
Trust Evolution Policies for Security in

Collaborative Ad Hoc Applications

Elizabeth Gray, Christian Jensen1 ,2

Paul O’Connell, Stefan Weber, Jean-Marc Seigneur, Yong Chen

Department of Computer Science
Trinity College
Dublin, Ireland

Abstract

The vision of pervasive computing has introduced the notion of a vast, networked infrastructure of
heterogeneous entities interact through collaborative applications, e.g., playing a multi-player on-
line game on the way to work. This will require interactions between users who may be marginally
known or completely unknown to each other, or in situations where complete information is un-
available. This introduces the problem of assigning access rights to such marginally known or
unknown entities.
Explicit trust management has emerged as a solution to the problem of dealing with partial informa-
tion about other users and the context in which the interaction takes place. We have implemented
an access control mechanism based on the human notion of trust, where recommendations or initial
participation in low risk interactions will allow entities to slowly build trust in each other. As the
trust between two entities grows, interactions that entail a higher degree of risk may be allowed to
proceed. We have used this mechanism in a simple role-based access control mechanism that uses
trust to assign roles to users in a distributed blackjack card game application. This application
allows us to experiment with different policies for trust-based admission control and trust evolution.
In this paper we present an evaluation of policies specifying trust dynamics, which shows that our
prototype reacts appropriately to the behaviour of other users and that the system updates trust
values and implements admission policies in a manner similar to what would be expected from
human trust assessment. This indicates that trust evolution policies can replace explicit human
intervention in application scenarios that are similar to the evaluated prototype.

Keywords: Trust-based access control, trust dynamics, trust evolution.

1 Contact Email: grayl@cs.tcd.ie
2 Currently at: Informatics and Mathematical Modelling, Technical University of Denmark,
Copenhagen, Denmark. Email:Christian.Jensen@imm.dtu.dk

Electronic Notes in Theoretical Computer Science 157 (2006) 95–111

1571-0661 © 2006 Elsevier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.09.038
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82208023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

The value of the online game industry in Europe is predicted to rise from
around $800 million in 2002 to just bellow $7 billion in 2006 [11]. The combi-
nation of improved display technologies and short-range wireless technologies,
e.g., Bluetooth, being integrated into mobile phone handsets like the Nokia N-
Gage [8], means that multi-player online games will soon be available any-time
anywhere [23].

Difficulties arise when traditional security mechanisms are applied in a de-
centralised collaborative ad hoc environment, such as interactive online games,
in which entities may organise themselves into groups on a dynamic basis, re-
quiring each entity to determine its own levels of access control per application.
For example, suppose Alice takes the same commuter train every weekday
morning. To pass the time, she wishes to play an interactive game with other
train passengers. She joins an ad hoc wireless network to see what collabo-
rative gaming applications are available. She discovers an ongoing blackjack
session in which Bob is the dealer, and she requests admission to the game.
To Bob, Alice is an unknown entity, who may or may not be trusted to behave
correctly, i.e. pay her debts, if given access to his game. In the traditional
model, Bob would be able to contact a centralised administrator, who knows
about Alice, to determine if Alice should have access rights to participate in
the blackjack game, but this is generally not possible in dynamic open sys-
tems. Moreover, making the traditional model work in this scenario would
require that Alice and Bob shared a common authentication infrastructure,
which suffers from problems of scalability and availability (the technology has
existed for years, but no generally trusted authentication infrastructure has
emerged.)

The uncertainty about other players exhibited in the blackjack game is
not unlike situations faced by humans, who must regularly determine, with
no assistance from a centralised trusted third party, how to interact with
known and unknown people. Trust provides a mechanism for lowering access
barriers and enables complex transactions between groups. Humans use the
concept of trust to help decide the extent to which they cooperate with others
in situations, where complete information is unavailable.

Trust management systems [4,5,10,22] attempt to enforce security policies
in large-scale distributed networks through the use of credentials that delegate
permissions. However, these systems focus on the static element of trust
management and neglect the dynamic component of trust formation. That is,
what does trust really consist of and how does trust evolve?

