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Abstract

The p-component of the index of a number field K depends only on the completions of
K at the primes over p. In this paper we define an equivalence relation between m-tuples of
local fields such that, if two number fields K and K ′ have equivalent m-tuples of completions
at the primes over p, then they have the same p-component of the index. This equivalence
can be interpreted in terms of the decomposition groups of the primes over p of the normal
closures of K and K ′.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let K be a number field and let RK be its ring of integers. The index of a number
field K is defined as

ind(K) = gcd{ind(�) | � ∈ RK, K = Q(�)},

where ind(�) = [RK : Z[�]] denotes the index of the element �.
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It is known that the form of the factorization of the ideal (p) in RK is not sufficient,
in general, to determine the p-component, indp(K), of the index of K (see [4]). On
the other hand, indp(K) is completely determined by the p-adic completion K ⊗ Qp

of the field K . In fact, it can be shown that indp(K) is nothing else that the index,
Ip(K ⊗ Qp), of K ⊗ Qp, i.e., the minimum power of p which divides ind(f ) when
f runs over all monic polynomials of Zp[X] such that Qp[X]/(f (X))�K ⊗ Qp (see
[6; 2, Section 2]).

Now, the Qp-algebra K ⊗Qp decomposes as a direct sum of fields, K ⊗Qp�E1 ⊕
. . . ⊕ Em, where the Ei’s are the completions of K at the primes lying over p. We
can extend the definition of the index Ip to all elements of the free abelian monoid
generated by the finite extensions of Qp so that Ip(K ⊗ Qp) = Ip(E1 + · · · + Em). If
K/Q is Galois, then the decomposition of K⊗Qp takes the simpler form K⊗Qp�En

for some integer n and some Galois extension E of Qp; in our notation, Ip(K ⊗ Qp)

takes the form Ip(nE).
In two previous papers we examined this last case in detail. In [2] we described a

method for explicitly computing Ip(nE) for all n and all normal and tamely ramified
extensions of Qp. In [3] we introduced an equivalence relation on local fields, more
general than isomorphism, which is sufficient to guarantee that, if two local fields E, E′
tamely ramified over Qp are equivalent, E ∼ E′, then

Ip(nE) = Ip(nE′) for all n ∈ N. (1)

The equivalence relation can be expressed as a purely arithmetical condition. If, more-
over, E and E′ are Galois over Qp, we showed that our arithmetical condition is
also equivalent to the fact that the Galois groups Gal(E/Qp) and Gal(E′/Qp) are
isomorphic.

In the present paper the problem of finding more general results on the index
has been our motivation for studying in more detail the equivalence relation be-
tween local fields defined in [3], and for extending its definition to m-tuples of local
fields.

In Section 3 we reexamine the case of single fields and generalize the results of
[3] to tamely ramified extensions E and E′, not necessarily normal. We show that the
following are equivalent (see Theorems 1 and 2):

(i) E ∼ E′;
(ii) Gal(E/Qp)�Gal(E′/Qp), where E and E′ are the normal kernels of E and E′,

respectively;
(iii) there exists an isomorphism � : Gal(Ē/Qp) → Gal(Ē′/Qp) such that �(Gal

(Ē/E)) = Gal(Ē′/E′), where Ē and Ē′ denote the normal closures of E and E′,
respectively.

In Section 4 we extend our definition of equivalence to m-tuples of tamely ramified
extensions of Qp (see Definition 3), and we characterize the pairs (E1, . . . , Em) and
(E′

1, . . . , E
′
m) of equivalent m-tuples in terms of the Galois groups of the normal

closures of the composita E1 · · · Em and E′
1 · · · E′

m (Theorem 3).
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As an application, we show that, if (E1, . . . , Em) and (E′
1, . . . , E

′
m) are equivalent,

then

Ip(n1E1 + · · · + nmEm) = Ip(n1E
′
1 + · · · + nmE′

m) for all n1, . . . , nm ∈ N (2)

(see Theorem 4).
Reading these results in a global context, we obtain a sufficient condition in order

that two number fields K and K ′ have the same p-component of the index. This
condition is given in terms of the decomposition groups of the primes over p of the
normal closures of K and K ′ (Corollary 2 and Proposition 9).

In Section 7 we consider the simplest case of two non-equivalent pairs (E1, E2) and
(E′

1, E
′
2) and we show that there exist two integers n1, n2 such that Ip(n1E1 +n2E2) �=

Ip(n1E
′
1+n2E

′
2). In practice, this shows that the equivalence between m-tuples of fields

is likely to be also a necessary condition in order that (2) holds.
Since we do not have a general procedure for computing such indices, checking our

example has required a rather long analysis. On the other hand, already this example
shows also that a recursive algorithm of the type described in [2] for computing Ip(nE)

cannot exist in the general case (see Remark 7).

2. Notation and preliminary results

Throughout the paper, p will be a fixed prime number, e, f will be positive integers
with (e, p) = 1, and q = pf .

Let Q̄ be the algebraic closure of Q in the complex numbers, Q̄p be a given algebraic
closure of Qp, and � : Q̄ → Q̄p be a fixed embedding. We shall denote by | | the p-adic
valuation of Q̄p normalized so that |p| = 1 and, for any positive integer n, by �n the
image of exp( 2�i

n
) under the embedding �. Finally, we shall denote by Uf = Qp(�q−1)

the unique unramified extension of Qp of degree f contained in Q̄p and by L(e, f )

the set of all (tamely ramified) extensions L of Qp (L ⊂ Q̄p) with inertial degree f

and ramification index e.
By classical theory (see for instance [5]), L(e, f ) has exactly e elements and each

field L ∈ L(e, f ) is a totally and tamely ramified extension of Uf . Moreover, we can
write L = Uf (�), where � is a root of the polynomial Xe − �a

q−1p for some a ∈ Z.
Conversely, for any integer a the field Uf [X]/(Xe − �a

q−1p) is a tamely and totally
ramified extension of Uf of degree e, and hence determines an element L ∈ L(e, f )

up to isomorphism.
We describe a procedure to select a particular root of the polynomial Xe − �a

q−1p

and hence to associate to each a ∈ Z a unique element La ∈ L(e, f ). For e ∈ N, let
�0,e be the image by the fixed embedding � of the positive real e-th root of p. Now,
a particular root of Xe − �a

q−1p is �a,e,f = �a
e(q−1)�0,e and we define

La = Uf (�a,e,f ) = Uf (�a
e(q−1)�0,e)

(note that, with the definition just given, �d
a,e,f = �a, e

d
,f , for each d|e).
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We observe that La = La′ if and only if a ≡ a′ (mod e) and hence L(e, f ) =
{L0, . . . , Le−1}.

