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Abstract

Some reverses for the generalised triangle inequality in complex inner product spaces
are given. They improve the classical Diaz–Metcalf inequalities. They are applied to obtain
inequalities for complex numbers.
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1. Introduction

The following reverse of the generalised triangle inequality

cos θ

n∑
k=1

|zk| �
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣ (1.1)

provided the complex numbers zk, k ∈ {1, . . . , n} satisfy the assumption

a − θ � arg(zk) � a + θ, for any k ∈ {1, . . . , n}, (1.2)
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where a ∈ R and θ ∈ (0, π
2

)
was first discovered by Petrovich in 1917, [5] (see

[4, p. 492]) and subsequently was rediscovered by other authors, including Karamata
[2, p. 300–301], Wilf [6], and in an equivalent form by Marden [3].

The first to consider the problem of obtaining reverses for the triangle inequality
in the more general case of Hilbert and Banach spaces were Diaz and Metcalf [1]
who showed that in an inner product space H over the real or complex number field,
the following reverse of the triangle inequality holds

r

n∑
k=1

‖xk‖ �
∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥ (1.3)

provided

0 � r‖xk‖ � Re〈xk, a〉 for k ∈ {1, . . . , n},
where a ∈ H is a unit vector, i.e. ‖a‖ = 1.

The case of equality holds in (1.3) if and only if
n∑

k=1

xk = r

(
n∑

k=1

‖xk‖
)

a. (1.4)

The main purpose of this paper is to investigate the same problem of reversing the
generalised triangle inequality in complex inner product spaces under additional
assumptions for the imaginary part Im〈xk, a〉. A refinement of the Diaz–Metcalf
result is obtained. Applications for complex numbers are pointed out.

2. Main results

In [1], the authors have proved the following reverse of the generalised triangle
inequality in terms of orthonormal vectors.

Theorem 1. Let e1, . . . , em be orthonormal vectors in (H ; 〈·, ·〉), i.e., we recall
that 〈ei, ej 〉 = 0 if i /= j and ‖ei‖ = 1, i, j ∈ {1, . . . , m}. Suppose that the vectors
x1, . . . , xn ∈ H satisfy

0 � rk‖xj‖ � Re〈xj , ek〉, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (2.1)

where rk � 0 for k ∈ {1, . . . , m}. Then(
m∑

k=1

r2
k

) 1
2 n∑

j=1

‖xj‖ �

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ , (2.2)

where equality holds if and only if

n∑
j=1

xj =

 n∑

j=1

‖xj‖

 m∑

k=1

rkek. (2.3)
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If the space (H ; 〈·, ·〉) is complex and more information is available for the imaginary
part, then the following result may be stated as well.

Theorem 2. Let e1, . . . , em ∈ H be an orthonormal family of vectors in the complex
inner product space H. If the vectors x1, . . . , xn ∈ H satisfy the conditions

0 � rk‖xj‖ � Re〈xj , ek〉, 0 � ρk‖xj‖ � Im〈xj , ek〉 (2.4)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, where rk, ρk � 0 for k ∈ {1, . . . , m},
then we have the following reverse of the generalised triangle inequality:[

m∑
k=1

(
r2
k + ρ2

k

)] 1
2 n∑

j=1

‖xj‖ �

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ . (2.5)

The equality holds in (2.5) if and only if

n∑
j=1

xj =

 n∑

j=1

‖xj‖

 m∑

k=1

(rk + iρk)ek. (2.6)

Proof. Before we prove the theorem, let us recall that, if x ∈ H and e1, . . . , em are
orthogonal vectors, then the following identity holds true:∥∥∥∥∥x −

m∑
k=1

〈x, ek〉ek

∥∥∥∥∥
2

= ‖x‖2 −
m∑

k=1

|〈x, ek〉|2 . (2.7)

As a consequence of this identity, we note the Bessel inequality
m∑

k=1

|〈x, ek〉|2 � ‖x‖2, x ∈ H. (2.8)

The case of equality holds in (2.8) if and only if (see (2.7))

x =
m∑

k=1

〈x, ek〉ek. (2.9)