It is therefore natural to examine the human notion of trust in order to

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–11196

derive computational trust models that correspond to human intuition, which
will allow ordinary human users to configure and manage systems based on
trust. However, human trust is a difficult concept to formalise and evaluate,
and many different definitions of trust [18,9,17,3,12,6,7,1,25,21] exist. More-
over, the problem of trust evolution, i.e., determining how the results of current
interactions will influence the future trust in the other party, has received little
attention and trust evolution algorithms are often proposed with little or no
formal justification [20,14].

In this paper, we describe a trust-based access control framework for ad-
hoc applications, which has been used to evaluate trust evolution strategies
according to the trust evolution framework proposed by Jonker and Treur [16].
We show that the results of applying automatic algorithms for trust evolution
are consistent with human intuition, i.e., the results are as expected. This
implies that automatic trust evolution may replace human intervention in the
configuration and evolution of security policies in open dynamic systems, such
as ubiquitous computing or the grid, which may play an important role in the
successful uptake of those technologies [26].

The structure of the paper is as follows. Section 2 identifies the framework
of human trust we use as a basis for trust evaluation. Section 3 specifies the
design of the trust evolution function implemented in the admission control
system component. This we use a simple distributed blackjack application
to illustrate the use of trust in admission control, discussed in Section 4. In
Section 5, we present the evaluation of the trust update process and discuss
the results of the sample application. Finally, Section 6 gives conclusions and
ideas for future work.

2 Framework for Trust

In order that unambiguous conversation may occur, a framework for evaluating
trust is needed. McKnight and Chervany [19] define such a framework, as
depicted in Figure 1.

Fig. 1. McKnight and Chervany’s Trust Framework

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 97

Here we see six integrated components, Situational Trust, Dispositional
Trust, Belief Formation Process, System Trust, Trusting Beliefs, and Decision
to Trust, feeding different aspects of trust into one actual outcome, Trusting
Behaviour.

Situational Trust means that a principal has formed an intention to trust
every time a particular situation arises, irrespective of his beliefs about the at-
tributes of the other party in the situation. Dispositional Trust incorporates
the subjective nature of trust, the extent to which a principal consistently
trusts across a broad spectrum of situations and parties. This value reflects
whether an individual is optimistic or pessimistic in their approach to new
situations. System Trust reflects that safeguards are in place to reduce the
amount of risk to which an entity must be exposed. The Belief Formation

Process is the process by which information and experience that have been
gathered from the environment are processed to form new trusting beliefs
about parties. Trusting Beliefs are the extent to which one principal believes
that another principal is willing and able to act in the trusting party’s best
interest. A Trusting Intention is formed when one principal makes a decision
to depend on another party in a given situation with a feeling of relative secu-
rity, even though negative consequences are possible. Trusting Behaviour is
the outcome of the above components, when one principal depends on another
party in a situation with a feeling of relative security, even though negative
consequences are possible.

Using this trust framework helps us clear conceptual confusion by rep-
resenting trust as a broad but coherent set of constructs which incorporate
the major definitions from research to date. Overall, the implementation of
such a framework will enable the use of trust-based tools such that principals
might avoid the problems associated with trust and collaboration in an ad hoc
environment.

Our goal is to develop a generalised trust definition in such a way that if
security system is asked, ‘Why do you trust this principal?’, it will be able to
return the parameters and contexts on which it has built its trust value for that
principal. Moreover, it will then be possible to formulate admission control
policies around these trust values. When we design our trust-based admission
control system, we do so based on this comprehensive human trust framework,
such that its implementation will show that unknown computational entities
can interact and exhibit trust formation.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–11198

3 Local Trust-Based Admission Control

This section presents the design of the Local Trust-Based Admission Control
(LTBAC) component that was used to evaluate the different trust evolution
strategies. 3

As previously mentioned, the current state-of-the-art in formalising the
trust evolution process is too imprecise to enable low-level access control
decision-making. Instead, we propose to use trust-based admission control
together with standard role-based access control, i.e., trust management is
used to decide what role another principal may assume, while traditional role-
based access control defines the access rights associated with that role.

