 < I(um) in (1a) can be replaced by p < I(u,) for any /3 < 01. 
(Ii)-(1,) imply I possesses a second critical in a, (using the notation 
of Section 1). 
Let 

r = {g E C([O, I], E) I g(O) = 0, g(l) = 4. 

Clearly r # 0. 

THEOREM 2.1. Suppose I satisJies (I,)-(&). Then 

(2.2) 

is a critical value of I with 0 < CL < b < + CO. 

Proof. (I&-o,) imply S, separates 0 and e. Thus, for any g E r the 
connectedness of g([O, 11) implies g([O, 11) n S, # 0. Hence, 

and, therefore, b > CY. That b is a critical value of I follows in a standard 
fashion. Arguing indirectly, if b is not a critical value of 1, by (6) of 
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Lemma 1.3 and Remark 1.4, there exists E E (0, a) and r], E C(E, E) 
such that 7i(A,+,) C A,-, . Choose g E r such that 

Since qr(g(O)) = 0, qi(g(l)) = e by (2) of Lemma 1.3, ql 0 g E r. But 

contradicting the definition of b. Q.E.D. 

Remark 2.3. We suspect that results such as Theorems 2.1 and 
2.4 below exist in the literature although probably not in the generality 
given here. Note that I need not be bounded either from above or 
below. Indeed, thus will be the case in some of our applications such 
as Theorems 3.10 and 3.13. If I is also bounded from below and 
(P - S), then 0 > inf, I is also a critical value of I with a cor- 
responding non zero critical point, for if inf, I = 0, then e is a local 
minimum for I while if the infimum is negative, the result follows 
essentially from Theorem 4 of [7]. 

Next we give a dual version of Theorem 2.1. Let r.+ = 
(h E C(E, E) 1 h(0) = 0, h is a homeomorphism of E onto E, and 
h(B) C A^,} and r*e = {h E r* 1 h(s) separates 0 and e}. (1J implies 
r* # @* 

THEOREM 2.4. Let I satisfy (I,)-(&). Then 

c = sup inf I(h(u)) 
hsr+’ ueS 

is a critical value of I with 0 < 01 < c < b < co. 

hoof. h(u) = pU E r.+e and, therefore, 01 < c. Moreover, since 
h(S) separates 0 and e for any h E r*e and g([O, 11) is connected for 
any g E I’, there exists w E g([O, 11) n h(S). Therefore, 

and, consequently, c < b. Finally if c is not a critical value of 1, by 
(3) and (6) of L emma 1.3 and Remark 1.4, there exists E E (0, a) and 
a homeomorphism q1 from E onto E such that ~i(&.+) C &+, . 
Note that vi(O) = 0 by (2) of Lemma 1.3 and ~i 0 h is a homeo- 
morphism of E onto E. By (4) of Lemma 1.3, 7 : A,, + &, and hence 
or 0 h: B -+ A,, . To show that pi 0 h E r*e, it suffices to show that 

5wr414-3 
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vi o h(x) = e implies x $ B. But v,(e) = e so h(x) = e and x $ B. Thus, 
rli o h E r*e. But 

a contradiction. Q.E.D. 

Remark 2.6. Simple examples in E = R1 show c < b is possible. 
In infinite dimensional situations such as in Section 3 this would be 
a very difficult question to decide. 

If I is even and negative at co in an appropriate fashion, more can 
be said about the number of critical points of I. This situation will 
be explored next. Suppose that: 

(1,) I(u) = 1(--u) for all E E; 

(1,J For any finite dimensional ,% C E, 8 n A,, is bounded. 

Note that (&) ’ pl im ies nonzero critical points of I occur in antipodal 
pairs. (1J need not be required for all such ,?? but only for a nested 
sequence El C E, C *.a of increasing dimension. Let 

r* = {h E I’* 1 h is odd} 
and let 

r,,, = {K C E 1 K is compact, symmetric with respect to the origin and for all 
h E r*, y(K n h(S)) 3 m>. 

Since h(S) C E - {0} is closed and symmetric, y(K n h(S)) is defined. 

LEMMA 2.7. Let I satisfy (I,), (IS). Then 

(1) r, # 0; 

(2) rm+1 c rm ; 

(3) K E rnz and Y E Z(E) with y(Y) < Y < m implies 
K- ur,-,; 

(4) If 4 is an odd homeomorphism of E onto E and 4-l(&) C a, , 
then $(K) E r, whenever K E r, . 

Proof. (1) Let l? be an m dimensional subspace of E and let 
KR = e n B, . Then KR is compact and symmetric. For R suffi- 
ciently large, by (Is), KR r> Z? n k&, ; moreover, for any h E r*, 
,?? n A,, 1 J?? n h(B) and then KR r) E n h(B). Therefore, KR n h(S) = 
,!? n h(S). Since h is an homeomorphism of E onto E and h(0) = 0, 
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h(B) is a neighborhood of 0 in E. Therefore, E n h(B) is a neighbor- 
hood of 0 in E with boundary contained in e n h(S). The interior 
(in E) of B n h(B) is a symmetric bounded open neighborhood of 0 
in 2. Since a is isomorphic to R”, it follows from (2) and (6) of 
Lemma 1.2 and Definition 1 .l that ~(8 n h(S)) = y(KR n h(S)) = m. 
Hence, KR E r,, . 

(2) is obvious. 
(3) K - Y is compact and symmetric. Moreover, for h E r*, 

K - Y n h(S) = (K n h(S)) - Y so by (4) of Lemma 1.2, 

y(K - Y n h(S)) = y((K n h(S)) - Y) > Y(K n h(S) - y(Y) 2 m-r 

(4) gb(K) is compact and symmetric. If h E r*, y($(K) n h(S)) = 
y(K n $-l(h(S))) by (3) of Lemma 1.2. Since +-1(&) C A0 and +-l 0 h 
is odd, $-’ o h E r*. Hence, the result. Q.E.D. 

THEOREM 2.8. Let I satisfy (I,), (Is)-(15). For each m E N, let 

Then 0 < LY < b, < b,+l and b, is a critical value of I. Moreover, 
if b,+l = *a* = b,+, = b, then y(Kb) > r. 

Proof. Since h(u) = pu E r*, K n B, # 0 for each K E I’, . 
Therefore, b, > 01. (2) of Lemma 2.7 shows b,,, 2 b, . To prove 
b, is a critical value of I, it suffices to prove the sharper multiplicity 
statement. If y(K,) < Y, by (5) of Lemma 1.2, there is a neighborhood 
N,(K,) with y(Nb(Kb)) < r. By (3), (6), (7) of Lemma 1.3 and 
Remark 1.4, there is an G E (0, a) and an odd homeomorphism q1 of 
E onto E such that ql(A,+, - N,(K,)) C A,-, . Let K E rm+,, such that 

Therefore, K - Na(K,) = K - int N,(K,) = Q E r,,, by (2) of 
Lemma 2.7. (int X denotes the interior of X). By (4) of Lemma 1.3, 
Ti”(&) C & . Hence, (4) of Lemma 2.7 shows TV E r,,, . But 

a contradiction and the proof is complete. Q.E.D. 