Applying Bessel’s inequality for x =∑n
j=1 xj , we have∥∥∥∥∥∥

n∑
j=1

xj

∥∥∥∥∥∥
2

�
m∑

k=1

∣∣∣∣∣∣
〈

n∑
j=1

xj , ek

〉∣∣∣∣∣∣
2

=
m∑

k=1

∣∣∣∣∣∣
n∑

j=1

〈xj , ek〉
∣∣∣∣∣∣
2

=
m∑

k=1

∣∣∣∣∣∣

 n∑

j=1

Re
〈
xj , ek

〉+ i


 n∑

j=1

Im〈xj , ek〉


∣∣∣∣∣∣
2

=
m∑

k=1




 n∑

j=1

Re〈xj , ek〉



2

+

 n∑

j=1

Im〈xj , ek〉



2

 . (2.10)
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Now, by the hypothesis (2.4) we have
 n∑

j=1

Re〈xj , ek〉



2

� r2
k


 n∑

j=1

‖xj‖



2

(2.11)

and 
 n∑

j=1

Im〈xj , ek〉



2

� ρ2
k


 n∑

j=1

‖xj‖



2

. (2.12)

Further, on making use of (2.10)–(2.12), we deduce∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
2

�
m∑

k=1


r2

k


 n∑

j=1

‖xj‖



2

+ ρ2
k


 n∑

j=1

‖xj‖



2



=

 n∑

j=1

‖xj‖



2
m∑

k=1

(
r2
k + ρ2

k

)
,

which is clearly equivalent to (2.5).
Now, if (2.6) holds, then the case of equality holds in (2.5).
Conversely, if the equality holds in (2.5), then it must hold in all the inequalities

used to prove (2.5) and therefore we must have∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
2

=
m∑

k=1

∣∣∣∣∣∣
n∑

j=1

〈
xj , ek

〉∣∣∣∣∣∣
2

(2.13)

and

rk‖xj‖ = Re〈xj , ek〉, ρk‖xj‖ = Im〈xj , ek〉 (2.14)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}.
Using the identity (2.7), we deduce from (2.13) that

n∑
j=1

xj =
m∑

k=1

〈
n∑

j=1

xj , ek

〉
ek. (2.15)

Multiplying the second equality in (2.14) with the imaginary unit i and summing the
equality over j from 1 to n, we deduce

(rk + iρk)

n∑
j=1

‖xj‖ =
〈

n∑
j=1

xj , ek

〉
(2.16)

for each k ∈ {1, . . . , n}.
Finally, utilising (2.15) and (2.16), we deduce (2.6) and the theorem is proved. �
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The case of a unit vector, which improves the Diaz–Metcalf inequality (1.3) is
useful for applications (see Propositions 1 and 2). It will be stated as a separate
theorem for which some corollaries are also provided.

Theorem 3. Let (H ; 〈·, ·〉) be a complex inner product space. Suppose that the vec-
tors xk ∈ H, k ∈ {1, . . . , n} satisfy the condition

0 � r1‖xk‖ � Re〈xk, e〉, 0 � r2‖xk‖ � Im〈xk, e〉 (2.17)

for each k ∈ {1, . . . , n}, where e ∈ H is such that ‖e‖ = 1 and r1, r2 � 0. Then we
have the inequality√

r2
1 + r2

2

n∑
k=1

‖xk‖ �
∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥ , (2.18)

where equality holds if and only if

n∑
k=1

xk = (r1 + ir2)

(
n∑

k=1

‖xk‖
)

e. (2.19)

The following corollaries of Theorem 3 are of interest for applications.

Corollary 1. Let e a unit vector in the complex inner product space (H ; 〈·, ·〉) and
ρ1, ρ2 ∈ (0, 1). If xk ∈ H, k ∈ {1, . . . , n} are such that

‖xk − e‖ � ρ1, ‖xk − ie‖ � ρ2 for each k ∈ {1, . . . , n}, (2.20)

then we have the inequality√
2 − ρ2

1 − ρ2
2

n∑
k=1

‖xk‖ �
∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥ , (2.21)

with equality if and only if

n∑
k=1

xk =
(√

1 − ρ2
1 + i

√
1 − ρ2

2

)( n∑
k=1

‖xk‖
)

e. (2.22)

Proof. From the first inequality in (2.20) we deduce, by taking the square, that

‖xk‖2 + 1 − ρ2
1 � 2Re〈xk, e〉,

implying

‖xk‖2√
1 − ρ2

1

+
√

1 − ρ2
1 � 2Re〈xk, e〉√

1 − ρ2
1

(2.23)

for each k ∈ {1, . . . , n}.
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Since, obviously