Consider principal Pn requesting admission to collaborate in ad hoc group,
G, in a particular role. Pn will typically be interested in joining the role with
the most access rights. LTBAC is executed by each member of G, Pg, each time
a decision is required regarding Pn’s request for admission to the group. Each
Pg verifies whether or not Pn is trustworthy 4 enough to join G in the requested
role, according to his own local policy criteria, and then provides output to
the group. This way, we approximate McKnight and Chervany’s trust-based
decision-making framework as closely as possible, specifically including the
subjective and contextual elements of trust formation.

When the LTBAC component is invoked, Pn’s identifier and requested role
are passed into each Pg’s trust engine, which uses local trust-based policies to
determine whether or not Pn is trustworthy enough to join G. Pg provides an
output to G according to whether or not Pn meets Pg’s local policy criteria.

One of the design goals for the LTBAC component is to minimise the
amount of configuration that a user must perform. The LTBAC component
design therefore includes a number of support components to gather trust-
related information, manage policies, and produce trust values. Figure 2
presents an overview of the LTBAC component, illustrating which subcompo-
nents are generic and which are application-specific. The functionality of the
LTBAC subcomponents is described in Figure 3.

When Pn is requesting admission to G, his role and identifier are passed
into Pg’s LTBAC system, commencing the trust evaluation process.

The Trust System consists of generic trust-based functions, i.e. function-
ality that is application-independent. These include the Compliance Checker,

3 The design and implementation of the complete system and its components is described
in full in Gray et al [13].
4 In this paper, we use the terms trust and trustworthy in their human sense, i.e., an entity
is trusted (believed to be trustworthy) if we choose to trust it. This is different from the
traditional security literature, where an entity is “trusted” if it can hurt you and if there is
no way to mitigate that risk.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 99

Fig. 2. Local Trust-Based Admission Control (LTBAC)

Fig. 3. LTBAC Subcomponent Functionality

Dynamic Admission Control, and the Trust Management Result and Interac-
tion Stores.

The Trust Formation System component gathers information on interac-
tions between users and calculates trust values based on those application-
specific interactions. This component is supported by information processed
by the Interaction Monitor and the Trust Value Calculator.

As highlighted in Figure 3, the Trust Value Calculator processes the results

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111100

of the current interaction to adjust T (Pg)(Pn), the trust that Pg has in Pn.
The trust value that a future interaction will depend on is derived from the
transaction history H(Pg)(Pn) and the outcome of the current interaction that
has been evaluated according to the principal-specified trust evolution policy,
σ(Pg). This calculation is described by Equation 1.

T (Pg)(Pn) = H(Pg)(Pn) + σ(Pg)(1)

If Pg has had previous interactions with Pn, the historical trust H(Pg)(Pn),
i.e. the trust T (Pg) has accrued in Pn to-date, can be accessed from the
Trust Management Result Store 5 . The Trust Value Calculator increases or
decreases H(Pg)(Pn) using a trust evolution policy, σ(Pg). The resulting,
updated trust value, T (Pg)(Pn), is expressed as a value in the interval [0,1],
where the higher T (Pg)(Pn) is, the more likely it is that the interaction with Pn

will have a positive outcome. T (Pg)(Pn) becomes asymptotic as it approaches
one or zero, reflecting that a principal can never be completely trusted or
distrusted.

If Pg has had no previous interactions with Pn, there needs to be a way
of establishing an initial trust level. Referring back to the human notion of
trust, this can be done by relying on disposition, that is, the trusting nature of
Pg.

6 In our design, Pg may be initially very trusting (allowing all interaction),
moderately trusting (allowing some interaction), or very distrusting (allowing
no interaction) upon initial interaction with an unknown Pn.

σ(Pg), which is used to determine how much to increase or decrease
H(Pg)(Pn), is defined by a context-specific trust update function, ftrust. ftrust

is designed such that trust may evolve according to dispositional and situa-
tional evaluation of interaction results. The results of the current interaction
are passed in and evaluated to produce σ(Pg). The trust evolution policy de-
pends on both the context-specific interaction information and the disposition
of Pg.