An immediate consequence of Theorem 2.8 is the following corol- 
lary. 
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COROLLARY 2.9. Under the hypotheses of Theorem 2.8, I possesses 
in.nitely many distinct pair of critical points. 

We do not know if I must possess infinitely many distinct critical 
values. 

The set l7,, are somewhat cumbersome to define, Next a simpler 
class of sets pm, is introduced which can also be used to furnish 
critical values of I. Let Bm denote the unit ball in Rm and Sm-r = aBm. 
Let Pm = (g E C(Bm, E)I g is odd ,l - 1, and g(P-l) C A,}. 

The set pVa possess similar properties to I’,n . 

LEMMA 2.10. If I satisjes (I,), (IJ, for all m E N, 

(1) cn # .a; 
(2) pm+1 c pm ; 
(3) If + is an odd homeomorphism of E onto E, with 4(A,) C A,, , 

then # 0 g E pm whenever g E pm . 

Proof. (2) and (3) are obvious. To verify (l), let ,??’ be an m dimen- 
sional subspace of E. By (Is), there exists R > 0 such that &, n B C B, . 
Identifying I? with R”, an odd 1 - I function g can be defined with 
g(Sm-l) = S, n i?. Hence g E pm . Q.E.D. 

THEOREM 2.11. Let I satisfy (I,), (IS)-(15). For each m E N, let 

La = $f y~wYN. 
WI 

Then 0 < cy. < 6, < lm+, and b, is a critical value of I. 

Proof. As in Theorem 1 .I, g(Bm) n S, # ia, so Jrn > CII and 
Jm < Jm+l by (2) of L emma 2.10. Finally the argument of Theorem 2.6 
shows 6, is a critical value of I. Note only that if 6, is not a critical 
value, by (2) of Lemma 1.3, vi(~) = u on A,, and, therefore, 4 = vi 
satisfies (3) of Lemma 2.10. Q.E.D. 

Remark 2.12. The sets pm have the advantage of being simple to 
define. However we are unable to prove a multiplicity result for the 
corresponding critical values as in Theorem 2.8. We suspect that a 
“weak multiplicity lemma” obtains for the &, , i.e., if 6, = l,+, = b, 
then K, contains infinitely many distinct points. In any event for 
some of the applications of Section 3 independent arguments show 
6, -+ co as m -+ co, and, therefore, there are infinitely many distinct 
critical values 6, of I. 

Next we obtain analogs of Theorem 2.4 for Theorem 2.8. For each 
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m EN, let E, be any m-dimensional subspace of E and E,l an 
algebraically and topologically complementary subspace. 

THEOREM 2.13. Let I satisfy (I,), (I&-o,). For each m E N, let 

cm = sup her* UE~~~~-ll(h@))* (2.14) 

Then 0 < 01 < c, < b, < GO, c, < c,+~ , and c, is a critical value of I. 

Proof. That cm >, 01 follows as in Theorem 2.4. Since we can 
identify S n E,l with a subset of S n Ek-, , c, < cm+i . To see that 
cm < bm , and, therefore, c, < co, let K E l-‘, and h E r*. If 
K n h(S n E;j;-,) # M for all such K, h, it follows as in Theorem 2.4 
that c, < b, . Since h(S) is the boundary of a neighborhood of 0 in E, 
for all E sufficiently small, K n h(S) = (K - B,) n h(S). Therefore, 
y(K--- BE) > y((K - B,) n h(S)) > m since KEII,. By (3) of 
Lemma 1.2, y(h-l(K - BE) n S) 3 m. Consequently, (7) of 
Lemma 1.2 implies h-l(K - B,) n S n E$-, # o . Equivalently, 
(K - BE) n h(S n E$-,) # 0. Finally the proof of Theorem 2.4 
shows that c, is a critical value of I. Q.E.D. 

Remark 2.15. As in Remark 2.12, we suspect that a weak multi- 
plicitiy lemma obtains for the critical values c, . Indeed, there is 
considerable amount of flexibility in defining the sets used to obtain 
dual critical values and a class of sets can probably be found which 
gives a full multiplicity lemma here. Observe also that c,‘s can be 
defined as in (2.14) with r* replacing r* when I is not even. However, 
in general, c, = cc for m > 1, for this case. 

COROLLARY 2.16. cm <&,. 

Proof. If g E p, and h E I’*, then r(B” - Bern) = m by Definition 
1.1 and (2), (3), (6) of Lemma 1.2. (Here B,” denotes a ball in Rn of 
radius E about 0). Therefore, h(S n Ek-,) n g(P) # IZI via (7) of 
Lemma 1.2 as in Theorem 2.13. Q.E.D. 

Remark 2.17. The above two results remain unchanged if E, 
and E,l are permitted to vary over all such subsets of E. If there 
exists h, E r* such that 

as m --t co, then c, and a fortiori b, , 8, + co as m -+ co. In this 
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event, I possesses infinitely many distinct critical values. This 
situation arises in some of the applications of Section 3. 

Next we explore the effect of weakening (II) so that I need not be 
positive in a deleted neighborhood of 0. (I,) will be replaced by 

(Ia) There exists an I dimensional subspace I?’ of E with 
algebraically and topologically complementary subspace El such 
thatI>Oon(B,-{O})ngJ-andI>cu.>OonS,n&. 

Once analogs of F* and r,fi are introduced, results generalizing our 
earlier ones obtain. Let 

n* =(hEC(E,E)Ih is an odd homeomorphism of E 
onto E with h(B) C f&, u B,}. 

Again h(u) = pu E (1” so /1* # 0. Let 

4, = {K C E 1 K is compact, symmetric, and 
y(K n h(S)) > m for all h E A*}. 

LEMMA 2.18. Let I satisfy (I&&). Then for all m E N, 

(1) 42 # 0; 

(2) An+1 c 4 ; 

(3) K E A, and Y E Z(E) with y(Y) < r < m implies 
K - YEA,-,; 

(4) If 4 is an odd homeomorphism of E onto E with 4(u) = u 
when I(u) < 0 and $-l(&) C &, , then 4(K) E A, whenever K E A, . 

Proof. (1) Let I!? b e an m dimensional subspace of E with m > 1 
and I? 3 B. Let KR = B, n 8. Then for R sufficiently large and any 
h E A*, KR 3 (& u BP) n I? 3 h(B) n I? by (I,). The proof for this 
case continues and concludes as in Lemma 2.7. (2) which is trivial 
then implies (1) for m < 1. 

