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Abstract Present analysis is carried out to study the two-dimensional stagnation-point flow of an

in-compressible Carreau fluid toward a shrinking surface. The formulation of the Carreau fluid

model has been developed first time for boundary layer problem of shrinking sheet and the govern-

ing partial differential equations are rehabilitated into ordinary differential equations using similar-

ity transformations. The simplified nonlinear boundary value problem is solved by Runge-Kutta

method after converting into the system of initial value problem using shooting method. Dual

solutions are obtained graphically and results are shown for various parameters involved in the flow

equations. Numerical values of skin friction coefficients are also computed.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

A stagnation point occurs whenever a flow impinges on a solid

object. The pioneer work for a two dimensional stagnation
point flow was done by Hiemenz [1]. He discussed the
2-dimensional flow of a fluid near a stagnation point. He
exposed that the Navier–Stokes equations governing the flow
can be reduced to an ordinary differential equation of third
order using similarity transformation. The study of boundary

layer flow over a stretching sheet is a topic of great attention
due to a variety of applications in designing cooling system
which includes liquid metals, MHD generators, accelerators,

pumps and flow meters. At very start Sakiadis [2] examined
the laminar boundary-layer behavior on a moving continuous
flat surface and he used similarity transformations to simplified

boundary-layer equations and then solved numerically. Crane
[3] extended the work of Sakiadis [2] for linear and exponential
stretching. The steady two-dimensional stagnation point flow

of an incompressible micropolar fluid over a stretching sheet
when the sheet is stretched in its own plane with a velocity pro-
portional to the distance from the stagnation point has been
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Figure 1 Geometry of the problem.
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studied by Nazar et al. [4]. They solved the resulting non-linear
ordinary coupled equations numerically using the Keller-box
method. Two-dimensional stagnation-point flow of viscoelas-

tic fluids is studied theoretically by Sadeghy et al. [5]. They
assume that the fluid obeys the upper-convected Maxwell
(UCM) model. Boundary-layer theory is used to simplify the

equations of motion which are further reduced to a single
non-linear third-order ODE using the concept of stream func-
tion coupled with the technique of the similarity solution. The

obtained governing equation was solved using Chebyshev
pseudo-spectral collocation-point method. The steady MHD
mixed convection flow of a viscoelastic fluid in the vicinity of
two-dimensional stagnation point with magnetic field has been

investigated by Kumari and Nath [6]. They used upper-
convected Maxwell (UCM) fluid as the proposed model.
Boundary layer theory is used to simplify the equations of

motion, induced magnetic field and energy which results in
three coupled non-linear ordinary differential. These equations
have been solved by using finite difference method. Ishak et al.

[7] analyzed heat transfer over a stretching surface with
uniform or variable heat flux in micropolar fluid. In this con-
test Nadeem and Hussain [8] discussed HAM solutions for

boundary layer flow in the region of the stagnation point
toward a stretching sheet. Nadeem et al. [9,10] developed the
two and three dimensional boundary layer flow over stretching
sheet for both Newtonian and non-Newtonian fluid. Analysis

for MHD flow of a Maxwell fluid past a vertical stretching
sheet in the presence of thermophoresis and chemical reaction
was examined by Noor [11]. Recently Akbar et al [12] present

the investigation on Magnetohydrodynamic boundary layer
flow of tangent hyperbolic fluid toward a stretching sheet. In
another article Nadeem and Haq [13] coated the effect of ther-

mal radiation for MHD boundary layer flow of a nanofluid
over a stretching sheet with convective boundary conditions.
Stability of dual solutions in stagnation-point flow and heat

transfer over a porous shrinking sheet with thermal radiation
is given by Mahapatra and Nandy [14]. Later on many
problems have been discussed by few authors [15–20].

In the present articlemodel ofCarreau fluid flowon a stretch-
ing sheet has been constructed along with the magnetic effects.
To the best of author’s knowledge no investigation has been
done before in which Carreau fluid is model for shrinking/
stretching sheet problems. The main objective of the article is
to discuss the dual solution for MHD flow of Carreau fluid
analysis on a stretching sheet. The formulation of the paper is
organized as follows. The problem formulation is given in
section two. The numerical solutions graphically with physical
interpretation are presented in section three. Section four
contains the conclusions of the current development.

2. Mathematical formulation

We discussed a two dimensional stagnation point flow of an

incompressible Carreau fluid over a wall coinciding with plane
y= 0, the flow is being confined to y > 0. The flow is
generated due to the linear stretching. Extra stress tensor for

Carreau fluid is [15],

sij ¼ go 1þ ðn� 1Þ
2
ðC�_cÞ2

� �
�_cij ð1Þ

in which sij is the extra stress tensor, go is the zero shear rate
viscosity, C is the time constant, n is the power law index
and �_c is defined as
�_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i