Let �a be the set of embeddings � : La → Q̄p. It is easily verified that �a =
{�ij

a | 0� i < f, 0�j < e}, where �ij
a is defined by

⎧⎨
⎩ �ij

a (�q−1) = �pi

q−1,

�ij
a (�a,e,f ) = �a(pi−1)+j (q−1)

e(q−1) �a,e,f .
(3)

An easy computation shows that La is normal over Qp if and only if

e|(q − 1, a(p − 1)). (4)

Definition 1. We shall say that two fields La, La′ ∈ L(e, f ) are equivalent (and we
shall write La ∼ La′ ) if and only if there exist integers s, t, k with (k, e) = 1 such
that

a′ + s
q − 1

p − 1
+ te = ka. (5)

It is immediate to see that (5) holds if and only if

(
q − 1

p − 1
, e, a

)
=
(

q − 1

p − 1
, e, a′

)
. (6)

Remark 1. We recall that two fields La, La′ ∈ L(e, f ) are isomorphic over Qp if and
only if a′ ≡ pia (mod (e, q − 1)) for some integer i. Hence isomorphic fields are also
equivalent.

For convenience of the reader, we quote some results of [3]. In the following,
whenever La ∼ La′ , we shall let s, t, k be integers with (k, e) = 1 such that (5) holds.

For a finite extension L of Qp, we shall denote by OL its ring of integers. If
L ∈ L(e, f ), � = �q−1 and � is an integer of L such that |�| = 1

e
, each element

� ∈ OL can be written uniquely as a power series in � with coefficients in the set
{0, 1, �, . . . , �q−2} of Teichmüller representatives of OL/(�), and hence in the form
� = ∑

h∈H �xh�h, where H = H(�) is the subset of natural numbers h for which the
coefficient of �h is non-zero.

Lemma 1. Let La ∼ La′ , � = �a,e,f , �′ = �a′,e,f . Then the map � = �La,La′ ,(k,t) :
OLa → OLa′ defined by

�

(∑
h∈H

�xh�h

)
=
∑
h∈H

�kxh+th�′h

is one-to-one.
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Lemma 2. Let La ∼ La′ . Then the map � = �La,La′ ,(k,s) : �a → �a′ defined by

�(�ij
a ) = �

i,kj+s
pi−1
p−1

a′

is one-to-one. If, moreover, La and La′ are Galois extensions of Qp, then � :
Gal(La/Qp) → Gal(La′/Qp) is an isomorphism.

Lemma 3. Let La ∼ La′ , let �1, �2 ∈ �a , and �(1), �(2) ∈ OLa . Then, for � =
�La,La′ ,(k,s), we have

|�1(�
(1)) − �2(�

(2))| = |�(�1)(�(�(1))) − �(�2)(�(�(2)))|.

Proposition 1. Let L, L′ ∈ L(e, f ). If L ∼ L′, then Ip(n[L]) = Ip(n[L′]) for each
n > 0.

3. More on the equivalence of two local fields

Let L be an extension of Qp; we denote by L its normal kernel, i.e. the biggest
normal extension of Qp contained in L, and by L̄ the normal closure of L over Qp.

Proposition 2. Let L = La ∈ L(e, f ). Then

(i) L = La ∈ L(�, f ), where � = (q − 1, e, a(p − 1));

(ii) L̄ = L̄ā ∈ L(e, f̄ ), where, setting q̄ = pf̄ and ā = a
q̄−1
q−1 , f̄ is the least multiple

of f such that e|(q̄ − 1, ā(p − 1)).

Proof. (i) First we observe that L has the same inertial degree as L, hence L = L� ∈
L(�, f ) for some �, �. Since ��,�,f /�e/�

a,e,f is a root of unity contained in Uf , we have

L = Uf (�e/�
a,e,f ), and therefore L = La . The value of � follows from (4) and from the

maximality of La in the set of normal extensions of Qp contained in L.
(ii) We have L̄ = Uf̄ (�a,e,f ), where f̄ is the inertial degree of L̄. Now �a,e,f =

�a
e(q−1)�0,e = �ā

e(q̄−1)�0,e = �ā,e,f̄ , hence L̄ = L̄ā . The value of f̄ follows from

(4) and from the minimality of L̄ā in the set of normal extensions of Qp contai-
ning L. �

Theorem 1. Let La, La′ ∈ L(e, f ). Then the following are equivalent:

(i) La ∼ La′ ;
(ii) La ∼ La′ ;

(iii) The Galois groups Gal(La/Qp) and Gal(La′/Qp) are isomorphic.

Proof. (i) ⇒ (ii). We first prove that La and La′ have the same ramification index over
Qp. By the description of the normal kernel given in Proposition 2, this amounts to
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show that � = (q −1, e, a(p−1)) is equal to �′ = (q −1, e, a′(p−1)). Since La ∼ La′ ,
Eq. (6) holds; multiplying this equation by p − 1 we get � = �′. Since �|e, Eq. (6)

gives also
(

q−1
p−1 , �, a

)
=
(

q−1
p−1 , �, a′

)
, hence La ∼ La′ .

(ii) ⇒ (i). La ∼ La′ is equivalent to conditions � = (q − 1, e, a(p − 1)) = (q −
1, e, a′(p − 1)) and (

q−1
p−1 , �, a) = (

q−1
p−1 , �, a′); by substituting the value of � in the last

formula, we get La ∼ La′ .
(ii) ⇔ (iii): see [3, Theorem 1]. �

Proposition 3. Let La, La′ ∈ L(e, f ). If La ∼ La′ then L̄ā and L̄ā′ have the same
ramification index, the same inertial degree, and L̄ā ∼ L̄ā′ .