(3) is proved as earlier. 
(4) As in (4) of Lemma 2.7, this reduces to showing 6-l 0 h E A* 

for all h E A*. Clearly 4-l o h is an odd homeomorphsim of E onto E. 
Since h(B) C A,, u B,, , +-I(&,) C A,, , and +-l is the identity on the 
set where I < 0,$-l 0 h E A*. Q.E.D. 

THEOREM 2.19. Let I satisfy (I&o-(6). For each m > 1, let 

b, = inf max I(u). 
KeA, USK 

(2.20) 
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Then 0 < 01 < b, < b,+l and b, is a critical value of I. Moreover, if 
b m+l = ‘*’ = b m-4-r = b, then y(KJ 2 r. 

Proof. (2) of Lemma 2.18 shows b, < b,+l . Let K E II, and 
h(u) = pu E (1*. Therefore, r(K n h(S)) = r(K n 23,) > m. By (7) of 
Lemma 1.2, K n S, n j!?L # 0. Hence, by (Is), rnaGGK 1(u) > c1 and 
b, > 01. To obtain the remaining assertions of the theorem we argue 
as in Theorem 1.8 observing only that m(u) = u on A, and T:‘(a) C A0 
via (2) and (4) of L emma 1.3. Hence (4) of Lemma 2.18 is applicable 
with 4 = qr . Q.E.D. 

A dual result is also valid here. 

THEOREM 2.21. Let I satisfy (I&o,). For each m > 1, let 

c m = sup inf I@(u)). 
&A* UPS~E&, 

(2.22) 

Then 0 < 01 < c, < b, < co, c, < em+1 , and c, is a critical value of I. 

Proof. The proof is essentially the same as that of Theorem 2.13 
and will be omitted . Q.E.D. 

We conclude this section with generalizations of Theorem 2.8 and 
2.13 which involve replacing (1J by 

(1,) There exists a j dimensional subspace B C E and a compact 
set A C 2 with I < 0 on A such that 0 lies in a bounded component 
(in .@ of ,?? - A. 

It is clear that (I,) implies (1,). 

THEOREM 2.23. Let I satisfy (I,), (I&o,), and (I,). Then the 
conclusions of Theorem 2.8 and 2.13 obtain for b, and c, as dejined by 
(2.9) and (2.14), 1 < m <j. 

Proof. The only role played by (1s) in the earlier theorem is in 
showing that r, # 0. Thus we only need verify this here for 
1 < m <j. Let l? be an m dimensional subspace of E and K, = 
l? n B, . We prove that KR E: I’, . Indeed for R sufficiently large, (1,) 
implies KR 3 A n e, and, therefore, the component Q of A0 n J? 
containing 0 lies in KR . Thus, for h E I’*, Q n h(S) contains the 
boundary of a symmetric bounded neighborhood of 0 in l? and by 
(2) and (6) of L emma 1.2, r(KR n h(S)) > (Q n h(S)) > m. Q.E.D. 
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COROLLARY 2.24. If I is also bounded from below and satisJies 
(P - S), then 

--co< inf maxl(u)-d,<O, 
XcqE) u&r 1 <mm,<, (2.25) 
vm>m 

and d, is a critical value of I. If d,,, = ** * = dm+r = d, y(&) > r. 

Proof. y(A) =j by (2) and (6) of Lemma 1.3. Therefore, d, < 0, 
1 < m < j since X = A is admissible for the calculation of d, . The 
remaining assertions of the corollary follows from Theorem 7 of [7]. 

Q.E.D. 

Thus, under the hypotheses of Corollary 2.24, I has at least m distinct 
pairs of critical points in each of the sets int A, , int &, . It is possible 
to combine the situations of (I&-o,) but we shall not do so. 

3. APPLICATIONS TO ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 

This section is devoted to applications of the results of Section 2 
to second order uniformly elliptic partial differential equations. 
Consider 

(3-l) 

where JJ is a smooth bounded domain in R”, L is uniformly elliptic 
in 9, the azi are continuously differentiable in G with Holder con- 
tinuous first derivatives, and c(x) is Holder continuous in G with 
c > 0. 

The results given here for (3.1) improve those of [8]-[lo], [12], 
[14]-[15]. Properties of the nonlinearityp(x, z) at z = 0 and 1 z 1 = co 
will be used to verify the hypotheses imposed on I in Section 2. We 
begin by treating (3.1) under the following set of conditions for p. 

(pi) p is locally Holder continuous in J? x R and p(x, 0) = 0. 

(p2) 1 p(x, z)I < a, + a2 1 z IS for n > 2 where 1 < s < s 

< a3 exp a(z) for n = 2 where a(a)+ -+ 0 as 
z-+ co. 

(ps) p(x, x) = o( 1 z I) at z = 0 uniformly in x E ZZ. 

(Pa) P(% 4 2-l + co as z+- co or as z--t -c0 uniformly in 
x E i2. 
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(p6) If P(x, z) = Jip(~, t) dt, then there exists an a4 > 0 such 
that for 1 x 1 > ah, P(x, z) < Bp(x, z)x where 8 E [0, +). 

(p,J p is odd in x. 

In W-b) and th e sequel, a, , a2 , etc. repeatedly denote positive 
constants. (p5) is satisfied in particular if p is odd in z and p(x, z) = 
zs + a lower order term at x = co. The case n = 1 can also be 
included here and then (p,) is unnecessary. However, except for 
Theorem 3.39, stronger results have been obtained by other means 
for this case. See e.g. [17, 19-201. 

Formally, critical points of the functional 

where 

satisfy (3.1). 
Let E = Whiz h w ere the usual Sobolev space notation is being 

employed. It follows from the PoincarC inequality that 

can be taken as a norm for E. (3.1) is equivalent to u - ,C% = 0 
where g(u) is defined by 

g’(+ = s,p(x, u(x)> 4~) dx 

for all ZJ E E, i.e., g(u) is the potential operator on E corresponding 
to f(u). Standard arguments using (ps) show 9 is compact and f is 
weakly continuous. See e.g. [lo, 111 for more details. It is clear that 
I E Cl(E, R) and 1(O) = 0. It can also be shown that I need not be 
bounded from above or below [lo]. We will use (pr)-(p,) to verify 
that the theory of Section 2 is applicable here. 

LEMMA 3.3. Ifp satis$es (p&o,), I satisfies (II). 

Proof. (for n > 2). It suffices to show f(u) = o(jI u 11”) at u = 0. 
By (pJ for all E > 0, there exists a S > 0 such that 1 P(x, z)I < ~9 
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if 1 x 1 < 6. Furthermore, (ps) implies 1 P(x, x)1 < us 1 z ls+l for 
I z 1 > 6. Therefore, by the PoincarC and Sobolev inequalities 

where s > 1. Hence,f(u) = o(l/ u 11”) at u = 0. The proof for n = 2 is 
similar. Q.E.D. 