To update H(Pg)(Pn) based on results from the current interaction, Pg con-
sults ftrust, which is specified by policy such that trust may evolve according
to dispositional and situational evaluation of interaction results. The disposi-
tional trust schema we incorporate into the trust evolution function design is
based on the framework proposed by Jonker and Treur [16], which defines a

5 When stored, trust results are broken down into four pieces of information: Context, the
name of the application to which the result applies; Identifier, the name of the principal to
which the trust value relates, e.g. P538; Trust Value; and Date on which the trust value
was calculated. It is important to note that identity is not necessarily based on real-world
identity, but is assessed based on the recognition of entities, as per the Entity Recognition
process described in [24]
6 Another bootstrapping possibility is for Pg to request recommendations as to the trust-
worthiness of Pn.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 101

set of six different trust evolution policies: blindly positive, Pg increases trust
in Pn unconditionally; blindly negative, Pg decreases trust in Pn uncondition-
ally; slow positive, fast negative, Pg is slow to increase trust in Pn and fast to
decrease trust; fast positive, slow negative: Pg is fast to increase trust in Pg

and slow to decrease trust; balanced slow: Pg is slow in both increasing and
decreasing trust in Pn; balanced fast: Pg is fast in both increasing and decreas-
ing trust in Pn. This defines a generic framework that can be used to define
many trust evolution policies, e.g., the Tit-for-Tat [2] strategy, well-known in
cooperation evolution studies, can be defined as a balanced fast trust evolu-
tion policy. The integration of this generic trust evolution framework into our
prototype, allows us to perform a methodical evaluation of the different trust
evolution policies.

4 Sample Application

We implemented the blackjack card game as a sample application for evaluat-
ing trust update policies and trust-based admission control in ad hoc collab-
orative environments. In blackjack, there are two distinct roles: dealer and
player. The role a principal has in the game has a major impact on the will-
ingness of others to join the game. Because in blackjack, the dealer’s odds of
winning are more favorable than the odds of the player, the principal holding
the dealer role must be considered trustworthy by other players. Looking at
this from another angle, the right to assume the advantageous dealer role can
be seen as a privilege earned through fair, trustworthy playing of the game.

A satisfactory trust value is one that is updated to a level that will be
successful in gaining admission to a game when compared to other users’
admission policies. The perceived benefit of maintaining a satisfactory trust
value in the blackjack application is the ability to continue gaining admission
to desirable blackjack “tables.” We associate no specific semantics with trust
values, they simply allow principals to be compared to each other and to
define local admission control policies. 7 However, we generally expect higher
trust values to reflect a higher probability that the other party will behave in a
competent and benevolent way, which in blackjack includes repaying gambling
debts and regularly being available for games.

For boot-strapping purposes, an unknown Pn is assigned an initial trust
value, which allows a first interaction with even the most distrusting players.
In this implementation, all players are required to connect directly to the user
who has the dealer role.

7 This means that trust values cannot be exchanged directly among principals in the system.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111102

During the game, each Pg monitors the actions of the other group members
such that the resultant interaction behaviour data might be used to update
trust values accordingly. Some actions that would be typically monitored
in casinos include: time, number of interactions, payment record, location,
playing strategy, betting strategy, win rate, usual co-players, and level of
addiction. In our prototype application, date, number of interactions, and
payment record are monitored by the Interaction Monitor and stored in the
Interaction Store.

The Trust Value Calculator may then use these partial results to update
an overall trust value of any Pn, using Equation 1 above. To determine the
trust dynamic, σ(Pg), the Trust Value Calculator consults the trust update
function ftrust. In this example, ftrust is calculated based on the product of the
three aforementioned context-specific parameters: the number of interactions
(Ts), the number of days since the last interaction (Tt), and the payment
record (Td). Each parameter expresses the trustworthiness for that particular
type of behaviour. When combined to a trust value based on all monitored
behaviours, Tstd, Ts and Tt each contribute 25% to the result and Td, the
partial result dealing with debt repayment, contributes 50%.