2‖xk‖ � ‖xk‖2√
1 − ρ2

1

+
√

1 − ρ2
1 , k ∈ {1, . . . , n}, (2.24)

hence, by (2.23) and (2.24),

0 �
√

1 − ρ2
1‖xk‖ � Re〈xk, e〉 (2.25)

for each k ∈ {1, . . . , n}.
From the second inequality in (2.20) we deduce

0 �
√

1 − ρ2
2‖xk‖ � Re〈xk, ie〉

for each k ∈ {1, . . . , n}.
Since

Re〈xk, ie〉 = Im〈xk, e〉,
hence

0 �
√

1 − ρ2
2‖xk‖ � Im〈xk, e〉 (2.26)

for each k ∈ {1, . . . , n}.
Now, observe from (2.25) and (2.26), that the condition (2.17) of Theorem 3 is sat-

isfied for r1 =
√

1 − ρ2
1 , r2 =

√
1−ρ2

2 ∈ (0, 1), and thus the corollary is proved. �

Corollary 2. Let e be a unit vector in the complex inner product space (H ; 〈·, ·〉)
and M1 � m1 > 0, M2 � m2 > 0. If xk ∈ H, k ∈ {1, . . . , n} are such that either

Re 〈M1e − xk, xk − m1e〉 � 0, Re 〈M2ie − xk, xk − m2ie〉 � 0 (2.27)

or, equivalently,∥∥∥∥xk − M1 + m1

2
e

∥∥∥∥ � 1

2
(M1 − m1),

(2.28)∥∥∥∥xk − M2 + m2

2
ie

∥∥∥∥ � 1

2
(M2 − m2)

for each k ∈ {1, . . . , n}, then we have the inequality

2

[
m1M1

(M1 + m1)2
+ m2M2

(M2 + m2)2

]1/2 n∑
k=1

‖xk‖ �
∥∥∥∥∥

n∑
k=1

xk

∥∥∥∥∥ . (2.29)

The equality holds in (2.29) if and only if
n∑

k=1

xk = 2

( √
m1M1

M1 + m1
+ i

√
m2M2

M2 + m2

)( n∑
k=1

‖xk‖
)

e. (2.30)
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Proof. Firstly, remark that, for x, z, Z ∈ H , the following statements are equivalent:

(i) Re〈Z − x, x − z〉 � 0 and

(ii)
∥∥x − Z+z

2

∥∥ � 1
2‖Z − z‖.

Using this fact, we may simply realize that (2.27) and (2.29) are equivalent.
Now, from the first inequality in (2.27), we get

‖xk‖2 + m1M1 � (M1 + m1)Re〈xk, e〉
implying

‖xk‖2

√
m1M1

+√m1M1 � M1 + m1√
m1M1

Re〈xk, e〉 (2.31)

for each k ∈ {1, . . . , n}.
Since, obviously

2‖xk‖ � ‖xk‖2

√
m1M1

+√m1M1, (2.32)

hence, by (2.31) and (2.32)

0 � 2
√

m1M1

M1 + m1
‖xk‖ � Re〈xk, e〉 (2.33)

for each k ∈ {1, . . . , n}.
Now, the proof follows the same path as the one of Corollary 1 and we omit the

details. �

Finally, the following corollaries of the Theorem 2 may be stated as well.

Corollary 3. Let e1, . . . , em be orthonormal vectors in the complex inner product
space (H ; 〈·, ·〉) and ρk, ηk ∈ (0, 1), k ∈ {1, . . . , n}. If x1, . . . , xn ∈ H are such that∥∥xj − ek

∥∥ � ρk,
∥∥xj − iek

∥∥ � ηk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, then we have the inequality[
m∑

k=1

(
2 − ρ2

k − η2
k

)] 1
2 n∑

j=1

‖xj‖ �

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ . (2.34)

The case of equality holds in (2.34) if and only if

n∑
j=1

xj =

 n∑

j=1

‖xj‖

 m∑

k=1

(√
1 − ρ2

k + i
√

1 − η2
k

)
ek. (2.35)
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The proof employs Theorem 2 and is similar to the one from Corollary 1. We omit
the details.