LEMMA 3.4. If p satisfies (pa), I satzi-jies (I,). 

Proof. Suppose p(x, z) z-l --t co as x ---f co. Let u E E with 
1) u 1) = 1, u > 0 in Sz, and JJ2 u2 dx = a5 . Then 

I(Ru) = $R2 -f(Ru). 

BY (~a)> P(X> 4 2 K z f or z > M(K). Choosing K = 4~;’ leads to 

fvw 2 ~$~n,u(~)>M,R) W2/2) u2 dx - % 2 
where ~ls is a constant depending on p and as . For R sufficiently large, 

s bS’b(d>MIR) 

u2 dx >, &ah . 

Therefore, f(Ru) > R2 and I(Ru) < a, - +R2 for R sufficiently 
large. Hence, I satisfies (12). The argument for p(x, z) z-l -+ CO as 
x -+ - a0 is essentially the same. Q.E.D. 

COROLLARY 3.5. If p sutis$es ( p4) and (pa), I satisjies (&). 

Proof. This is precisely Corollary 2.3 of [15]. The argument is 
essentially as in Lemma 3.4. Q.E.D. 

LEMMA 3.6. If p satisfies (p2) and (p,), I satisfzes (1J. 

Proof. In fact we prove a slightly stronger result, namely if 
(urn) C E with I(uJ < d and rl(u,) + 0, then u, possesses a conver- 
gent subsequence. From (3.2), 

> 4 II urn II2 - a, - fl n~(x, urn) urn dx. s 
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Since I’(u,J -+ 0, for any E > 0, there is an M = M(E) such that for 

I Wm)~ I = / s, [ .tl 44 u,pGj + 44 uv - P(X, u,)~] dx 1 

for all v E E. Choosing E = 1, w = u, , and combining 
yields 

d > (4 - ‘4 II urn II2 - ~6 - 0 II urn Il. 

d E II v II 
(3.8) 

(3.7)-(3.8) 

P-9) 

Hence (urn) is bounded in E. Since B is compact, P(u,) possesses a 
convergent subsequence. But then I’(u,,J = u, - P(u,,J --P 0 implies 
(urn) possesses a convergent subsequence. Q.E.D. 

With the aid of these technical preliminaries we have the following 
theorem 

THEOREM 3.10. If p satisjies (pJ-(pJ, then b and c as dejined by 
(2.2), (2.5) are critical values of I with 0 < c < b < co. The corre- 
sponding critical points are classical solutions of (3.1). 

Proof. The first statement is immediate from Lemmas 3.3, 3.4, 
3.6 and Theorems 2.1 and 2.4. The second follows from standard 
regularity results [21]. Q.E.D. 

COROLLARY 3.11. Under the hypotheses of Theorem 3.10, if 
p(x, z) z-l + co as z -+ co (z -+ -co), (3.1) possesses a solution 
ii > 0 (-u < 0) in J2. 

Proof. Let d(x, z) = p( x z , ) f orx >Oand$EOforz <O. Then 
p satisfies (pl)-(p5) so by Theorem 3.10, the corresponding functional 
I has a critical point ?i + 0 in J2 satisfying 

La = jY(x, a>, XEQ 

ii = 0, xEai-2. 
(3.12) 

LetA={xE~]I(x)<O).ThenLZi=OinAandu=OonaA. 
The maximum principle implies zz = 0 in A and, therefore, A = 0. 
Hence, z > 0 in Sz. That ii > 0 in D follows, e.g. from arguments in 
WI* Q.E.D. 

If p also satisfies (p,), the assertions of Theorem 3.10 can be 
considerably strengthened. In the context of Theorem 2.13 we take 
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(e,J to be an orthonormal basis for E, E, = span{e, ,..., e,}, and E,,l 
the orthogonal complement of E, . 

THEOREM 3.13. If p satisjies (pl)-(p& then for each m E N, b, and 
cm as dejined by (2.9) and (2.14) are critical values of I with 0 < c, < 
b, < co. If b,+1 = *.* = b,+,. = b, y(K,) > r. Therefore, (3.1) 
possesses infinitely many distinct pairs of solutions. 

Proof. Immediate from Lemmas 3.3, 3.6, Corollary 3.5, and 
Theorems 2.8 and 2.13. Q.E.D. 

Although Theorem 3.13 guarantees the existence of infinitely 
distinct pairs of critical points for I, a priori there may only be finitely 
many b,‘s or they may be bounded. The following results shows 
this is not possible. 

THEOREM 3.14. c, (and, therefore, b,t) -+ co as m + co. 

Proof. As was noted in Lemma 3.3, 

f(u) < E s, u2 dx + CZ,(S + 1)-l s, I u Is+l dx. 

Choose E so that 11 u II2 > 4-L Jo u2 dx for all u E E. Let 

J(u) = 2 11 u /I2 - u,(s + l)-ls, I u lsfl dx. 

Then I(U) > J(U) for all u E E. Hence, 

c, = sup infL I@(u)) 2 sup inf J(+)) b inf J(h(u)) t3 15l 
her* usSnE,,-l her* uaSnE~-l uESnEA--l 

for any h E r*. Let 

T = /u E E - (0) 1 : I/ u II2 = a, s, I u lsfl dxl, 

and let d, = inf{]l u [I I uETnE,l). Then d,-+coasm-+oo for 
otherwise there exists u, E T n E,l with d > 11 u, 11 for all m E N. Since 
urn E E,nl, u, tends to 0 weakly in E and strongly in P+‘(G). However, 
by [15, Lemma 2.71 there is an r > 0 such that (Jn 1 u ls+l dx)l18+l > 
r > 0 for all u E T. Hence, u, must be bounded away from 0 in 
L”+‘(G) and d, + 0~) as m + co. 

Define h,(u) = M-ld,u for u E E,I where M > 1 satisfies 

M > [4(s + 1)-y-l. (3.16) 
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For u # 0, choose p(u) > 0 such that /3(u)u E T. It is easily seen that 
there exists a unique such /3(u). (Indeed B(U) is continuous [lo]) 
Moreover, for each 0 # u E E, J(W) is a monotone increasing function 
for t E [0, /3(u)] with a maximum at t = /3(u). Since M-l d, < d, < /3(u) 
for u E (E,J- n B) - (O} and h,(O) = 0, 

h,(E,I n B) C {U E E 1 J(U) 2 0} C {U E E / I(U) 2 O}. 