The resultant trust value, Tstd, is evaluated in light of historical trust,
H(Pg)(Pn), to produce σ, which specifies how much or how little the Trust
Value Calculator should adjust the overall trust value. ftrust increments are
currently specified for the blackjack context as shown in Table 1. 8

Blind Fast Positive, Balanced Balanced Slow Positive, Blind

Positive Slow Negative Fast Slow Fast Negative Negative

Tstd > H(Pg)(Pn) Δ Δ Δ δ δ −Δ

Tstd < H(Pg)(Pn) Δ −δ −Δ −δ −Δ −Δ

Tstd = H(Pg)(Pn) Δ 0 0 0 0 −Δ

Table 1
Trust Dynamic, σ

The Admission Policy Result stores Pg’s admission control policies, whch
for the purpose of this evaluation are: Blind Trust, High Trust, Medium High
Trust, Medium Low Trust, Low Trust, or Blind Distrust. These six policies are
based on criteria associated with a range of trust levels, depending on whether
Pg is of a disposition to be highly trusting, moderate, or highly distrusting in
the context of blackjack.

The Trust Management Result stores blackjack-specific trust values for
principals. The Interaction Result stores the monitored results to keep a
record of how many sessions have been played, the date of the last interaction,

8 Δ = large increment. δ = small increment

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 103

and the amount of debt owing. Finally, the Trust Dynamic Result allows Pg

to tailor the trust update function according to a selection between the six
trust dynamics specified above.

5 Evaluation

Our assessment of this system is performed through a controlled sequence of
interactions in a blackjack game, wherein we evaluate both LTBAC and ftrust

policies, as specified above.

5.1 Test Parameters

In order to evaluate trust evolution policies, we need to consider how each
policy reacts to different types of behaviour by other players and, ultimately,
whether the decisions by the trust-based admission control mechanism corre-
sponds to the decisions achieved through human intervention. 9

In each collaborative group, or gaming table, there are two potential roles,
one dealer and one player. The principal in the role of dealer, Pd, interacts
with the principal in the role of player, Pp, for 100 blackjack games. In our
evaluation, Pp loses every game, which allows us to focus on the effects of
the two primary parameters: frequency of interaction and payment of debts.
Initially, unknown Pp is permitted access to a first interaction with an initial
trust value of .50.

Each principal is evaluated with a LTBAC policy of Blind Trust, High
Trust, Medium High Trust, Medium Low Trust, Low Trust, or Blind Distrust;
Figure 4 shows the values currently specified by these six policies. Moreover,
each principal is evaluated with a trust evolution policy, ftrust, from Blind
Positive, Fast Positive Slow Negative, Balanced Fast, Balanced Slow, Slow
Positive Fast Negative, and Blind Negative. Δ is specified as .05, and δ is
.005.

We evaluate trust evolution and admission control over 100 interactions
and in three debt repayment cases. The debt repayment strategies are based
on concepts from Axelrod’s [2] cooperation studies. Having lost a game, a
principal will Always Pay (AP), Never Pay (NP), or Randomly Pay (RP). The
randomness of payment/non-payment for the RP case was generated with a
random numbers generator [15].

As each game is played, we record T (Pd)(Pp) based on the three param-
eters specified earlier: number of interactions, number of days since the last
interaction, and payment record. All games are played on the same day, so as

9 This may be considered a simple example of a Turing test.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111104

Admission Policy Context Applies To Condition Trust Value for Role

Blind Trust Blackjack * .01 dealer

.01 player

High Trust Blackjack * .25 dealer

.10 player

Medium High Trust Blackjack * .50 dealer

.25 player

Medium Low Trust Blackjack * .75 dealer

.50 player

Low Trust Blackjack * .90 dealer

.75 player

Blind Distrust Blackjack * .99 dealer

.99 player

Fig. 4. LTBAC Policy Criteria for Blackjack

to better isolate the monitored effect of number of interactions and payment
record, i.e., the parameter Tt is fixed within this experiment.

We define correct behaviour on the part of Pp as consistent interaction and
payment in full of debts. Correct system behaviour refers to the ability of
the LTBAC system to form and evolve trust, as well as accept and reject
admission requests, in a manner corresponding to human intuition, i.e. such
that a human user would feel safe in delegating these actions to the system.

5.2 Results and Analysis

The following figures show how T (Pd)(Pp) increases and decreases over a series
of interactions. For each of these cases, we discuss the trust evolution as well
as the usefulness of the LTBAC policies specified in Figure 4.