Corollary 4. Let e1, . . . , em be as in Corollary 3 and Mk � mk > 0, Nk � nk > 0,

k ∈ {1, . . . , m}. If x1, . . . , xn ∈ H are such that either

Re
〈
Mkek − xj , xj − mkek

〉
� 0, Re

〈
Nkiek − xj , xj − nkiek

〉
� 0

or, equivalently,∥∥∥∥xj − Mk + mk

2
ek

∥∥∥∥ � 1

2
(Mk − mk),∥∥∥∥xj − Nk + nk

2
iek

∥∥∥∥ � 1

2
(Nk − nk)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, then we have the inequality

2

{
m∑

k=1

[
mkMk

(Mk + mk)2
+ nkNk

(Nk + nk)2

]} 1
2 n∑

j=1

‖xj‖ �

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ . (2.36)

The case of equality holds in (2.36) if and only if

n∑
j=1

xj = 2


 n∑

j=1

‖xj‖

 m∑

k=1

( √
mkMk

Mk + mk

+ i

√
nkNk

Nk + nk

)
ek. (2.37)

The proof employs Theorem 2 and is similar to the one in Corollary 2. We omit
the details.

3. Applications for complex numbers

The following reverse of the generalised triangle inequality with a clear geometric
meaning may be stated.

Proposition 1. Let z1, . . . , zn be complex numbers with the property that

0 < ϕ1 � arg(zk) � ϕ2 <
π

2
(3.1)

for each k ∈ {1, . . . , n}. Then we have the inequality√
sin2 ϕ1 + cos2 ϕ2

n∑
k=1

|zk| �
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣ . (3.2)

The equality holds in (3.2) if and only if
n∑

k=1

zk = (cos ϕ2 + i sin ϕ1)

n∑
k=1

|zk|. (3.3)
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Proof. Let zk = ak + ibk . We may assume that bk � 0, ak > 0, k ∈ {1, . . . , n},
since, by (3.1), bk

ak
= tan[arg(zk)] ∈ [0, ∞), k ∈ {1, . . . , n}. By (3.1), we obviously

have

0 � tan2 ϕ1 �
b2
k

a2
k

� tan2 ϕ2, k ∈ {1, . . . , n}

from where we get

b2
k + a2

k

a2
k

� 1

cos2 ϕ2
, k ∈ {1, . . . , n}, ϕ2 ∈

(
0,

π

2

)
and

a2
k + b2

k

a2
k

� 1 + tan2 ϕ1

tan2 ϕ1
= 1

sin2 ϕ1
, k ∈ {1, . . . , n}, ϕ1 ∈

(
0,

π

2

)
giving the inequalities

|zk| cos ϕ2 � Re(zk), |zk| sin ϕ1 � Im(zk)

for each k ∈ {1, . . . , n}.
Now, applying Theorem 3 for the complex inner product space C endowed with

the inner product 〈z, w〉 = z · w̄ for xk = zk , r1 = cos ϕ2, r2 = sin ϕ1 and e = 1, we
deduce the desired inequality (3.2). The case of equality is also obvious by Theorem
3 and the proposition is proven. �

Another result that has an obvious geometrical interpretation is the following one.

Proposition 2. Let c ∈ C with |c| = 1 and ρ1, ρ2 ∈ (0, 1). If zk ∈ C, k ∈ {1, . . . , n}
are such that

|zk − c| � ρ1, |zk − ic| � ρ2 for each k ∈ {1, . . . , n}, (3.4)

then we have the inequality√
2 − ρ2

1 − ρ2
2

n∑
k=1

|zk| �
∣∣∣∣∣

n∑
k=1

zk

∣∣∣∣∣ , (3.5)

with equality if and only if

n∑
k=1

zk =
(√

1 − ρ2
1 + i

√
1 − ρ2

2

)( n∑
k=1

|zk|
)

c. (3.6)

The proof is obvious by Corollary 1 applied for H = C.

Remark 1. If we choose c = 1, and for ρ1, ρ2 ∈ (0, 1) we define D̄(1, ρ1) := {z ∈
C||z − 1| � ρ1}, D̄(i, ρ2) := {z ∈ C||z − i| � ρ2}, then obviously the intersection
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Sρ1,ρ2 := D̄(1, ρ1) ∩ D̄(i, ρ2)

is nonempty if and only if ρ1 + ρ2 �
√

2.
If zk ∈ Sρ1,ρ2 for k ∈ {1, . . . , n}, then (3.5) holds true. The equality holds in (3.5)

if and only if
n∑

k=1

zk =
(√

1 − ρ2
1 + i

√
1 − ρ2

2

) n∑
k=1

|zk|.
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