NOTE

ON *k***-STACKED POLYTOPES**

Peter KLEINSCHMIDT

Mathematisches Institut der Universität Bochum, Bochum, Fed. Rep. Germany

Carl W. LEE

Dept. of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Received 6 January 1983

It is proved that equality in the Generalized Simplicial Lower Bound Conjecture can always be obtained by k-stacked polytopes.

Let P be a simplicial convex d-polytope with f_i faces of dimension *i*. The vector $f(P) = (f_0, \ldots, f_{d-1})$ is called the *f*-vector of P. The complete characterization of all *f*-vectors, known as McMullen's g-conjecture [3], has been obtained by Billera and Lee in [1] and by Stanley in [8]. Billera and Lee proved the sufficiency and Stanley the necessity of McMullen's conditions for a vector in \mathbb{Z}^d to be the *f*-vector of some simplicial *d*-polytope. These conditions are formulated in terms of the *h*-vector.

The vector $h(P) = (h_0, h_1, \dots, h_d)$ is called the *h*-vector of P, where

$$h_{i} = \sum_{j=0}^{i} {\binom{d-j}{d-i}} (-1)^{i-j} f_{j-1} \qquad (f_{-1} := 1).$$

Then the g-conjecture (or rather the g-Theorem) may be formulated as follows:

A vector $h = (h_0, ..., h_d)$ in \mathbb{Z}^{d+1} is the h-vector of some simplicial d-polytope if and only if the following conditions hold:

- (i) $h_i = h_{d-i}, \ 0 \le i \le n := \lfloor \frac{1}{2}d \rfloor$,
- (ii) $h_i \ge h_{i-1}, \ 1 \le i \le n$,
- (iii) $h_0 = 1$ and $h_{i+1} h_i \leq (h_i h_{i-1})^{(i)}, \ 1 \leq i \leq n-1.$

(For the definition of the functional $x^{(i)}$ see [1], [3] or [8].)

The inequality (ii) together with the following condition for equality is known as the "Generalized Simplicial Lower Bound Conjecture" first formulated by McMullen and Walkup [4]:

0012-365X/84/\$3.00 (C) 1984, Elsevier Science Publishers B.V. (North-Holland)

(*) If d≥4, then equality holds in (ii) for a d-polytope P if and only if P is an (i-1)-stacked polytope (a polytope P is called a k-stacked polytope if P (not the boundary-complex of P!) admits a subdivision into a simplicial complex, every (d-k-1)-face of which is a face of P).

The 'only if' part of condition (*) is still open, and the purpose of this paper is to prove a related result which gives some support to the validity of the conjecture.

In [4], McMullen and Walkup proved the following: If d, k and v are integers satisfying $2 \le 2k \le d < v$, then there exists a k-neighbourly d-polytope with v vertices which is k-stacked.

This can be viewed as a special case of our following main result:

Theorem. Let $h = (h_0, \ldots, h_d)$ be a vector satisfying the conditions (i)–(iii) of the g-conjecture and let $h_k = h_{k-1}$ for some k with $1 \le k \le n$, then there exists a (k-1)-stacked d-polytope P with h(P) = h.

Of course, our theorem does not exclude the existence of a non-stacked polytope having the same h-vector as a k-stacked polytope, but at least it proves that equality in (ii) implies the *existence* of a stacked polytope with the fight h-vector.

The proof of our theorem is based on the construction introduced by Billera and Lee in [1], and so we use their teminology.

Let *h* be the vector of the theorem. Then, according to [1], there exists a shellable subcomplex Δ of the boundary-complex of $C(h_1 + d, d + 1)(C(n, d))$ is the cyclic *d*-polytope with *n* vertices) such that $|\Delta|$ is a *d*-ball and $h(\partial \Delta) = h$.

Furthermore, it is shown that $\partial \Delta$ is a 'sharp shadow-boundary' of $C(h_1 + d, d + 1)$, i.e. there is a point $z \in \mathbb{R}^{d+1}$ from which exactly those facets of $C(h_1 + d, d + 1)$ are 'visible' which are in Δ .