Proof. Clearly L̄ā and L̄ā′ both have ramification index equal to e. We show that
they have also the same inertial degree. In fact, let f̂ be any multiple of f satisfying

e|pf̂ − 1. Then, multiplying the equation

a′ + s
q − 1

p − 1
+ te = ka (7)

by pf̂ −1
q−1 (p − 1) we get

pf̂ − 1

q − 1
a′(p − 1) ≡ k

pf̂ − 1

q − 1
a(p − 1) (mod e).

Since (k, e) = 1,

e

∣∣∣∣∣p
f̂ − 1

q − 1
a(p − 1) ⇐⇒ e

∣∣∣∣∣p
f̂ − 1

q − 1
a′(p − 1) ,

whence the inertial degrees of L̄ā and L̄ā′ are the same.
Finally, if f̄ is the common inertial degree of L̄ā and L̄ā′ , then ā = a

q̄−1
q−1 and

ā′ = a′ q̄−1
q−1 , so multiplying (7) by q̄−1

q−1 we get that L̄ā ∼ L̄ā′ . �

Remark 2. The converse of Proposition 3 is not true. For an example, consider the
case p = 3, e = 10, f = 2. Then q−1

p−1 = 4; since (10, 4) = 2, we have two different
equivalence classes for the extensions La ∈ L(10, 2), one for a odd and one for a even.
Independently of a, it is immediate to check that the normal closure of La has inertial
degree equal to 4, so q̄ = 81, ā = 10a and q̄−1

p−1 = 40. It follows that (10a, 10, 40) = 10
for all a, so the normal closures of the La are all equivalent.

Let G = Gal(L̄ā/Qp), G′ = Gal(L̄ā′/Qp) and let H (resp. H ′) the subgroup of G

(resp. G′) fixing La (resp. La′ ). Setting 	 = �0,1
ā , 
 = �1,0

ā , we have (see [3])

G = 〈	, 
 | 	e = 1, 
f̄ = 	ā , 
	
−1 = 	p〉. (8)
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With this notation, it is easy to check that G0 = 〈	〉 is the inertia subgroup of G

(i.e., G0 = Gal(L̄ā/Uf̄ )), and H = 〈	−a
f 〉. Clearly, letting 	′ = �0,1
ā′ and 
′ = �1,0

ā′ ,
analogous relations hold for G′, G′

0 and H ′.

Definition 2. We say that an isomorphism � : G → G′ is an inertia-preserving iso-
morphism if �(G0) = G′

0.

Theorem 2. Let La, La′ ∈ L(e, f ). Then the following are equivalent:

(i) La ∼ La′ ;
(ii) There exists an inertia-preserving isomorphism � : G → G′ such that �(H) = H ′.

(iii) There exists an isomorphism � : G → G′ such that �(H) = H ′.

Proof. (i) ⇒ (ii). Assume that La ∼ La′ , and let k, s be such that

a′ + s
q − 1

p − 1
≡ ka (mod e). (9)

Then

ā′ + s
q̄ − 1

p − 1
≡ kā (mod e)

and � = �L̄ā ,L̄ā′ ,(k,s) : G → G′, defined as in Lemma 2, is an inertia-preserving
isomorphism. Moreover,

�(	−a
f ) = 	′−ka+s
q−1
p−1 
′f = 	′−a′


′f

and hence �(H) = H ′.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). Let � : G → G′ be an isomorphism such that �(H) = H ′ and let

H =
〈⋃

�∈G

�H�−1

〉
and H′ =

〈⋃
�∈G′

�H ′�−1

〉
.

Clearly H (resp. H′) is the smallest normal subgroup of G (resp. G′) containing H

(resp. H ′), and hence La (resp. La′ ) is just the subfield of L̄ā (resp. L̄ā′ ) fixed by
H (resp. H′). Moreover, �(H) = H′, and therefore the isomorphism � induces an
isomorphism �̃ : G/H → G′/H′. Now, G/H and G′/H′ are the Galois groups of La

and La′ , respectively, and, by Theorem 1, (i) follows. �

Remark 3. Let La, La′ ∈ L(e, f ) be such that La �∼ La′ but L̄ā ∼ L̄ā′ (see
Remark 2).



I. Del Corso, R. Dvornicich / Journal of Number Theory 115 (2005) 230–248 237

Applying Theorem 2 to L̄ā and L̄ā′ , we obtain that there exists an inertia-preserving
isomorphism between G and G′. On the other hand, applying Theorem 2 to La and
La′ , we get that no isomorphism � : G → G′ satisfies �(H) = H ′.

4. Equivalence in the general case

We generalize the definition of equivalence to generic m-tuples of tamely ramified
local fields. Let m > 0 and, for � = 1, . . . , m, let La� , La′

�
∈ L(e�, f�). For the sake of

simplicity, we shall often omit the reference to the ramification index and the inertial
degree of such fields. We shall let also �� = �a�,e�,f� , �′

� = �a′
�,e�,f� , q� = pf� and

e = [e1, . . . , em] := lcm{e1, . . . , em}.

Definition 3. We say that (La1 , . . . , Lam) is equivalent to (La′
1
, . . . , La′

m
), and we write

(La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
), if there exist integers k, s, i1, . . . , im with (k, e) = 1

such that

a′
� + s

q� − 1

p − 1
≡ kpi�a� (mod (e�, q� − 1)) for � = 1, . . . , m. (10)

We note that, if La′
�

is a conjugate of La� for � = 1, . . . , m, then (La1 , . . . , Lam) ∼
(La′

1
, . . . , La′

m
). In fact,La� is conjugate to La′

�
if and only if a′

�≡pi�a� (mod(e�, q�−1)

(see Remark 1), which is a special case of (10) with k = 1 and s = 0.

