NOTE

ON \boldsymbol{k}-STACKED POLYTOPES

Peter KLEINSCHMIDT
Mathematisches Institut der Universität Bochum, Bochum, Fed. Rep. Germany

Carl W. LEE
Dept. of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Received 6 January 1983
It is proved that equality in the Generalized Simplicial Lower Bound Conjecture can always be obtained by k-stacked polytopes.

Let P be a simplicial convex d-polytope with f_{i} faces of dimension i. The vector $f(P)=\left(f_{0}, \ldots, f_{d-1}\right)$ is called the f-vector of P. The complete characterization of all f-vectors, known as McMullen's g-conjecture [3], has been obtained by Billera and Lee in [1] and by Stanley in [8]. Billera and Lee proved the sufficiency and Stanley the necessity of McMullen's conditions for a vector in \mathbb{Z}^{d} to be the f-vector of some simplicial d-polytope. These conditions are formulated in terms of the h-vector of a polytope rather than in terms of the f-vector.

The vector $h(P)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is called the h-vector of P, where

$$
h_{i}=\sum_{j=0}^{i}\binom{d-j}{d-i}(-1)^{i-i} f_{i-1} \quad\left(f_{-1}:=1\right)
$$

Then the g-conjecture (or rather the g-Theorem) may be formulated as follows:
A vector $h=\left(h_{0}, \ldots, h_{d}\right)$ in \mathbb{Z}^{d+1} is the h-vector of some simplicial d-polytope if and only if the following conditions hold:
(i) $h_{i}=h_{d-i}, 0 \leqslant i \leqslant n:=\left[\frac{1}{2} d\right]$,
(ii) $h_{i} \geqslant h_{i-1}, 1 \leqslant i \leqslant n$,
(iii) $h_{0}=1$ and $h_{i+1}-h_{i} \leqslant\left(h_{i}-h_{i-1}\right)^{(i)}, 1 \leqslant i \leqslant n-1$.
(For the definition of the functional $x^{(i)}$ see [1], [3] or [8].)
The inequality (ii) together with the following condition for equality is known as the "Generalized Simplicial Lower Bound Conjecture" first formulated by McMullen and Walkup [4]:
(*) If $d \geqslant 4$, then equality holds in (ii) for a d-polytope P if and only if P is an ($i-1$)-stacked polytope (a polytope P is called a k-stacked polytope if P (not the boundary-complex of P !) admits a subdivision into a simplicial complex, every ($d-k-1$)-face of which is a face of P).

The 'only if' part of condition (*) is still open, and the purpose of this paper is to prove a related result which gives some support to the validity of the conjecture.

In [4], McMullen and Walkup proved the following: If d, k and v are integers satisfying $2 \leqslant 2 k \leqslant d<v$, then there exists a k-neighbourly d-polytope with v vertices which is k-stacked.

This can be viewed as a special case of our following main result:
Theorem. Let $h=\left(h_{0}, \ldots, h_{d}\right)$ be a vector satisfying the conditions (i)-(iii) of the g-conjecture and let $h_{k}=h_{k-1}$ for some k with $1 \leqslant k \leqslant n$, then there exists a $(k-1)$-stacked d-polytope P with $h(P)=h$.

Of course, our theorem does not exclude the existence of a non-stacked polytope having the same h-vector as a k-stacked polytope, but at least it proves that equality in (ii) implies the existence of a stacked polytope with the fight h-vector.

The proof of our theorem is based on the construction introduced by Billera and Lee in [1], and so we use their teminology.

Let h be the vector of the theorem. Then, according to [1], there exists a shellable subcomplex Δ of the boundary-complex of $C\left(h_{1}+d, d+1\right)(C(n, d)$ is the cyclic d-polytope with n vertices) such that $|\Delta|$ is a d-ball and $h(\partial \Delta)=h$.

Furthermore, it is shown that $\partial \Delta$ is a 'sharp shadow-boundary' of $C\left(h_{1}+d, d+1\right)$, i.e. there is a point $z \in \mathbb{R}^{d+1}$ from which exactly those facets of $C\left(h_{1}+d, d+1\right)$ are 'visible' which are in Δ.