X
j

�_cij�_cji
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Here P is the second invariant strain tensor. Flow equations
for Carreau fluid model after applying the boundary layer

approximations can be defined as follows
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Here u and v are velocity components along x and y direction,
respectively. Where m is kinematic viscosity, r is the electrical
conductivity, q is the density. It is noticed that for power law

index (n= 1) our problem reduced to the case of Newtonian
fluid while for n > 1 phenomena remains for non-Newtonian
fluid. The corresponding boundary conditions are

u ¼ uwðxÞ ¼ ax; m ¼ mwðxÞ; at y ¼ 0;

u! ueðxÞ ¼ bx; as y!1;
ð5Þ

in which b> 0 is constant, we assume that uw(x) = ax and
ue(x) = bx are the velocities near and away from thewall respec-
tively. Introducing the following similarity transformations

g ¼
ffiffiffi
b

m

r
y; w ¼

ffiffiffiffiffi
bm
p

xfðgÞ; ð6Þ

where g is the similarity variable and w is the Stream function

defined in the usual notation as u= ow/oy and m = �ow/ox,
which identically satisfy the equation of continuity define in
Eq. (3). By using above similarity transformation defined in

Eq. (5) on Eqs. (2)–(4), we get:

f 000 � ðf 0Þ2 þ ff 00 þ 1þ 3ðn� 1ÞWe2

2
f 000ðf 00Þ2 þM2ð1� f 0Þ ¼ 0

ð7Þ

f ¼ s; f 0 ¼ k; at g ¼ 0 ð8Þ
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f 0 ! 1; at g!1; ð9Þ

where s = �vw/(am)1/2, s> 0 (i.e vw < 0) corresponding to

suction and s< 0 (i.e vw > 0) corresponding to blowing case.
Here k = a/b is the stretching/shrinking parameter,

We2 ¼ b3x2C2

m is the Weissenberg number, M2 ¼ rB2
0

qb is the mag-

netic parameter. After using boundary layer approximations

wall shear stress sw is given by

sw ¼
@u

@x
þ ðn� 1ÞC2

2

@u

@y

� �3

ð10Þ

The coefficient of skin friction is defined as

cf ¼
sw
qu2w

ð11Þ

In dimensionless form skin friction is defined as

ffiffiffiffiffiffi
Re
p

cf ¼ f 00ðgÞ þ ðn� 1ÞWe2

2
ðf 00ðgÞÞ3

� �
g¼0

ð12Þ
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Figure 3 Variation of skin friction coefficient with k and n.
3. Numerical method for solution

The nonlinear differential Eq. (7) along with the boundary
conditions (8) and (9) is solved numerically with the help of
shooting method after converting them into initial value prob-

lem. To handle the condition at infinity we consider the suit-
able value of g fi1, say g1. We set the following first-order
system:

f 0 ¼ p ð13Þ

f 00 ¼ p0 ¼ q ð14Þ

f 000 ¼ q00 ¼ ðp
2 � fq�M2ð1� pÞ � 1Þ

1þ 3ðn�1ÞWe2q2

2

� � ð15Þ

along with the boundary conditions are

fð0Þ ¼ s; f 0ð0Þ ¼ pð0Þ ¼ k; ð16Þ
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Figure 2 Variation of skin friction coefficient with k and M.
To solve (15) with (16) as an IVP, the values for qð0Þ ¼ f 00ð0Þ
are needed but no such values are given prior to the compu-
tation. The initial guess values of f 00ð0Þ are chosen and fourth
order Runge-Kutta method is applied to obtain a solution.

We compared the calculated values of f 00ðgÞ at the far field
boundary condition g1( = 20) with the given boundary con-
dition f 00ðgÞ ! 1 and the values of f 00ð0Þ are adjusted using
Secant method for better approximation. The step-size is

taken as Dg = 0.01 and accuracy to the fifth decimal place
as the criterion of convergence. It is important to note that
the dual solutions are obtained by setting two different initial

guesses for the values of f 00ð0Þ, where both profiles (first
and second solutions) satisfy the far field boundary condi-
tions (8 and 9) asymptotically but with different shape. (see

Fig. 1)
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Figure 4 Variation of skin friction coefficient with k and s.
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4. Results and discussions

In the present section we will discuss the behavior of skin fric-
tion coefficient and velocity profile for various values of emerg-

ing parameter such as power law index n Weissenberg number
We, Hartmann number M and suction/blowing parameter s.
Behavior of skin friction coefficient against different values of

physical parameter is presented in Figs. 2–5. In fact, when we
consider the stagnation point flow in the case of shrinking sheet
then ultimately two solution must be appear name as dual solu-
tion for the present region where the sheet being shrunk. In

Fig. 2, two solutions being produced for skin friction coefficient
against higher values ofM. Moreover, critical values of k, when
solution being divided into two branches (lower and upper

branch solutions), are kc � �6:05;�7:09;�8:13. It is also
found from Fig. 2, for increasing values ofMmagnitude of skin
friction coefficient also increases for both branches while rest of

the parameters are kept fixed. Fig. 3 shows the variation of skin
friction coefficient with k for power law index n when
We= 0.3, M = 0.5, s= 5. It is seen in Fig. 3 that there are
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Figure 9 Variation of stream lines for various values of s.