Definition 4. We say that (La1 , . . . , Lam) is strongly equivalent to (La′
1
, . . . , La′

m
), and

we write (La1 , . . . , Lam) ≈ (La′
1
, . . . , La′

m
) if there exist integers k, s with (k, e) = 1

such that

a′
� + s

q� − 1

p − 1
≡ ka� (mod e�) for � = 1, . . . , m, (11)

or, equivalently, if there exist integers k, s, t1, . . . , tm with (k, e) = 1 such that

a′
� + s

q� − 1

p − 1
+ t�e� = ka� for � = 1, . . . , m. (12)

We observe that the preceding definitions in the case of a single field reduce to
Definition 1. Moreover,

(La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
) �⇒ La� ∼ La′

�
for � = 1, . . . , m.

In fact, one can see the strong equivalence of two m-tuples as a ‘coherent’ equivalence
between corresponding fields, where ‘coherent’ means that in Eq. (12) k and s can be
chosen independent of �.

The basic relations between equivalence and strong equivalence are the following.
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Proposition 4. Let La1 , . . . , Lam, La′
1
, . . . , La′

m
be finite tamely ramified extensions of

Qp. Then (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
) if and only if there exist fields La∗

1
, . . . ,

La∗
m

, conjugate to La1 , . . . , Lam , respectively, such that (La∗
1
, . . . , La∗

m
) ≈ (La′

1
, . . . ,

La′
m
). In particular, for normal fields equivalence and strong equivalence coincide.

Proof. Suppose (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
). Since (e�, k(q� −1)) = (e�, q� −1),

we may rewrite (10) in the form

a′
� + s

q� − 1

p − 1
+ t�e� = kpi�a� + kj�(q� − 1) for � = 1, . . . , m

for suitable integers t�, j�. Choosing a∗
� = pi�a� + j�(q� − 1), we obtain that La∗

�
is

conjugate to La� (see Remark 1) and (La∗
1
, . . . , La∗

m
) ≈ (La′

1
, . . . , La′

m
).

The converse is trivial, since strong equivalence implies equivalence and this is stable
under conjugation. �

Proposition 5. If (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
), then the m-tuples of their normal

kernels and the m-tuples of their normal closures are strongly equivalent.

Proof. In view of Proposition 4, we may assume that (La1 , . . . , Lam) ≈ (La′
1
, . . . , La′

m
)

and that (12) holds. Let �� be the ramification index of the normal kernels La�
and

La′
�
. Substituting e� = ���� in Eq. (12) and taking into account Proposition 2, we

obtain (La1
, . . . , Lam

) ∼ (La′
1
, . . . , La′

m
). The statement about the normal closures can

be shown by multiplying (12) by
q̄�−1
q�−1 . �

Remark 4. Let N be the compositum of normal closures L̄ā1 , . . . , L̄ām of La1 , . . . , Lam

(the same as the normal closure of the compositum La1 · · · Lam ). Let e and f be the
ramification index and the inertial degree of N , respectively. Clearly, ẽ = [e1, . . . , em]|e
and f̃ = [f̄1, . . . , f̄m]|f .

We claim that in fact e = ẽ. Let q̃ = pf̃ and �̃ = �q̃−1. Setting ã� = q̃−1
q�−1a�, we

have �� = �
ã�

e(q̃−1)
�0,e� = �̃

ã�
ẽ �0,e� (where �̃

x
y denotes the image in Q̄p of exp( 2�ix

(q̃−1)y
)).

Moreover, fix once and for all integers �1, . . . , �m such that

�1
ẽ

e1
+ · · · + �m

ẽ

em

= 1. (13)

Then � = ��1
1 · · · ��m

m ∈ N and verifies � = �b̃
e(q̃−1)�0,ẽ = �̃

b̃
ẽ �0,ẽ where

b̃ = ã1�1
ẽ

e1
+ · · · + ãm�m

ẽ

em

.
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Moreover, by Abhyankar’s lemma (see [5, Chapter 5, Corollary 4]), N = Qp(�̃, �1, . . . ,

�m) is unramified over Qp(�), proving the claim.
Concerning the value of f , we observe that, for each � = 1, . . . , m, we have �� =

�̃
ã�−b̃

e� �
e
e� , and therefore N = Qp(�̃, �̃

ã1−b̃

e1 , . . . , �̃
ãm−b̃

em , �). Hence

f = [Qp(�̃, �̃
ã1−b̃

e1 , . . . , �̃
ãm−b̃

em ) : Qp].

If q = pf and b = q−1
q̃−1 b̃, then N = Lb ∈ L(e, f ) and � = �b,e,f .

Lemma 4. Let La1 , . . . , Lam, La′
1
, . . . , La′

m
be finite tame extensions of Qp and let

N = L̄ā1 · · · L̄ām , N ′ = L̄ā′
1
· · · L̄ā′

m
.

Assume (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
). If N ∈ L(e, f ) and N ′ ∈ L(e′, f ′), then

(e, f ) = (e′, f ′) and N ∼ N ′.
Assume (La1 , . . . , Lam) ≈ (La′

1
, . . . , La′

m
) and let k, s, t1 . . . , tm be such that (12)

holds. Then, in the notation of Remark 4, N = Lb and N ′ = Lb′ with b′ + s
q−1
p−1 + te =

kb, where q = pf , and

t = �1
q − 1

q1 − 1
t1 + · · · + �m

q − 1

qm − 1
tm.

Proof. First we observe that replacing the fields La� by any of their conjugates does
not change the normal closure, hence, by Proposition 4, we may assume throughout
that (La1 , . . . , Lam) ≈ (La′

1
, . . . , La′

m
) and that (12) holds.