Let *H* be a hyperplane in \mathbb{R}^{d+1} which strictly separates *z* from $C(h_1 + d, d + 1)$. We project $|\Delta|$ on *H* by central projection with center *z*. The image of Δ in *H* is a complex Δ' isomorphic to Δ and $|\Delta'|$ is a *d*-polytope *P* with h(P) = h.

It remains to prove that P is (k-1)-stacked. This follows from the fact that every cell of Δ' whose dimension is smaller than d-k+1 is a face of P. To show this, we use the following (compare [1, § 6]):

$$h_i(\Delta') = h_i(P) - h_{i-1}(P)$$
 for $1 \le i \le n$ and $h_0(\Delta') = 1$.

So we may conclude that $h_i(\Delta') = 0$ for $i \ge k$.

We have remarked that Δ' is a shellable *d*-ball, i.e. there is an ordering of the *d*-cells F_1, F_2, \ldots, F_m of Δ' such that for $2 \le j \le m$, $F_i \cap \bigcup_{i=1}^{j-1} F_i$ is the set of all faces of F_i which contain a certain face G_i of F_i , and it is easy to verify that a cell of Δ' is in the interior of Δ' (i.e. not a face of P) if and only if it contains such a face G_i . It follows from a well-known interpretation of the *h*-vector (compare [2])

or [3]) that for a fixed shelling order $h_i(\Delta')$ is exactly the number of G_i 's which have dimension d-i.

As we have $h_i(\Delta') = 0$ for $i \ge k$, it follows that the dimension of every G_j and hence of every interior cell of Δ' is at least d-k+1.

This completes the proof of the theorem.

We should like to mention another interesting feature of k-stacked polytopes (where $1 \le k \le n$): For these polytopes the proof of the necessity of McMullen's conditions for f-vectors is much easier (Stanley mentions this in another context in [7]).

The crucial ω in Stanley's proof [8] of the general theorem can be found without the use of the hard Lefschetz-theorem as follows: Let Δ be the triangulation of P without interior faces of 'small' dimension and let $\theta_1, \ldots, \theta_{d+1}$ be a suitable system of parameters in the Stanley-Reisner-ring A_{Δ} (compare [2] and [6]). Let J be the ideal of A_{Δ} spanned by $\theta_1, \ldots, \theta_d$ and the interior faces of Δ and define $A := A_{\Delta}/J$. Taking ω as the image of θ_{d+1} in the homomorphism mapping A_{Δ} on A one gets all properties of ω required in [8] to solve the g-conjecture.

It is possible that another access to the characterization of equality in the Generalized Simplicial Lower Bound Conjecture could be provided by the method of bistellar operations (see [5]). One can easily verify that the equality $h_i(P) = h_{i-1}(P)$ ($1 \le i \le n$) implies that no geometric (*i*-1)-operation (in the sense of [5]) can be performed in the boundary-complex of *P*.

References

- L.J. Billera and C.W. Lee, A proof of the sufficiency of McMullen's conditions for *f*-vectors of simplicial convex polytopes, J. Combin. Theory (A) 31 (1981) 237–255.
- [2] B. Kind and P. Kleinschmidt, Schälbare Cohen-Macaulay-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979) 173-179.
- [3] P. McMullen and G.C. Shephard, Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Notes, No. 3 (Cambridge Univ. Press, Cambridge, 1971).
- [4] P. McMullen and D.W. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika 18 (1971) 264–273.
- [5] U. Pachner, Über die bistellare Äquivalenz simplizialer Sphären und Polytope, Math. Z. 176 (1981) 565-576.
- [6] R.P. Stanley, The upper bound conjecture and Cohen-Macaulay-rings, Studies in Appl. Math. 54 (1975) 135-142.
- [7] R.P. Stanley, Cohen-Macaulay-complexes, in: M. Aigner, ed., Higher Combinatorics (Reidel, Dordrecht, (1977) 51-62.
- [8] R.P. Stanley, The number of faces of a simplicial convex polytope, Advances in Math. 35 (1980) 236-238.