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It is proved that equality in the Generalized Simplicial Lower Bound Conjecture can always 
be obtained by k-stacked polytopes. 

Let  P be a simplicial convex d-polytope with f~ faces of dimension i. The  vector 
f (P) = (f0 . . . . .  fa-1) is called the f-vector of P. The  complete characterization of 
all f-vectors,  known as McMullen's g-conjecture [3], has been obtained by Billera 
and Lee  in [1] and by Stanley in [8]. Billera and Lee  proved the sufficiency and 
Stanley the necessity of McMuUen's conditions for a vector in Z a to be the f -vector  
of some simplicial d-polytope.  These conditions are formulated in terms of the 
h-vector  of a polytope rather than in terms of the f-vector.  

The vector h(P) = (h0, hi . . . . .  ha) is called the h-vector of P, where 

hi- -,=0- t (d  d ~ I.)(-1)i-if/-1 Oc-1 =: 1 ) .  

Then the g-conjecture (or rather  the g-Theorem) may be formulated as follows: 

A vector h = (ho . . . . .  ha) in 7/a+l is the h-vector of some simplicial d-polytope if 
and only if the following conditions hold: 

(i) ~ = h a - i ,  O<~i~n:=[f2d], 
(ii) h/.~>~_l, l<~i<~n, 

(iii) h0 = 1 and ~+1 - hi ~< (~ - ~-1) ~i>, 1 ~< i ~< n - 1. 

(For the definition of the functional x (i> see [1], [3] or [8].) 
The  inequality (ii) together with the following condition for equality is known as 

the "General ized Simplicial Lower  Bound Conjecture"  first formulated by 
McMullen and Walkup [4]: 
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(*) If d~>4, then equality holds in (ii) for a d-polytope P if and only if P is an 
(i - 1)-stacked polytope (a polytope P is called a k-stacked polytope if P (not 
the boundary-complex of P!) admits a subdivision into a simplicial complex, 
every ( d - k -  1)-face of which is a face of P). 

The 'only if' part of condition (*) is still open, and the purpose of this paper  is 
to prove a related result which gives some support to the validity of the 
conjecture. 

In [4], McMullen and Walkup proved the following: If d, k and v are integers 
satisfying 2~<2k<~d<v,  then there exists a k-neighbourly d-polytope with v 
vertices which is k-stacked. 

This can be viewed as a special case of our  following main result: 

Theorem. Let h = (ho . . . . .  hd) be a vector satisfying the conditions (i)-(iii) of the 
g-conjecture and let hk=hk_ l  for some k with l ~ k ~ n ,  then there exists a 
(k - 1)-stacked d-polytope P with h(P) = h. 

Of course, our  theorem does not exclude the existence of a non-stacked 
polytope having the same h-vector  as a k-stacked polytope, but at least it proves 
that equality in (ii) implies the existence of a stacked polytope with the fight 
h-vector.  

The proof of our theorem is based on the construction introduced by Billera 
and Lee  in [1], and so we use their teminology. 

Let  h be the vector of the theorem. Then,  according to [1], there exists a 
shellable subcomplex A of the boundary-complex of C(hl  + d, d + 1)(C(n, d) is the 
cyclic d-polytope with n vertices) such that [A[ is a d-ball and h(0A)= h. 

Furthermore,  it is shown that 0A is a 'sharp shadow-boundary'  of C(hx + d, d + 1), 
i.e. there is a point z ~ R  a+~ from which exactly those facets of C ( h l + d ,  d + l )  
are 'visible' which are in A. 

Let  H be a hyperplane in R a+l which strictly separates z from C(hl  + d, d + 1). 
We project [A I on H by central projection with center z. The image of A in H is a 
complex A' isomorphic to A and IA'[ is a d-polytope P with h(P)= h. 

It remains to prove that P is (k -1 ) - s t acked .  This follows from the fact that 
every cell of A' whose dimension is smaller than d - k + 1 is a face of P. To  show 
this, we use the following (compare [1, § 6]): 

hi(A')=l~.(P)-l~._l(P) for l ~ i < ~ n  and ho(A' )= l .  

So we may conclude that hi (A')= 0 for i ~  > k. 

We have remarked that A' is a shellable d-ball, i.e. there is an ordering of the 
d-cells F1, F2 . . . . .  Fm of A' such that for 2<~j<~m, F i fq U{-~ F~ is the set of all 
faces of F i which contain a certain face Gi of F~, and it is easy to  verify that a cell 
of A' is in the interior of A' (i.e. not a face of P) if and only if it  contains such a 
face G i. It follows from a well-known interpretation of the h-vector  (compare [2] 
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or [3]) that for a fixed shelling order  hi.(A') is exactly the number  of Gi's which 
have dimension d - i. 

As we have ~ (A ' )=  0 for i>~ k, it follows that the dimension of every G/ and 
hence of every interior cell of A' is at least d -  k + 1. 

This completes the proof of the theorem. 

We should like to mention another  interesting feature of k-stacked polytopes 
(where 1 ~< k ~< n): For  these polytopes the proof of the necessity of McMuUen's 
conditions for [-vectors is much easier (Stanley mentions this in another context 
in [7]). 

The  crucial to in Stanley's proof [8] of the general theorem can be found 
without the use of the hard Lefschetz-theorem as follows: Let  A be the triangula- 
tion of P without interior faces of 'small' dimension and let 01 . . . . .  Oa+l be a 
suitable system of parameters in the Stanley-Reisner-ring Aa (compare [2] and 
[6]). Let  J be the ideal of Aa spanned by 01 . . . .  ,0a and the interior faces of A 
and define A : =  Aa/J. Taking to as the image of 0a+l in the homomorphism 
mapping Aa on A one gets all properties of to required in 18] to solve the 
g-conjecture. 

It is possible that another  access to the characterization of equality in the 
Generalized Simplicial Lower  Bound Conjecture could be provided by the 
method of bistellar operations (see [5]). One can easily verify that the equality 
hi(P) = hi--l(P) (1 ~< i ~ n) implies that no geometric (i - 1)-operation (in the sense 
of [5]) can be performed in the boundary-complex of P. 
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