Suppose for the moment that h, can be extended to h, E P. We 
will show 

inf J(hm(a)) -+ cc as m-+cO 
te Sn E,,,L (3.17) 

and, hence, from (3.15), cm + co as m + co. 
For each u E S n EmJ-, 

J(h,&)) = &(M-1dm)2 - (a& + 1)) s, 1 M-%&U ls+l dx. 

Since &/?(u)~ = a, Jn 1 /3(u)u Is+l dx, 

J(h?&)) = P-%J2 [; - *(y-..;) (&“-‘] 

Ml-S 
b (M-%rJ2 [; - 2(s + 1) 1 > f (M-ldJ2 (3.18) 

by (3.16). Hence, (3.18) shows (3.17) is valid. 
To complete the proof, we show the component 

Q = l&II u112 > a, J1, I u ls+ldx/ u {u = 0} 

ofE- T to which 0 belongs (i.e., the “inside” of the spherelike set T) 
contains 2, zz {d,M-l(EmJ- n I?)} x {e(Em n I?)} for some E > 0. 
For if not, there exists a sequence ej -+ 0 and uj $ Q such that uj E Zc, . 
Therefore, (z+) is bounded so a subsequence converges weakly in E 
and strongly in L”+‘(S) to E with jn 1 u Is+l > 0 by above remarks. 
Since 11 * I/ is weakly lower semicontinuous and sJ;, I . ls+l dx is weakly 
continuous, & (1 U iI2 < a, In I ii I s+l dx. Therefore ii E E - Q. On the 
other hand, E E d,M-l(E, 1 n B) C Q, a contradiction. Thus, there 
exists E as above. 

Now on defining /iJej) = cej for 1 <j < m, it is easily seen that 
Lm : 2, -+ 2, and fi, E P. So the proof is complete. Q.E.D. 

Remark 3.19. Theorem 3.14 together with Corollary 2.16 imply 
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6, -+ co as m + co, and therefore, there are infinitely many distinct 
critical points & for I. 

Next the effect of adding a linear term to the right side of (3.1) is 
studied. This is a more subtle case and corresponds to that treated in 
Theorems 2.19 and 2.21. Consider 

Lu = 4x)u + P(X, u), X&L+ 

11 = 0, XElX2, 
(3.20) 

where a is Holder continuous and positive in 0. The linear eigenvalue 
problem 

Lv = hav, XEQn; 

v = 0, XEi3sZ 
(3.21) 

possesses an unbounded sequence of eigenvalues 0 < A, < A, < *+* 
with each eigenvalue appearing according to its multiplicity. Each 
eigenvalue is of finite multiplicity and A1 is simple. Let the (e& of 
Theorem 3.13 now be the eigenfunctions of (3.21) with e, corre- 
sponding to X, . 

Let 

J(u) = I(u) - Q I, au2 dx. 

Then I(u) > J( u so if p satisfies (p,J, Lemma 3.4 implies J satisfies ) 
(Iz) and by Corollary 3.5, (p4) and (9s) imply (I& for J. 

LEMMA 3.22. If 1 < A,,, + AZ, and p satisfies (p&o,), then I 
satisjies (&) with I? = E, . 

Proof. For u E Eli, )I u [I2 2 hr,, sJ, au2 dx, and, therefore, 

J(4 > Hl - Gl> II 24 II2 -f(u)- (3.23) 

Sincef(zl) = o(ll u 11”) by Lemma 3.3, the result follows. Q.E.D. 

Remark 3.24. If I = 0, J satisfies (II). 

THEOREM 3.25. If A1 > 1 and p satbjies ( pl)-(p,) with 
p(x, z) x-l --t co as z ---t co (x -+ -co), (3.20) possesses a so&ion 
B > 0 (u < 0) in Sz. 

Proof. Remark 3.24 shows J satisfies (II). Once (Is) is verified for 
J, the theorem follows by arguing as in Theorem 3.10 and Corollary 
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3.11. The proof of Lemma 3.6 shows 11 u, [I2 - Jn uum2 dx is bounded 
above in E. This together with X, > 1 yields the boundedness of (urn). 
Hence, (1s) as earlier . Q.E.D. 

Remark 3.26. If A1 < 1, (3.20) need not possess any positive 
solutions. For example, consider 

-Au=u+us, XEQ; u=o, XEa2, (3.27) 

where IR C R3 is such that h, < 1. Comparison with the linear eigen- 
values problem 

--de, = Av, XEQ; v=o, XEa-2 

shows a necessary condition for u > 0 to be a solution of (3.27) is 
A, > 1. 

Once again stronger results obtain for the odd case. 

LEMMA 3.28. If p satisfies (p2), (p,)-(p,), then J satisfies (13). 

Proof. By (A) and (p,), I p(x, z)l > M(t) I z I for I x I > 4 where 
M(t) + co as t --t c;o. Therefore, &Z(X) z2 < M(t)-l a,P(x, z) for 
1 z 1 > t and t sufficiently large. Choose t = Z so large that M = 
a,&!(f)-l satisfies e(l + M) < i. Suppose d > J(u,) and J’(u,) --t 0. 
As in (3.7), 

d + ~2 3 a II urn /I2 - (1 + z)e j/(x, urn) urn dx. 

Since J’(um) 3 0, for m sufficiently large 

II urn II 2 / II urn II’ - J‘, (wn2 + P(X, 4 urn) dx 1, 

and therefore, 

(3.29) 

s, WJ(X, urn) dx < II urn II + II 21, II2 - SD %a2 k S II urn II + !I urn I12. (3.30) 

Combining (3.29)-(3.30) shows 

113 2 (4 - (1 + m4 II %?I II2 - (1 + me II urn II (3.31) 

so (urn) is bounded and (13) follows as earlier. Q.E.D. 

THEOREM 3.32. If p satisJes (p&OS) and A, < 1 < A,+, , then for 
allm > 1, b, andc,,, as definedby (2.20) and (2.22) (with I replaced by J) 
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are critical values of J with 0 < c, < b,n . If b,+l = 0.. = b,+? s b, 
y(K,) > r. Equation (3.20) p assesses injinitely many distinct pairs of 
classical solutions. 

Proof. The proof follows from Lemmas 3.22, and 3.28, and 
Theorems 2.19 and 2.21. Q.E.D. 

Slight modifications of the proof of Theorem 3.14 show the following 
corollary. 

COROLLARY 3.33. c, (and, therefore, b,) -+ co as m -+ CD. 

Equations (3.1) and (3.20) were treated in [15] with an additional 
parameter which plays no role in the context of the above theorems. 
However, its presence is essential for the next two applications. 
Consider 

Lu = hp(x, u), XEQ; 

u = 0, XEiG, 
(3.34) 

where h E R. Let 

Somewhat different conditions are imposed on p than earlier. 