We have trivially e = e′ and f̃ = f̃ ′. To show that f = f ′ is equivalent to
show that the maximal unramified subextensions of N and N ′ coincide, namely that

Qp(�̃, �̃
ã1−b̃

e1 , . . . , �̃
ãm−b̃

em ) = Qp(�̃, �̃
ã′

1−b̃′
e1 , . . . , �̃

ã′
m−b̃′
em ). Multiplying (12) by q̃−1

q�−1 , we get

ã′
� + s

q̃ − 1

p − 1
+ q̃ − 1

q� − 1
t�e� = kã�. (14)

Multiplying (14) by ��
e
e�

and summing over �, we obtain

b̃′ + s
q̃ − 1

p − 1
+

m∑
�=1

��
q̃ − 1

q� − 1
t�e = kb̃. (15)

From (14) and (15), it follows that ã′
�−b̃′ ≡ k(ã�−b̃) (mod e�). Hence, for 1���m,

the fields generated by �̃
ã�−b̃

e� and �̃
ã′
�−b̃′
e� over Qp(�̃) are the same.
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Finally, the relation between b and b′ is obtained multiplying (15) by q−1
q̃−1 . �

With the notation of Lemma 4, let G = Gal(N/Qp), G′ = Gal(N ′/Qp). Further, for
1���m, let H� (resp. H ′

�) be the subgroup of G (resp. G′) which fixes La� (resp.
La′

�
).

Theorem 3. Let La1 , . . . , Lam, La′
1
, . . . , La′

m
be finite extensions of Qp. Then the fol-

lowing are equivalent:

(i) (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
);

(ii) there exists an inertia-preserving isomorphism � : G → G′ such that �(H�) is
conjugate to H ′

� for 1���m.

Proof. We start by showing that, if (La1 , . . . , Lam) ≈ (La′
1
, . . . , La′

m
), then there exists

an inertia-preserving isomorphism � : G → G′ such that �(H�) = H ′
� for 1���m.

Assume (La1 , . . . , Lam) ≈ (La′
1
, . . . , La′

m
), and let k, s, t1, . . . , tm as in (12). By

Lemma 4 we have N = Lb ∼ N ′ = Lb′ and, by the proof of Theorem 2, we have that
� = �Lb,Lb′ ,(k,s) : G → G′ is an inertia-preserving isomorphism. Recalling that now

	 = �0,1
b , 
 = �1,0

b , an easy computation shows that

H� = 〈	e� , 	−a�
f�〉 = {	je�− qi
�−1

q�−1 a�
if�} (16)

and similar expressions hold for H ′
�. It is now straightforward to check that

�(	e�) = (	′)ke� , �(	−a�
f�) = (	′)−ka�+s
q�−1
p−1 (
′)f� = (	′)−a′

�−t�e�(
′)f�

and hence �(H�) = H ′
�.

Suppose now that (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
). By Proposition 4, there exist

fields La∗
�

conjugate to the La� such that (La∗
1
, . . . , La∗

m
) ≈ (La′

1
, . . . , La′

m
). Since

La∗
�

is conjugate to La� , the normal closure of the compositum of all La∗
�

is again N .
Moreover, the subgroup H ∗

� of G fixing La∗
�

is conjugate to H�. By the argument above,
there exists an inertia-preserving isomorphism � : G → G′ such that �(H ∗

� ) = H ′
�

and, since H� and H ∗
� are conjugate, �(H�) and H ′

� are conjugate too.
Conversely, let � : G → G′ be an inertia-preserving isomorphism such that �(H�)

is conjugate to H ′
� for 1���m. Then, for each �, there exists a conjugate H ∗

� of H�

in G such that �(H ∗
� ) = H ′

�. If La∗
�

denotes the fixed field of H ∗
� , we have that La∗

�

is conjugate to La� ; since (La∗
1
, . . . , La∗

m
) ∼ (La1 , . . . , Lam), it is enough to show that

(La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
) under the stronger hypothesis that the isomorphism

� satisfies �(H�) = H ′
�.

Let � : G → G′ be such an isomorphism. Then �(	) = 	′k and �(
) = 	′s
′l for
suitable integers k, s, l satisfying certain conditions; in particular, (k, e) = 1, (l, f ) = 1
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and pl ≡ p (mod e). Possibly replacing l with another integer in the same congruence
class modulo f , we can also suppose that (l, q − 1) = 1. By hypothesis, we have

�(	−a�
f�) = (	′)−ka�+s
ql
�−1

pl−1 (
′)lf� ∈ H ′
� (17)

for 1���m. By (16), considering the exponent of 
′, (17) implies that for each �

there exists j� such that −ka� + s
ql
�−1

pl−1
≡ j�e� − ql

�−1
q�−1a′

� (mod e). Since e�|e, this gives

ql
� − 1

q� − 1
a′
� + s

ql
� − 1

pl − 1
≡ ka� (mod e�).

Now, from
ql
�−1

q�−1 = ql−1
� + ql−2

� + · · · + 1 ≡ l (mod (q� − 1)) and pl ≡ p (mod e) we
obtain

la′
� + s

q� − 1

p − 1
≡ ka� (mod (e�, q� − 1)). (18)

Finally, since e|q − 1, q� − 1 | q − 1 and (l, q − 1) = 1, multiplying (18) by the inverse
of l modulo q − 1 we get that (La1 , . . . , Lam) and (La′

1
, . . . , La′

m
) are equivalent. �

We observe that, if there exists an inertia-preserving isomorphism � : G → G′ such
that �(H�) is conjugate to H ′

�, then there exists also an isomorphism of the special
kind �Lb,Lb′ ,(k,s) : G → G′ with the same properties. In fact, by Theorem 3 condition
(ii) implies (La1 , . . . , Lam) ∼ (La′

1
, . . . , La′

m
). Let k, s be integers satisfying Eq. (10);

then there exist conjugates La∗
�

of the La� such that (La∗
1
, . . . , La∗

m
) ≈ (La′

1
, . . . , La′

m
)

and the same integers k, s satisfy Eq. (11). By the proof of Theorem 3 the isomorphism
�Lb,Lb′ ,(k,s) has the required properties.

Remark 5. Unlike the case where m = 1 (see Theorem 2), when m > 1 the condition
that there exists an inertia-preserving isomorphism � : G → G′ cannot be relaxed. In
fact, it is possible that there exist isomorphisms between G and G′ such that �(H�)

is conjugate to H ′
� for all � but none of them is inertia-preserving.