Let H be a hyperplane in \mathbb{R}^{d+1} which strictly separates z from $C\left(h_{1}+d, d+1\right)$. We project $|\Delta|$ on H by central projection with center z. The image of Δ in H is a complex Δ^{\prime} isomorphic to Δ and $\left|\Delta^{\prime}\right|$ is a d-polytope P with $h(P)=h$.

It remains to prove that P is $(k-1)$-stacked. This follows from the fact that every cell of Δ^{\prime} whose dimension is smaller than $d-k+1$ is a face of P. To show this, we use the following (compare $[1, \S 6]$):

$$
h_{i}\left(\Delta^{\prime}\right)=h_{i}(P)-h_{i-1}(P) \text { for } 1 \leqslant i \leqslant n \quad \text { and } \quad h_{0}\left(\Delta^{\prime}\right)=1
$$

So we may conclude that $h_{i}\left(\Delta^{\prime}\right)=0$ for $i \geqslant k$.
We have remarked that Δ^{\prime} is a shellable d-ball, i.e. there is an ordering of the d-cells $F_{1}, F_{2}, \ldots, F_{m}$ of Δ^{\prime} such that for $2 \leqslant j \leqslant m, F_{i} \cap \bigcup_{i=1}^{i=1} F_{i}$ is the set of all faces of F_{j} which contain a certain face G_{i} of F_{j}, and it is easy to verify that a cell of Δ^{\prime} is in the interior of Δ^{\prime} (i.e. not a face of P) if and only if it contains such a face G_{i}. It follows from a well-known interpretation of the h-vector (compare [2]
or [3]) that for a fixed shelling order $h_{i}\left(\Delta^{\prime}\right)$ is exactly the number of G_{i} 's which have dimension $d-i$.

As we have $h_{i}\left(\Delta^{\prime}\right)=0$ for $i \geqslant k$, it follows that the dimension of every G_{j} and hence of every interior cell of Δ^{\prime} is at least $d-k+1$.

This completes the proof of the theorem.

We should like to mention another interesting feature of k-stacked polytopes (where $1 \leqslant k \leqslant n$): For these polytopes the proof of the necessity of McMullen's conditions for f-vectors is much easier (Stanley mentions this in another context in [7]).

The crucial ω in Stanley's proof [8] of the general theorem can be found without the use of the hard Lefschetz-theorem as follows: Let Δ be the triangulation of P without interior faces of 'small' dimension and let $\theta_{1}, \ldots, \theta_{d+1}$ be a suitable system of parameters in the Stanley-Reisner-ring A_{Δ} (compare [2] and [6]). Let J be the ideal of A_{Δ} spanned by $\theta_{1}, \ldots, \theta_{d}$ and the interior faces of Δ and define $A:=A_{\Delta} / J$. Taking ω as the image of θ_{d+1} in the homomorphism mapping A_{Δ} on A one gets all properties of ω required in [8] to solve the g-conjecture.

It is possible that another access to the characterization of equality in the Generalized Simplicial Lower Bound Conjecture could be provided by the method of bistellar operations (see [5]). One can easily verify that the equality $h_{i}(P)=h_{i-1}(P)(1 \leqslant i \leqslant n)$ implies that no geometric ($i-1$)-operation (in the sense of [5]) can be performed in the boundary-complex of P.

References

[1] L.J. Billera and C.W. Lee, A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes, J. Combin. Theory (A) 31 (1981) 237-255.
[2] B. Kind and P. Kleinschmidt, Schälbare Cohen-Macaulay-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979) 173-179.
[3] P. McMullen and G.C. Shephard, Convex polytopes and the upper bound conjecture, London Math. Soc. Lecture Notes, No. 3 (Cambridge Univ. Press, Cambridge, 1971).
[4] P. McMullen and D.W. Walkup, A generalized lower-bound conjecture for simplicial polytopes, Mathematika 18 (1971) 264-273.
[5] U. Pachner, Über die bistellare Äquivalenz simplizialer Sphären und Polytope, Math. Z. 176 (1981) 565-576.
[6] R.P. Stanley, The upper bound conjecture and Cohen-Macaulay-rings, Studies in Appl. Math. 54 (1975) 135-142.
[7] R.P. Stanley, Cohen-Macaulay-complexes, in: M. Aigner, ed., Higher Combinatorics (Reidel, Dordrecht, (1977) 51-62.
[8] R.P. Stanley, The number of faces of a simplicial convex polytope, Advances in Math. 35 (1980) 236-238.