(P7) P(x, 4 > 0 f or z > 0 in a deleted neighborhood of .a = 0. 
(ps) There exists ,F > 0 such that p(x, 5) < 0. 

THEOREM 3.35. Suppose p satisjies (pl), (pa), (p,)-(p,). Then there 
exists $ > 0 such that for all X > h, (3.34) p assesses at least two distinct 
solutions s(h), g(X) > 0 in D with I(h, @(A)) > 0 > I(h, g(h)). 

Proof. Let p(X, z) = 0 for x < 0; = p(x, z) for 0 < z < 5; 
= p(x, 5) for z > 5. Then p satisfies (pl)-(p3). If u is a solution of 

Lu = hjY(x, u), x+59; 

u = 0, XEa52, 
(3.36) 

the argument of Corollary 3.11 shows u > 0 in 9. Moreover, if 
M = maxn u(x) = u(g), after a rotation of coordinates if necessary, 
(3.36) implies 

0 < Lu(Z) = A$(%, u(z)). (3.37) 

Hence, M < z by (ps). Consequently, any nontrivial solution of (3.36) 
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is positive in Sz and satisfies (3.34). Therefore, it suffices to prove 
(3.36) possesses two positive solutions as above. 

Let 

and 

P(x, z) = 1$x, t) dt 
0 

J(h, u) = Q 11 u /I2 - h s, F(x, u(x)) dx. 

Note that I(h, U) = J(h, U) if 0 < U(X) < H in !2. Since fi satisfies 
(pJ-(pa), Lemma 3.3 shows J(X, +) satisfies (Ii). If w E E is positive 
in J? and pointwise small, (p,) h s ows there exists h = X(w) > 0 such 
that J(X, w) = 0. Let & = inf(h E R+ 1 there exists 0 + w E E with 
J(h, w) = O}. That & > 0 has been shown in [14]. Thus J(X, *) 
satisfies (I,) for all X > A. Finally since 1 P(x, z)i < a, 1 2: (, J(X, U) < d 
implies 11 u 11 < a2 where a2 depends only on h and d. It then easily 
follows that J(X, *) satisfies (la). Hence, by Theorem 1.1, for all X > 6, 
there exists U(X) E E which is a critical point of J(h, *) with 
J(h, u(h)) > 0 and z(h) is a classical solution of (3.36). Our above 
remarks imply n > 0 in C.? and 1(h, Z(X)) = J(h, H(X)). 

The existence of a solution g(X) > 0 in Sz with I(h, g(X)) < 0 is 
proved in a straightforward fashion by minimizing J(X, a) on E and 
has been carried out in [14]. Q.E.D. 

Remark 3.38. A more general result than Theorem 3.35 was 
proved in [14] by a more complicated argument using a combination of 
variational and topological arguments. It was also shown in [14] that 
(3.36) has no nontrivial solutions for small positive h so the require- 
ment 1 > 0 is essential. 

Next Theorem 3.35 will be improved for odd p. This is essentially 
case II- of [15] but we get a much stronger result. 

THEOREM 3.39. Suppose p satis$es (pl), (p3), (p&o,). Then for 
any m E: N, there exists &,, > 0 such that for all h > &,, , (3.34) possesses 
at least 2m distinct pairs of solutions *iii(X), f+(X), 1 < j < m with 
1(x, @j(X)) > 0 > I(X, Ej(x)). 

Proof. Let p be as in Theorem 3.35, j = $ for x > 0, and p^ odd 
in z. As in Theorem 3.35, it suffices to prove the assertions for 

Lu = A&x, u), xE:Q; 

u = 0, XEtX2. 

5’3011414-4 

(3.40) 
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Let p(x, z) = SE&X, t) dt and @, U) = +I/ u )I2 - X Jn&x, U(X)) dx. 
Let (ej) be as in Theorem 3.13 and A, = En, n S, . Then for r 
sufficiently small and u E A, , (p,) implies Jn p(x, U(X)) dx > 0. By 
choosing &,,, sufficiently large and h > &,, , 1(X, a) < 0 on A, . There- 
fore, f(h, *) satisfies (1,) with I? = E, and A = A, . It also satisfies (Id). 
The proof of Theorem 3.35 shows f(h, a) also is bounded from below 
and satisfies (1J and (P - S). Theorem 2.23 now provides the 
existence fo -&(X) and Corollary 2.24 yields j&h), 1 < j < m. 

. Q.E.D. 

To conclude this section we remark that with small modifications, 
analogs of the results of this section for (3.1) and (3.20) can be obtained 
if the requirement that the coefficient c of L is nonnegative is dropped. 
Then (Ig) rather than (Ii) is used. 

The results of Section 2 can also be applied to obtain new existence 
theorem for higher order elliptic equations. However, we preferred to 
stay in the technically simpler case treated here to illustrate the ideas. 
Since no constraints are imposed on the functionals handled here, 
Lagrange multipliers will not occur in the Euler equations as in other 
work on such questions, e.g. [5, 22, 231. 

4. A GALERKIN METHOD 

A Galerkin argument was used in [15] to treat (3.1) and (3.26). In 
this section we will briefly show how a dual such method can be 
employed to solve (3.1). A disadvantage of the argument used in [15] 
is that one has a variational characterization of the approximate 
solutions of (3.1) but not of their limits. Such characterizations are 
desirable for several reasons such as comparison and approximation 
purposes. We get a variational characterization for the limit solutions 
obtained here although we do not get a multiplicity statement, as e.g. 
in Theorem 3.13. 

Let E, be an orthonormal basis for E = W:*‘(Q), E, = 
sPan+, ,..-, em>, and F, = I le, , where I is defined in (3.2) and p 
satisfies (pJ-(p,,). It was shown in [15] that 

is a critical value of F,, , 1 dk~mwithy(K,)Zrifc,+,,,=...= 
- c (where by Kc we 

::(ij = 0)). 
now mean {u E E, [ F,(u) = c, 

M oreover, ckm is a nonincreasing sequence in m con- 
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verging to Ek > 0. Letting Uk,m be a critical point of F, corresponding 
to c~,~ , a subsequence of Uk,m converges to uk where I(&) = f& and 
uk is a classical solution of (3.1). Finally it was shown that 8?k + CO as 
K --t 00, and, therefore, (3.1), possesses infinitely many distinct 
solutions. 

To obtain the dual results let, Am = A, n E, and I’, = {KC E, 1 K 
is compact, symmetric, and K n A # 0 for all A E .Z(E,) such that 
A C a, with y(A) > m - K + l}. As in Lemma 2.7 we have the 
following. 

LEMMA 4.1. (I) I’,,, # 0, 1 < k < m. 

(2) rk+l.m = rkm * 

(3) KE rk,, and Y E ,X(E,) with y(Y) < r < k implies 

K - Y E I’,-,,,, . 