To see an example, consider the case where p = 11, e = 5, f = 1. It is straight-
forward to check that (L1, L2, L3) /∼ (L1, L2, L4) (see Proposition 6 below), and
therefore there is no inertia-preserving isomorphism between G and G′ sending H�
into a conjugate of H ′

� for all �.
On the other hand, with the notation of Theorem 3, we have that N = N ′: in

fact, both fields are obtained as the splitting field of the polynomial X5 − 11 over
the unique unramified extension F of Q11 of degree 5 (see Remark 4). We have
G = G′ = 〈	, 
 | 	5 = 
5 = 1, 	
 = 
	〉�Z/5Z × Z/5Z, and H� = 〈	−�
〉 for
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� = 0, 1, 2, 3, 4. The isomorphism � : G → G′ given by �(	−i
j ) = 	2i+2j 
i satisfies
�(H1) = H1, �(H2) = H2, and �(H3) = H4.

5. Arithmetical conditions for the equivalence

In some cases, the condition in Definition 3 for the equivalence of m-tuples of fields
can be translated into a relatively simple arithmetical condition on the numbers a�, a′

�,
e�, f�. We give an explicit condition for totally ramified extensions.

Proposition 6. Let La1 , . . . , Lam, La′
1
, . . . , La′

m
be totally and tamely ramified exten-

sions of Qp, and let e = [e1, . . . , em] where e� denotes the ramification index of La�

and La′
�
. Then (La1 , . . . , Lam) ∼ (La′

1
, . . . , La′

m
) if and only if there exists an integer

k such that (k, e) = 1 and

a′
� − a′

 ≡ k(a� − a) (mod (e�, e, p − 1)) for 1�� < �m. (19)

Proof. If (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
), then, taking the difference of Eq. (10)

corresponding to the indices � and , we obtain

a′
� − a′

 ≡ k(a� − a) (mod (e�, e, p − 1)). (20)

Conversely, assume (19). Then ka� − a′
� ≡ ka − a′

 (mod (e�, e, p − 1)). By the
Chinese Remainder Theorem, there exists an integer s such that ka� −a′

� ≡ s (mod (e�,

p − 1)) for all 1���m, that is, (La1 , . . . , Lam) ∼ (La′
1
, . . . , La′

m
). �

Corollary 1. With the notation of Proposition 6, we have (La1 , . . . , Lam) ∼ (La′
1
, . . . ,

La′
m
) if and only if (La1

, . . . , Lam
) ≈ (La′

1
, . . . , La′

m
).

Proof. Assume that (La1
, . . . , Lam

) ≈ (La′
1
, . . . , La′

m
). Then there exists an integer k

such that

a′
� − a′

 ≡ k(a� − a) (mod (��, �, p − 1)) for 1�� < �m. (21)

By Proposition 2, we have �� = (p − 1, e�, a�(p − 1)). Substituting the values of ��
and � into (21), we get (19). Since k is coprime to � = [�1, . . . , �m], in the class
of k modulo � we can find a representative which is also coprime to �. The converse
implication has already been proved in Proposition 5. �

Remark 6. In Corollary 1, the condition that La1 , . . . , Lam, La′
1
, . . . , La′

m
are totally

ramified extensions of Qp is indeed a necessary one.
In fact, let p = 17, m = 2, e1 = e2 = 9, f1 = f2 = 2, and consider the pairs

in L(9, 2) given by (L1, L4), (L2, L2). By (6), we have L1 ∼ L2, since (18, 9, 1) =
(18, 9, 2) = 1 and, similarly, L4 ∼ L2, since (18, 9, 4) = (18, 9, 2) = 1. Moreover, by
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Proposition 2, all fields L1, L2 and L4 are equal to the unique unramified extension
of Q17 of degree 2, whence clearly (L1, L4) ∼ (L2, L2).

On the other hand, (L1, L4) /∼ (L2, L2). In fact, by Definition 3, the condition
(L1, L4) ∼ (L2, L2) is equivalent to the solvability in the integers s, k, i1, i2, with
(k, 9) = 1, of the system

{
2 + 18s ≡ 17i1k (mod (9, 172−1)),

2 + 18s ≡ 17i2 · 4k (mod (9, 172−1)).

Now, the first equation implies k ≡ ±2 (mod 9), while the second equation implies
k ≡ ±5 (mod 9), and hence the system is not solvable.

6. Invariance of the index under equivalence

Let �, � ∈ Q̄p be integral elements and denote by F� and F� their minimal polyno-
mials over Zp[X]. We let disc(�) be the discriminant of F�, Res(�, �) be the resultant
of F� and F� and ind(�) = [OQp(�) : Zp[�]]. Finally, we put discp(�) = |disc(�)|,
indp(�) = |ind(�)| and Resp(�, �) = |Res(F�, F�)|.

Definition 5. Let X = {x1, . . . , xn} be a finite subset of integral elements of Q̄p, we
define

Ip(X) =
⎧⎨
⎩

∑
1� i<j �n

Resp(xi, xj ) +
n∑

i=1

indp(xi)

⎫⎬
⎭ . (22)

Let E be the free abelian monoid generated by the finite extensions E of Qp in Q̄p.
For E1 + · · · + Em ∈ E , we define

Ip(E1 + · · · + Em) = min
xi∈Ei

Ip({x1, . . . , xm}). (23)

It is immediate to verify that the minimum in (23) depends only on the isomorphism
classes of the Ei . Hence we have the following:

Proposition 7. Let E1, . . . , Em, E∗
1 , . . . , E∗

m be local fields such that E∗
� is a conjugate

of E� for � = 1, . . . , m. Then

Ip(E1 + · · · + Em) = Ip(E∗
1 + · · · + E∗

m).

Now let K be a number field, and let E1, . . . , Em be the completions of K at the
primes over p. Then K ⊗ Qp�E1 ⊕ · · · ⊕ Em (see [1, Theorem, p. 57]), and we
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associate to K the element

Ep(K) = E1 + · · · + Em ∈ E .