Table 1 Comparison of the values of coefficient of skin friction (with M= 0) for shrinking sheet with different values of k.

k # Present results n= 1, We= 0 Mahapatra and Nandy [14] Wang [17] Lok et al. [16]

0.0 1.2326 1.2326 1.2326 –

0.1 1.1466 1.1466 1.1466 –

0.2 1.0511 1.0511 1.0511 –

0.5 0.7133 0.7133 0.7133 0.7133

1.0 0 0 0 –

2.0 �1.8873 �1.8873 �1.8873 �1.8873
5.0 �10.2647 �10.2647 �10.2647 �10.2648
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dual solutions for kc < k < 0; where the critical values of k are
kc � �5:69;�6:08;�6:5. From Fig. 3, both the branches pres-

ent increasing behavior for increasing values of power law
index n. Similar pattern is observed when we compare Fig. 4
with Fig. 3 for suction parameters. On the other hand, it is

seen from Fig. 5 for increasing values of Weissenberg
number it decreases the skin friction coefficient. Critical values
of k in Fig. 5 are kc � �5:69;�6:08;�6:63 when
n = 2, M = 0.5, s= 5.

The variations of the velocity profile f 0ðgÞ for emerging
parameters are presented in Fig. 6 and Fig. 7. In Fig. 6(a), it
depicts that when we consider the value of k ¼ �2 (shrinking
case), velocity profile for first and second solutions present

same sort of decreasing behavior with an increase of power
law index n. On the other hand, Fig. 6(b), variation of velocity
profile for higher values of n, illustrates the decreasing behavior

when we consider the value of k ¼ 2 (stretching case) for both
first and second solution. Fig. 6, also illustrates that in each case
boundary layer thickness decreases with an increase in power
law index n. In Fig. 7, it is observed that for increasing values

of suction/blowing parameter s, for both cases when k ¼ �3
(shrinking case) and in the absence of shrinking parameter



Table 2 Comparison of the values of coefficient of skin friction (with M= 0) for shrinking sheet with different values of k.

k # Present results for (n= 1,We= 0) Mahapatra and Nandy [14]

First solution Second solution First solution Second solution

�0.25 1.4022 – 1.4022 –

�0.50 1.4956 – 1.14957 –

�0.75 1.4893 – 1.4893 –

�1.0 1.3288 0 1.3288 0

�1.10 1.1867 0.0492 1.1867 0.0492

�1.15 1.0822 0.1167 1.0822 0.1167

�1.20 0.9325 0.2336 0.9324 0.2336

�1.246 0.5543 0.5542 0.5844 0.5542
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ðk ¼ 0Þ; velocity profile f0(g) for first and second solution shows
increasing behavior. Moreover, we have observed that bound-

ary layer thickness decreases in both first and second solution in
Fig. 7. Variations of stream lines behavior are plotted in Fig. 8
and 9, for various values of k and s, respectively. It can be

observed from Fig 8(a) and (b), that near the wall fluid flow
behavior for various values of stretching/shrinking parameter
k, behavior of stream lines switches accordingly to the shrink-
ing case (k < 0) and stretching case ðk > 0Þ. Moreover, we

can observe that in case of simple flat plate ðk ¼ 0Þ; there is
no variation in the behavior of stream lines that is obvious that
flow remain normal to the wall. Fig. 9, represent the behavior of

stream lines for each case when s> 0 (suction case), s < 0
(blowing case) and for s = 0 (absence of suction/blowing),
while rest of parameters are kept fixed. We can see from

Fig. 9(a) after blowing fluid flows along with the stretching wall
and behavior of stream lines remains symmetric along both x
and y-axis, while in case of (s P 0) behavior of the stream lines

remain symmetric only along y-axis.
Table 1, Present the excellent correlation between previous

literature [14,16,17] and the present study for skin friction coef-
ficient in the absence of both non-Newtonian fluid parameter

and MHD while for the value of n= 1. It can be seen from
Table 1, with an increasing values of k variation of skin friction
coefficient decreases. Table 2, shows the comparison of dual

solution with [14]. It is found that in the absence of n= 1 and
ðk < �1Þ present the dual solution for skin friction coefficient.

5. Conclusion

The boundary layer stagnation-point flow of Carreau fluid
model toward a Shrinking sheet with MHD is investigated.

Different solution behavior with multiple solution branches
has been found and compared with the existing literature.

1. It is seen that with the elastic parameter increases correspond
to the curve for local skin friction decreases gradually.

2. It is observed that for decreasing values of elastic parameter
We both the branches of skin friction coefficient present

same sort of increasing behavior.
3. We get the critical values of k i.e. kc � �5:06;�6:03 and
�6.63 where curves of skin friction being divided into

two branches (that is lower and upper branch).
4. It is observed that in both the cases lower and upper branch

give same increasing behavior for higher values of M.

5. It is observed throughout trend of the graphs of skin fric-
tion coefficient against each parameter show increasing
behavior.
6. When we increase the non-Newtonian fluid parameter We
correspond to resist the motion of the fluid.
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