(4) If 4 is an odd homeomorphism of E, to E, and @l(Am) C &n , 
then+(K) E r,,, whenever K E rk,, . 

Proof. (1) Take K = B, n Ek where R is chosen so that K 3 A, . 
Let A C & with r(A) > m - k + 1. Therefore, by (7) of Lemma 
1.2, A n Ek # 0. Since A n Ek C K, the result follows. 

(2)-(4) are proved essentially as earlier. Q.E.D. 

LEMMA 4.2. Let 

b k,m = l<k<m. 

Then 0 < ck,,, < b,,, < bk+l,m and b,,, is a critical value of F, . If 
b k+l.m = *-' = b k+r.na = b, dKd > ‘* 

Proof. Since I on E satisfies (I,), (1&-(15), so does F, on E, . 
Moreover, F, satisfies (Is) since (1J implies A,,, is bounded and we 
only need (Is) for this set. Hence, bk,, is a critical value of F, and the 
multiplicity statement obtains. To show Ck,m < b,,, , let K E r,,, 
and A C & with r(A) > m-k+ 1. LetwEKnA. Then 

so ‘k,m < bk,m * Q.E.D. 

Let vk,m be a critical point of FkSm corresponding to b,,, . 
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THEOREM 4.3. For each k EN, b,,, is a monotone nonincreasing 
sequence (in m) converging to a critical value Sk of I with & > C~ . 
A subsequence of v~,~ converges to a corresponding criticalpoint ok . 

Proof. Since r,,, C r,,,,, (as in the proof of Lemma 2. I7 of [15]), 
6 >b >c k.m A km+1 H k,m+l- Fk. Hence, b,,, + 6k 3 c;, . Lemmas 2.7, 
2.12, 2.13 and the proof of Theorem 2.2 of [15] show vk,nl is bounded 
away from 0 and GO in E and a subsequence of vk,m converges to vk 
satisfying (3.1) and I(vk) = Sk . Q.E.D. 

Remark 4.4. Since ck + co as k + co, 6k + co as k -+ co. Hence, 
there exist infinitely many distinct critical Values Sk . 

COROLLARY 4.5. Let xk = UmCN rk,, . Then 

Proof. Let b denote the right hand side of (4.6). Clearly b < b,,, 
for all m E N and, therefore, b < SI, . On the other hand, if K E xk , 
K E rk,, for some m E N and, therefore, 

r$yI(u) b 4c.m 2 6, * 

Hence, b = bk. Q.E.D. 

Remark. A similar Galerkin argument can be used to treat (3.20). 

5. APPLICATIONS TO INTEGRAL EQUATIONS 

In this final section, the theory developed earlier will be applied to 
nonlinear integral equations. Some of our results generalize work of 
Nehari [16] and Coffman [8] who studied similar equations making 
more restrictive assumptions for their nonlinearities As in Section 3 
we show it is only the asymptotic behavior of the nonlinearity near 0 
and 00 that is of importance. Indeed the arguments and results given 
here closely resemble those of Section 3 and because of this similarity 
we will often be sketchy here. Some of the results of Section 3 can be 
obtained by converting the relevant partial differential equations to 
an integral equation as in [9], however, we preferred to handle the 
partial differential equations case first since sharper results obtain there. 

Consider the integral equations 

W = j-/(x, Y> n(r, V(Y)) 4s (5.1) 
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where Sz C Rn is the closure of a bounded domain. In this section it 
is always assumed that g is real valued symmetric, and measurable on 
52 x Q and 

w4 = s, & Y> 4(Y) dY 

is a compact linear map fromD(S2) +-b(Q) where 0-l + 7-l = 1 and 
1 < u < 2 < T. G satisfies the latter condition if [2] 

$ I Ax, y)l’ dx dy < 03. (5.2) 
OXR 

It is further assumed that G is positive definite, i.e., 

$ g(x, Y) 4(x) 4(r) h dr > 0 for 4 EL’@) - (O}. 
SaXR 

(5.3) 

The conditions imposed on q are 

(qJ q is continuous on Q x R; 

(qz) I q(x, z)I < al + a2 I z Is, where 1 -=c s < 7 - 1; 
(qJ q(x, z) z-l -+ co as ) z 1 -+ co uniformly in x E $2 

as well as (I+), hJ-(P6) of S ec ion 3. (ql) can be weakened to the t 
Caratheodory conditions [2] 

Under the above hypotheses on g, G admits a splitting [2], i.e., 
G = HH* where H: L2(sL) -+L’(Q) is the positive self-adjoint 
square root of G IL2(n) and is compact, and H*: L+(O) -+La(Q) and is 
adjoint to H, i.e., 

j-, VW)) t4-4 dx = s, ~(xW*vW dx> 

for all 4 ELM, $ EP(Q). In operator form, (5.1) becomes 

v = HH*q(v), 

where we are abusing notation by suppressing the dependence of q 
on the independent variable. Since H is positive, it is a one-to-one 
map. Therefore, solving (5.1) is equivalent to solving 

u = H*q(Hu), (5.4) 

where u E E _= L2(IR) and v = Hu. 
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The norm in U(sZ) will be denoted by / - It . It is easily verified [2] 
that solutions of (5.4) are critical points of the functional 

where Q(x, z) = J: p(x, t) dt and I E Ci(E, R) with 1(O) = 0. 

LEMMA 5.5. If 4 SatisJies (91)-(93)> (PJ, (P,), I sati$es t4)+,). Q-9 
also satisfies ( p6), I satisjies (Ia)-( 

Proof. (1J is trivial. To verify (I,), it suffices to show f(u) = 
o(l u 1:) at u = 0. As in Lemma 3.3, 

(5.6) 

where w = Hu. By the Holder inequality and the continuity of H, 
] w /a < a3 / v I7 < a4 j u j2 so (5.6) implies (Ir). 

(Ia) or (1s) are proved essentially as in Lemma 3.4 where now (q3) 
and w = Hu replace, respectively, (p4) and u in the estimates of the 
fterm, and / e, 1: = a5 . 

Finally, to verify (Ia), suppose I(u,) < d and I’ -+ 0 as m -+ co. 
Observe that 

= s n( U, 2 - dx, ~1 GJ dx. (5.7) 

As in Lemma 3.6, (5.7) and I ,< d yield 

and the convergence of a subsequence of (u,). Q.E.D. 

Lemma 5.5 and Theorems 2.1 and 2.4 now immediately imply the 
following theorem. 

THEOREM 5.8. If q satisjies (qJ-(q&, (pJ, (p&, then b and c as 
defined by (2.2), (2.5) are critical values of I with 0 < c < b. The 
corresponding criticalpointsprovide nontrivialsolutions of (5.4) and (5.1). 