Blind Positive & Blind Negative Trust Dynamics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of Interactions

T
ru

s
t

V
a
lu

e

Blind Positive (AP, RP, NP)

Blind Negative (AP, RP, NP)

Fig. 5. Trust Value Evolution Using Blind Positive or Blind Negative Trust Dynamic

First, we treat the Blind Trust and Blind Distrust dynamics as a special
case. We see in Figure 5 that, regardless of number of interactions or whether

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 105

or not debt was paid, a blindly trusting Pd evolves trust increasingly by 5%
per interaction to the upper limit, and Pd who is blindly distrusting does the
opposite. These two trust evolution dynamics are unique in that T (Pd)(Pp)
reaches and rests at the limits. Moreover, the recorded trust levels successfully
emulate the very gullible and very cynical extremes of human behaviour.

The LTBAC policies work appropriately in both the Blind Trust and Blind
Distrust cases. If Pd implements the Blind Trust admission policy, he al-
lows access to all roles once T (Pd)(Pp) ≥ .01. Therefore, Pd might imple-
ment a Blind Trust evolution policy with any other admission policy, even
that of Blind Distrust, resulting in all Pp gaining admission to all roles with
T (Pd)(Pp) = 1.0. Fittingly, Pd implementing a Blind Distrust evolution policy
with a Blind Distrust admission policy allows no further interaction at all.

Fast Positive Slow Negative Trust Dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of Interactions

T
ru

s
t

V
a
lu

e

AP

RP

NP

Fig. 6. Trust Value Evolution Using Fast Positive Slow Negative Trust Dynamic

Slow Positive Fast Negative Trust Dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of Interactions

T
ru

s
t

V
a

lu
e

AP

RP

NP

Fig. 7. Trust Value Evolution Using Slow Positive Fast Negative Trust Dynamic

In Figure 6, we see that T (Pd)(Pp) advances rapidly when Pp always ex-
hibits correct behaviour and declines slowly when incorrect behaviour con-
sistently occurs. When cumulative debt is paid in full on some occasions
but not others, T (Pd)(Pp) rises rapidly with payment and drops slowly with

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111106

non-payment. Because Pd is dispositionally positive in his trusting of Pp, ran-
dom non-payment does not keep T (Pd)(Pp) from rising to the upper limit and
fluctuating around that limit.

The opposite is true in trust evolution using the Slow Positive Fast Nega-
tive Trust Dynamic, displayed in Figure 7. In this case, T (Pd)(Pp) advances
slowly when Pp always exhibits correct behaviour and declines rapidly when
incorrect behaviour consistently occurs. Thus, when cumulative debt is paid
at random, T (Pd)(Pp) falls sharply with incorrect behaviour and rises slowly
with correct behaviour. Because Pd is dispositionally negative in his trusting
of Pp, random payment is not enough for T (Pd)(Pp) to rise out of a rapid
decline to the lower bound.

Balanced Fast Trust Dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of Interactions

T
ru

s
t

V
a
lu

e

AP

RP

NP

Fig. 8. Trust Value Evolution Using Balanced Fast Trust Dynamic

Balanced Slow Trust Dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of Interactions

T
ru

s
t

V
a
lu

e

AP

RP

NP

Fig. 9. Trust Value Evolution Using Balanced Slow Trust Dynamic

In the case of Balanced Fast trust evolution, Figure 8, and Balanced Slow
trust evolution, 9, we find that trust evolves the most naturally of all cases.
In the Balanced Fast case, T (Pd)(Pp) advances rapidly in face of correct be-
haviour and declines equally rapidly when debt is not paid. When cumulative
debt is paid at random, T (Pd)(Pp) rises and falls sharply according to which

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 107

type of behaviour is displayed. Over time, however, T (Pd)(Pp) evolves rapidly
downward as incorrect behaviour is continuously intermittently displayed. The
same results occur in the Balanced Slow case, only much more gradually, with
no sharp increases or decreases. Because Pp is rewarded only slightly for good
behaviour and punished only slightly for bad behaviour, T (Pd)(Pp) hovers
around the moderate range until over time it commences a very slow decline
as incorrect behaviour is continuously intermittently displayed. Overall, the
Balanced Slow dynamic shows the smoothest trust evolution, due to the dis-
positional lack of large jumps in response to behaviour that the other trust
dynamics specify.