With this notation we have [6, Theorem 1]:

Proposition 8 (Nart). For every number field K,

indp(K) = Ip(Ep(K)).

We can now state our main result on the index of finite Qp-algebras.

Theorem 4. Let E1, . . . , Em, E′
1, . . . , E

′
m be tamely ramified local fields. If (E1, . . . ,

Em) ∼ (E′
1, . . . , E

′
m) then, for all n1, . . . , nm ∈ N,

Ip(n1E1 + · · · + nmEm) = Ip(n1E
′
1 + · · · + nmE′

m).

We remark that in the statement of the preceding theorem the numbers ni need not
necessarily be the multiplicities of the fields Ei (resp. E′

i) in the sum n1E1+· · ·+nmEm

(resp. n1E
′
1 +· · ·+nmE′

m). In fact, the theorem can be applied, for instance, in the case
where (E1, E2) ∼ (E′

1, E
′
2), E1 = E2 but E′

1 �= E′
2. Actually, it is enough to prove the

theorem in the case n1 = · · · = nm = 1.
We need the following lemma.

Lemma 5. Assume (E1, . . . , Em) ≈ (E′
1, . . . , E

′
m) and let k, s, t1, . . . , tm be such that

(12) holds. For 1��, �m, let �� ∈ �E� , � ∈ �E and �� ∈ OE� , � ∈ OE . Moreover,
for � = 1, . . . , m, let �� = �E�,E′

�,(k,s) and �� = �E�,E′
�,(k,t�) be the maps defined in

Lemmas 1 and 2. Then

|��(��) − �(�)| = |��(��)(��(��)) − �(�)(�(�))|. (24)

Proof. Let N = Lb and N ′ = Lb′ be the normal closures of E1 · · · Em and of
E′

1 · · · E′
m, respectively. Then, by Lemma 4, N ∼ N ′ and b′ + s

q−1
p−1 + te = kb, where

t = �1
q − 1

q1 − 1
t1 + · · · + �m

q − 1

qm − 1
tm

and �1, . . . , �m satisfy (13). Let � = �N,N ′,(k,s) and � = �N,N ′,(k,t): by Lemmas 3
and 4, we have

|�(1)(�(1)) − �(2)(�(2))| = |�(�(1))(�(�(1))) − �(�(2))(�(�(2)))| (25)

for all �(1), �(2) ∈ Gal(N/Qp) and for all �(1), �(2) ∈ ON .
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We have to show that, when we chose �(1) = �� ∈ E� and �(2) = � ∈ E, (25)
specializes to (24). First we show that the restriction of the map � to E� coincides
with �� for all �. Let � = �q−1 and �̃ = �q̃−1 as in Remark 4. On one hand, for any

root of unity � ∈ N we have �(��h) = �h�th�′h. On the other hand, from (14) and
(15) we get

k(ã� − b̃) − (ã′
� − b′) = t�

q̃ − 1

q� − 1
e� − te

q̃ − 1

q − 1
,

so that

�̃
k

ã�−b̃

e� �̃
− ã′

�−b̃′
e� = �̃

t�
q̃−1
q�−1 −t e

e�
q̃−1
q−1 = �

t�
q�−1�

−t e
e� .

Hence, recalling that �� = �̃
ã�−b̃

e� �
e
e� , we can evaluate � on �x

q�−1�
h
� as follows:

�(�x
q�−1

�h
�) = �(�x

q�−1
�̃
h

ã�−b̃

e� �
h e

e� ) = �kx
q�−1�̃

kh
ã�−b̃

e� �
th e

e� (�′)h
e
e�

= �kx
q�−1�̃

kh
ã�−b̃

e� �
th e

e� �̃
−h

ã′
�−b̃′
e� (�′

�)h = �
kx+t�h

q�−1 (�′
�)h.

A similar argument shows that �ij

b̃
∣∣E�

= �ij
a�

, whence �(�ij

b̃
∣∣E�

) = ��(�ij
a�

) for each �

and (24) follows. �

Proof of Theorem 4. By Proposition 5 there exist fields E∗
1 , . . . , E∗

m conjugate to
E1, . . . , Em, respectively, such that (E∗

1 , . . . , E∗
m) ≈ (E′

1, . . . , E
′
m). Since the index

Ip(n1E
∗
1 + · · · + nmE∗

m) depends only on the absolute values |�∗
�(�∗

�) − �∗
(�

∗
)|, where

�∗
� are embeddings of E∗

� in Q̄p and �∗
� are elements of E∗

�, by Lemma 5 we have

Ip(n1E
∗
1 + · · · + nmE∗

m) = Ip(n1E
′
1 + · · · + nmE′

m).

But E∗
� is a conjugate of E� for � = 1, . . . , m, and, by Proposition 7, the theorem

follows. �

The preceding local results can be reinterpreted in terms of global fields. Let p be
a rational prime, and K , K ′ be number fields tamely ramified at p.

Definition 6. We say that K and K ′ are locally equivalent at p, K ∼p K ′, if K ⊗
Qp�E1 ⊕ · · · ⊕ Em, K ′ ⊗ Qp�E′

1 ⊕ · · · ⊕ E′
m and, up to a permutation of the E�,

we have (E1, . . . , Em) ∼ (E′
1, . . . , E

′
m).
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Clearly, if K ∼p K ′ then the form of the factorizations of p in K and K ′ is the
same; if, moreover, p is unramified, then also the converse holds.

Corollary 2. Let K and K ′ be number fields, and let p be a prime tamely ramified
both in K and in K ′. Assume K ∼p K ′. Then indp(K) = indp(K ′).

Proof. The statement follows immediately from Proposition 8 and Theorem 4. �

We now characterize local equivalence at p in terms of some suitable Galois groups.
Denote by P1, . . . , Pm the primes of K lying over p. Also, let K̄ be the normal closure
of K and let Q1, . . . , Qs be the primes of K̄ over p. Trivially, all completions of K̄

at the primes Qj coincide and, if N is any such completion, we have K̄ ⊗ Qp�Ns ,
and hence Ep(K̄) = sN . We recall without proof the following simple characterization
of N .