In a similar fashion Lemma 5.5 and Theorems 1.8 and 1.9 imply 
the next theorem. 
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THEOREM 5.9. If q satisjes (q&-0-(), (p&o& then (5.4) and (5.1) 
possess infinitely many distinct nontrivial solutions. 

Remark 5.10. (1) The multiplicity statements of Theorem 2.8 
are valid for (5.1) using the facts that H is continuous and one-to-one 
on L2(Q) and (1) of Lemma 1.2. 

(2) By slightly modifying the above arguments, analogs of 
Theorems 3.25 (without positive assertions) and (3.32) can be obtained 
for 

We will not carry out the details. 
Next a version of Theorems 3.35 for integral equations will be 

given. Consider 

+I = h s, L?(x, Y) !I(% a9) 4. (5.12) 

Since we are now dealing with global integral rather than local 
differential operators, the truncation arguments used in Theorem 3.35 
do not work here and (q2) and (ps) require strengthening. They will 
be replaced by 

(a) I qtx, 4 d al + a2 I x I. 
(qB) There exists f > 0 such that xq(x, x) < 0 for 1 z ) > Z. 

The conditions (qJ-(qJ are fairly restrictive. However, they are satisfied 
in the context of Theorem 3.35 after p has been modified to jJ. Since 
(q4) is being assumed, it is natural to weaken the requirements on G 
so that u = 2 = T. 

Hypotheses like (qJ have been used by Amann [24] to prove very 
general existence theorems for nonlinear integral equations. His 
results yield no useful information for (5.12) since v = 0 is a solution. 

‘I’HEOREM 5.13. W$ose q sati-$es tqd, (q4)--tq5)~ h), and (P,). 
Then there exists & > 0 such that for all X > 8, (5.12) possesses at least 
two distinct nontrivial solutions @(A), p(A). 

Proof. It suffices to prove the result for 

u = xH*q(Hu). (5.14) 
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The solutions of (5.14) are critical points of 

W, 4 = & I u I; - A jnQ(x, V(X)) dx 

with YJ = Hzl. Lemma 5.5 shows I(A, *) satisfies (II). Arguing as in 
Theorem 3.35, I(h, *) satisfies (1a) for all h sufficiently large provided 
that there exists u E E such that JnQ(x, Hu(x)) dx > 0. To show this, 
observe first that since His one-to-one and self-adjoint on E, H = H* 
has dense range. By (p,), s(x, 7) > 0 for x E Sz and any small constant 
17 > 0. Let yr = sJ, Q(x, r]) dx. Choose u E E such that 1 Hu - 7 I2 < 
8 < 7 where 6 < [2u1 meas s1 + 27&l $ 2 meas fz)]-’ or . Then 

using (4& 

s, Qh W4 dx 2 ~1 - 1 s, C&(x, fW4) - Q(x, $1 dx 1 

> A 771 - / s, (lH"'"' 4% 4 dx) dz / 

> / rl, -- I Hu - rl 12 Ia, + 41 W4I + 41 3 7/,/2. (5.15) 

To verify (Ia), we need only to show AISd = {U E E I 1(X, u) < d} is 
bounded for each d E R, X > 0. For u E Al,cl , (q6) shows 

d+~~,>~bl;, (5.16) 

where a, = z(meas S) max,,,,,z,w 1 p(~, z)]. Thus (Is), follows as 
earlier and Theorem 1 .l gives a solution G(X) of (5.14) with 
I@, G(X)) > 0 f or all X sufficiently large. A second solution g(h) of 
(5.14) with f(h, g(X)) < 0 is obtained by minimizing I(h, -). Q E.D. 

Remark 5.17. (1) (q4) was required only to verify (I,) and, 
therefore, can be eliminated if this condition can be verified by other 
means as e.g. in Corollary 5.20 below. 

(2) As usual a stronger result analogous to Theorem 3.39 
obtains here if q is odd. The proof differs from that of Theorem 3.39 
only in the construction of the set A. An additional approximation 
argument using the density of the range of H in E as in Theorem 5.13 
must be employed. 

(3) If (5.1) is replaced by 

~(4 = s &, r>Mr) 4~) + CI(Y, 4~))) dy, (5.18) 
sa 

where a > 0 in Sz and is continuous, then the linear eigenvalue 
problem 

44 = P ia g(x, Y> a(r) W(Y) dY (5.18) 
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has an unbounded sequence of eigenvalues 0 < p1 < **a . If p satisfies 
the hypotheses of theorem 5.13, as well as (p,), then an application of 
[7, Theorem 71 shows (5.18) p assesses at least K distinct pairs of 
solutions if pIc < 1. 

It was observed above that the truncation devices of Section 2 do 
not seem to work in general for (5.12) (or (5.18)), and, therefore, q 
was required to satisfy (q4)-(q5). The next corollary shows (q4) can 
sometimes be relaxed. 

COROLLARY 5.20. Suppose g is continuous on Q x Q, and q satisfies 

h), (q5), ( p3h (pd. Then th e conclusions of Theorem 5.13 obtain. 

Proof. Since g is continuous, its eigenfunctions are continuous. 
Let e be an function of G. Then e is also an eigenfunction for H 
and therefore using (p,), (1J can be satisfied here by choosing any 
sufficiently small multiple of e. Note that we satisfy (I,) independently 
of the values of q for j z ( > 5, i.e., X depends only on q for 1 z 1 < Z. 
If v is a nontrivial solution of (5.1), then v is continuous since g is 
continuous and ZJ ELM. Moreover, v is a priori bounded in C(Q). 
This follows since first from (5.1) and (5.3), 

Next let t > 0, 41(x) = 0 if 1 x / < t, it = 1 if x > t, and&(z) = 
-1 if z < -t. Then (5.1), the Schwarz inequality and (5.21) yield 

= h 
s dx, Y) dy, W(Y)) MW> dx dr 

l2Xf2 

<A (j-&x, y) dx, 44) dy, W(Y)) dx dy)1’2 

x (s,x,dx, 9 9tMx)) * dt(w(r)) dx dy)1’2 
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Thus, t < (ha,) 1/2 maxnxR / g(zc, y)l for any t < max i Z?(X)!. Con- 

sequently, 

Note that the a priori bound (5.23) is independent of how q is 
defined for \ z 1 > E. Let M(A) = 1 + max((ha,)l$ z). Then q can 
be redefined for 1 x / > M(h) such that the new function q satisfies 
the hypotheses of Theorem 5.13 and h is independent of the extension 
q while all solutions satisfy the bound (5.23). Hence, the conclusions 
of Theorem 5.13 obtain here. Q.E.D. 

Remark. (5.21) and (5.22) with +XV) replaced by z, yields a bound 
for solutions of (5.12) va i under the hypotheses of Theorem 5.13. I d 
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