In Figures 6 to 9, we begin to see increases and decreases in trust in a col-
laborative ad hoc application environment that follow closely the way human
trust rises and falls based on disposition, interactions, and resultant behaviour.
When interactions increase, trust grows steadily, unless the interactions be-
come increasingly tainted by incorrect behaviour, i.e. not paying one’s debts.
Trust evolution in these four cases varies dispositionally appropriately accord-
ing to the selected trust dynamic.

We find overall that the LTBAC policies are appropriate in all evolution
cases, allowing and rejecting admission based on trust values that are more or
less sharply evolving per dynamic. Additionally, each admission policy follows
closely to the human decision-making process as to whether or not another
entity is trustworthy enough to participate in a future interaction in a given
context. Some policies, like some humans, are more restrictive in allowing
interaction than others. With correct behaviour, T (Pd)(Pp) rises, and Pp may
be admitted to games in which Pd has a more restrictive admission policy. As
incorrect behaviour increases, more restrictive admission policies ensure that
admission requests are rejected.

Analysis of the LTBAC system illustrates that trust may be formed and
evolved automatically by principals in a collaborative ad hoc application in a
manner very similar to human trust. Additionally, we find that the LTBAC
system behaves correctly in permitting or denying access to resources using
a range of human-like restrictions, i.e. by adjusting trust value and imple-
menting LTBAC policies. The system and policies match very closely with
the human trust model, although we believe more complexity must be added.

6 Conclusions and Future Work

We identified that principals wishing to join ad hoc collaborative applications
currently have no way of directly establishing trust in one another. There is
a reliance on perceived trust or recommendations, which is too vague when

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111108

security issues are being considered. Thus, we suggested that a trust-based
admission control system, using high-level trust-based security policies, be im-
plemented to provide a solution to the problem of establishing and evolving
trust in open distributed systems. The success of a trust-based security mech-
anisms depends on its ability to automatically make decisions that correspond
to human what a human would have done in the same situation, i.e. ordinary
people should be able to configure and operate the system so that decisions
made automatically by the system corresponds to the decisions they would
have made themselves,

Having adopted the McKnight and Chervany human trust framework as
the basis for our trust definitions, we then designed and developed a proto-
type application and trust-based admission control system for the purposes of
testing trust-based admission control.

We have shown that a policy-based approach, allows us to specify high-
level trust-based trust evolution and admission control policies that are simple
to use and have predictable results. Based on our experiments, we see that
the trust-based admission control system reacts correctly to changes in a prin-
cipal’s behaviour, i.e. evolves trust values and implements admission control
policies in a manner similar to that of humans. In particular, we used an ex-
isting trust evolution framework to show that automatic trust evolution does
indeed deliver results that correspond to the human intuitions about trust.
This means that simple dispositional policies and automatic trust evolution
may provide an answer to the problem of developping “calm” security tech-
nologies that do not require constant human intervention.

Finally, we foresee many promising future developments of this work. First
of all, we wish to experiment with large scale deployment of this technology,
e.g., through the use of Bluetooth enabled PDAs or mobile phones. The
parameters considered for trust evolution in this paper are very important,
but they are also very simple. Therefore we wish to examine more complex
trust evolution strategies, e.g. a strategy that attempts to determine the
other player’s strategy and rates the consistency with which that strategy is
followed. Finally, future work in the area of group behaviour, i.e., extending
trust evolution dynamics to situations in which more than two principals are
interacting, is of interest.

Acknowledgements

The authors wish to acknowledge the support provided by the SECURE
project (IST-2001-32486), a part of the EU FET Global Computing initia-
tive.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 109

References

[1] Abdul-Rahman, A. and S. Hailes, Supporting trust in virtual communities, in: Proceedings
Hawaii International Conference on System Sciences (HICSS-33), Maui, Hawaii, U.S.A., 2000.

[2] Axelrod, R., “The Evolution of Cooperation,” Basic Books, New York, 1984.

[3] Barber, B., “Logic and Limits of Trust,” Rutgers University Press, New Jersey, 1983.

[4] Blaze, M., J. Feigenbaum, J. Ioannidis and A. Keromytis, The KeyNote Trust-management
System, version 2, RFC 2704, IETF (1999).