Lemma 6. If N is the completion of K̄ at any of the primes Qj and E1, . . . , Em are
the completions of K at the primes P1, . . . , Pm, respectively, then

N = Ē1 · . . . · Ēm,

where, as usual, Ēi denotes the normal closure of Ei .

For j = 1, . . . , s, let D(Qj |p) be the decomposition group of the prime Qj over
p, and let D = D(Q1|p). It is known that all D(Qj |p) are isomorphic to D via
conjugation in Gal(K̄/Q); let gj : D(Qj |p) → D be any such isomorphism. Whenever
P� ⊆ Qj , we have that gj (D(Qj |P�)) is independent of j , hence we may define D� =
gj (D(Qj |P�)) for any j such that P� ⊆ Qj . We shall also denote by I the inertial
group of Q1 over p. Finally, we shall use an analogous notation with the superscript
′ for the field K ′.

Proposition 9. Let K and K ′ be number fields tamely ramified at p. Then the following
are equivalent:

(a) K ∼p K ′;
(b) there exists an isomorphism � : D → D′ such that

(i) �(I ) = I ′;
(ii) up to a permutation of the D�, �(D�) is a conjugate of D′

� for � = 1, . . . , m.

Proof. There is a canonical isomorphism � : D → G = Gal(N/Qp) (see for instance
[1, Chapter 1.10, Proposition 3]). Also, �(D�) = H� = Gal(N/E�) for all �. Letting
�′ be the analogous isomorphism between D′ and G′ = Gal(N ′/Qp), we obtain that
there exists an isomorphism � : D → D′ if and only if there exists an isomorphism
�̃ = �′ ◦ � ◦ �−1 : G → G′. Now, condition (i) expresses the property that the
isomorphism � is inertia-preserving and condition (ii) is equivalent to the fact that, up
to a permutation, �̃(H�) is conjugate to H ′

� for all �. Hence Theorem 3 applies. �
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7. A counterexample

Let p = 5, e = 4 and f = 1, so L(4, 1) = {L0, L1, L2, L3}. By Proposition 6,
(L0, L1) �∼ (L0, L2). We want to show that I5(56L0 + 55L1) �= I5(56L0 + 55L2),
whence Theorem 4 fails to be true in the case of m-tuples of non-equivalent fields,
even if, as in this case, all fields involved are pairwise equivalent.

Let �a = �a,4,1 = �a
16

4
√

5 for a = 0, 1, 2. We remark that Q5(�2
0) ∩ Q5(�2

1) = Q5,
while Q5(�2

0) ∩ Q5(�2
2) = Q5(

√
5). We shall see that this difference is the key for

understanding why the two indices are not equal.
We now outline our procedure for proving that I5(56L0 +55L1) �= I5(56L0 +55L2),

leaving to the reader all the lenghty calculations involved.
Let I5(56L0 + 55L1) = I (� ∪ �), I5(56L0 + 55L2) = I (�′ ∪ �′), where �, �′ ∈

OL0
56, � ∈ OL1

55, �′ ∈ OL2
55. We write � = ∪4

i=0�i , where �i is the subset of �
consisting of the elements congruent to i modulo �0, and we partition the sets �′, �, �′
similarly.

Although this is not obvious ‘a priori’ (and even not true in the general case), a
direct computation allows to check that the elements of � must be evenly distributed
in the classes modulo �0; namely, up to a permutation of {0, 1, 2, 3, 4}, we must have
|�0| = |�′

0| = 12 and |�i | = |�′
i | = 11 for i �= 0. Similarly, |�i | = |�′

i | = 11 for
all i.

Now, the resultant between two elements belonging to different classes modulo the
maximal ideal has valuation 0, and therefore

I5(� ∪ �) = I5(�0 ∪ �0) + · · · + I5(�4 ∪ �4),

I5(�
′ ∪ �′) = I5(�

′
0 ∪ �′

0) + · · · + I5(�
′
4 ∪ �′

4).

For i �= 0, again a direct computation shows that the mininum value of I5(�i ∪ �i )

is 1032, and this value can be obtained when both �i and �i contain 10 elements of
order 1 (i.e. with valuation 1

4 ) and one element of order 2 (i.e. with valuation 1
2 ).

For i = 0 the situation is different. Concerning I5(�0 ∪ �0), the minimum value
is 1130, and is obtained by choosing 2 elements of �0 and one element of �0 of
order 2 and all the other elements of order 1. It is important to observe that the
contribution to the index given by the resultants between the three elements of order 2
is 3×8 = 24 and therefore is as small as possible (choose for instance � ≡ √

5 (mod �3
0),

� ≡ �4
√

5 (mod �3
0), � ≡ �8

√
5 (mod �3

1)).
The same kind of choice made for �′

0 ∪ �′
0 would produce a larger value: in fact,

since �2
2 = �4

√
5, for any choice of three elements of order 2, two in L0 and one in

L2, there exists at least one pair (x, y) for which Res5(x, y)�10, and consequently
the index of any sequence �∗

2 ∪�∗
2 ⊂ L0 ∪L2 including three such elements is at least

1132.
Actually, the index I5(�

′
0 ∪ �′

0) is 1131, and is obtained by choosing 10 elements
of order 1 and one element of order 2 in both L0 and L2 plus one element of order
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3 in L0. Summing up all terms we get

I5(56L0 + 55L1) = 5258 and I5(56L0 + 55L2) = 5259.

Remark 7. Let E be a normal extension of Qp, m > n be natural mumbers, and �n

be a sequence in E such that Ip(nE) = Ip(�n). In [2] we showed that we can enlarge
�n to a sequence �m such that Ip(mE) = Ip(�m). This property is no longer true for
general indices of the type Ip(n1E1 + · · · + nmEm). In fact, set I5(55L1) = I5(�′′).
Following the algorithm described in [2], one can check that �′′ must contain exactly
44 elements of order zero, 9 elements of order 1 and 2 elements of order 2. It follows
that � /⊃ �′′, and therefore the sequence �∪� cannot be found by just enlarging �′′.
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