[5] Blaze, M., J. Feigenbaum and J. Lacy, Decentralized Trust Management, in: IEEE Symposium
on Security and Privacy, 1996, pp. 164–173.

[6] Christianson, B. and W. Harbison, Why Isn’t Trust Transitive?, in: Security Protocols
Workshop, 1996, pp. 171–176.

[7] Dasgupta, P., “Trust as a Commodity,” 2000 .

[8] Deck, N. N.-G. G.,
Tech spex, Technical report, http://www.n-gage.com/en-R1/gamedeckngage qd/, visited 20
August, 2005.

[9] Deutsch, M., Cooperation and Trust: Some Theoretical Notes, in: M. Jones, editor, Nebraska
Symposium on Motivation (1962).

[10] Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen, SPKI Certificate
Theory, RFC 2693, IETF (1999).

[11] Frost & Sullivan, European mobile gaming market, Market Research Report, R1-2527 (2003).

[12] Gambetta, D., “Can We Trust Trust?” Dept. of Sociology, University of Oxford, 2000 pp.
213–237.

[13] Gray, E., P. O’Connell, C. Jensen, S. Weber, J.-M. Seigneur and C. Yong, Towards a Framework
for Assessing Trust-Based Admission Control in Collaborative Ad Hoc Applications, Technical
Report 66, Dept. of Computer Science, Trinity College Dublin (2002).

[14] Griffiths, N. and K.-M. Chao, Experience-based trust: Enabling effective resource selection in a
grid environment, in: Proceedings of the Third International Conference on Trust Management,
Paris, France, 2005.

[15] Haahr, M., random.org, http://www.random.org, visited 22 Augist 2005.

[16] Jonker, C. M. and J. Treur, Formal analysis of models for the dynamics of trust based
on experiences, in: F. J. Garijo and M. Boman, editors, Multi-Agent System Engineering
(MAAMAW-99), Proceedings of the 9th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World 1647 (1999), pp. 221–231.

[17] Luhman, N., “Trust and Power,” Wiley, 1979.

[18] Marsh, S., “Formalising Trust as a Computational Concept,” Ph.D. thesis, University of
Stirling, Department of Computer Science and Mathematics (1994).

[19] McKnight, D. and N. Chervany, The Meanings of Trust, MISRC 96-04, University of Minnesota,
Management Informations Systems Research Center, University of Minnesota (1996).

[20] Michalakopoulos, M. and M. Fasli, On deciding to trust, in: Proceedings of the Third
International Conference on Trust Management, Paris, France, 2005, pp. 61–76.

[21] Nielsen, M. and K. Krukow, On the formal modelling of trust in reputation-based systems, in:
G. P. J. Karhumki, H. Maurer and G. Rozenberg, editors, Theory is Forever: Essays Dedicated
to Arto Salomaa, number 3113 in Lecture Notes in Computer Science, Springer Verlag, 2004
pp. 192–204.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111110

http://www.n-gage.com/en-R1/gamedeckngage_qd/
http://www.random.org

[22] Rivest, R. and B. Lampson, SDSI - A SimpleDistributed Security Infrastructure, Presented at
CRYPTO’96 Rumpsession (1996).

[23] Saltzman, M., Bluetooth on the go, N-Gage website (2004),
http://www.n-gage.com/R1/en/newsevents/articles/newsevents article 020204.htm,
visited 19 August, 2005.

[24] Seigneur, J.-M., S. Farrell, C. Jensen, E. Gray and Y. Chen, End-to-end trust in pervasive
computing starts with recognition, in: Proceedings of the First International Conference on
Security in Pervasive Computing, Boppard, Germany, 2003.

[25] Weeks, S., Understanding trust management systems, in: Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, California, U.S.A., 2001, pp. 94–105.

[26] Weiser, M. and J. S. Brown, Designing
calm technology (1995), http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm,
visited 20 August 2005.

E. Gray et al. / Electronic Notes in Theoretical Computer Science 157 (2006) 95–111 111

http://www.n-gage.com/R1/en/newsevents/articles/newsevents_article_020204.htm
http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm

	Introduction
	Framework for Trust
	Local Trust-Based Admission Control
	Sample Application
	Evaluation
	Test Parameters
	Results and Analysis

	Conclusions and Future Work
	References

