Iterative Approximations of Fixed Points and Solutions for Strongly Accretive and Strongly Pseudo-Contractive Mappings in Banach Spaces*

S. S. Chang

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China

Y. J. Cho²

Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

B. S. Lee

Department of Mathematics, Kyungsung University, Pusan 608-736, Korea

J. S. Jung

Department of Mathematics, Dong-A University, Pusan 604-714, Korea

and

S. M. Kang

Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

Submitted by William Art Kirk

Received May 27, 1997

In this article, we prove some new convergence theorems of the Ishikawa and Mann iteration sequences for strongly accretive and strongly pseudo-contractive mappings by using the new inequality and the new approximation methods. Our main results improve and extend the corresponding results of [J. Math. Anal.

* The present studies were supported by the National Natural Science Foundation of China and the Basic Science Research Institute Program, Ministry of Education, Korea, 1997, Project No. BSR1-97-1405.

² E-mail address: yjcho@nongae.gsnu.ac.kr.
1. INTRODUCTION

Throughout this article, we always assume that X is a real Banach space, X^* is the duality space of X, and (\cdot, \cdot) is the pairing between X and X^*. For $1 < p < \infty$, the mapping $J_p: X \to 2^{X^*}$ defined by

$$J_p(x) = \{f \in X^*: (x, f) = \|f\| \cdot \|x\|, \|f\| = \|x\|^{p-1}\}$$

is called the duality mapping with gauge function $\varphi(t) = t^{p-1}$. In particular, for $p = 2$, the duality mapping J_2 with gauge function $\varphi(t) = t$ is called the normalized duality mapping.

The following proposition gives some basic properties of duality mappings:

Proposition 1.1. Let X be a real Banach space. For $1 < p < \infty$, the duality mapping $J_p: X \to 2^{X^*}$ has the following basic properties:

1. $J_p(x) \neq \emptyset$ for all $x \in X$ and $D(J_p)$ (the domain of J_p) = X,
2. $J_p(x) = \|x\|^{p-2} \cdot J_2(x)$ for all $x \in X$ ($x \neq 0$),
3. $J_p(\alpha x) = \alpha^{p-1} \cdot J_p(x)$ for all $\alpha \in [0, \infty)$,
4. $J_p(-x) = -J_p(x)$,
5. J_p is bounded, i.e., for any bounded subset $A \subset X$, $J_p(A)$ is a bounded subset in X^*,
6. J_p can be equivalently defined as the subdifferential of the functional $\psi(x) = \|x\|^{p-1} \cdot \|x\|^{p}$ (Asplund [1]), i.e.,

$$J_p(x) = \partial \psi(x) = \{f \in X^*: \psi(y) - \psi(x) \geq (f, y - x) \text{ for all } y \in X\},$$

7. X is a uniformly smooth Banach space (equivalently, X^* is a uniformly convex Banach space) if and only if J_p is single-valued and uniformly continuous on any bounded subset of X (Xu and Roach [21]).

Definition 1.1. Let X be a real normed space and let K be a nonempty subset of X. Let $T: K \to 2^X$ be a multivalued mapping.
(1) T is said to be accretive if for any $x, y \in K$, $u \in Tx$, and $v \in Ty$, there exists $j_2 \in J_2(x - y)$ such that
\[(u - v, j_2) \geq 0,\]
or, equivalently, there exists $j_p \in J_p(x - y)$, $1 < p < \infty$, such that
\[(u - v, j_p) \geq 0.\]

(2) T is said to be strongly accretive if for any $x, y \in K$, $u \in Tx$, and $v \in Ty$, there exists $j_2 \in J_2(x - y)$ such that
\[(u - v, j_2) \geq k \cdot \|x - y\|^2,\]
or, equivalently, there exists $j_p \in J_p(x - y)$, $1 < p < \infty$, such that
\[(u - v, j_p) \geq k \cdot \|x - y\|^p,\]
for some constant $k > 0$. Without loss of generality, we can assume that $k \in (0, 1)$ and such a number k is called the strong accretive constant of T.

(3) T is said to be (strongly) pseudo-contractive if $I - T$ (where I denotes the identity mapping) is a (strongly) accretive mapping.

The concept of a single-valued accretive mapping was introduced independently by Browder [2] and Kato [13] in 1967. An early fundamental result in the theory of accretive mappings which is due to Browder states that the following initial value problem,
\[
\frac{du(t)}{dt} + Tu(t) = 0, \quad u(0) = u_0, \quad (1.1)
\]
is solvable if T is locally Lipschitzian and accretive on X.

Definition 1.2. Let X be a real Banach space, let K be a nonempty convex subset of X and let $T: K \to 2^K$ be a multivalued mapping. Given $x_0 \in K$, the sequence (x_n) defined by
\[
\begin{cases}
x_{n+1} \in (1 - \alpha_n)x_n + \alpha_n Ty_n, \\
y_n \in (1 - \beta_n)x_n + \beta_n Tx_n,
\end{cases} \quad (1.2)
\]
for all $n = 0, 1, 2, \ldots$ is called the Ishikawa iteration sequence of T, where (α_n) and (β_n) are two real sequences in $[0, 1]$ satisfying some conditions. Especially, if $\beta_n = 0$ for all $n = 0, 1, 2, \ldots$, then (x_n) is called the Mann iteration sequence.
The convergence problems of Ishikawa and Mann iteration sequences were studied extensively by many authors (Chidume [4–6], Tan and Xu [18], Reich [16], Ishikawa [11, 12], Mann [14], Deng [8–10], Morales [15], Rhoades [17], Xu [20], and Zhou and Jia [22]).

In this article, by using the new inequality and new approximation methods, we study the convergence problem of the Ishikawa and Mann iteration sequences for strongly accretive mappings and strongly pseudo-contractive mappings, respectively. The main results in this article improve and extend the corresponding results in Chidume [4–6], Deng [8–10], Tan and Xu [18] and Zhou and Jia [22].

2. LEMMAS AND INEQUALITIES

Lemma 2.1. Let X be a real Banach space and let $J_p: X \to 2^{x^*}$, $1 < p < \infty$, be a duality mapping. Then, for any given $x, y \in X$, we have
\[
\|x + y\|^p \leq \|x\|^p + p \cdot (y, j_p),
\]
for all $j_p \in J_p(x + y)$.

Proof. From Proposition 1.1(6), it follows that $J_p(x) = \partial \psi(x)$ (subdifferential of ψ), where $\psi(x) = p^{-1} \cdot \|x\|^p$. Also it follows from the definition of subdifferential of ψ that
\[
\psi(x) - \psi(x + y) \geq (x - (x + y), j_p),
\]
for all $j_p \in J_p(x + y)$. Substituting $\psi(x)$ by $p^{-1} \cdot \|x\|^p$, we have
\[
\|x + y\|^p \leq \|x\|^p + p \cdot (y, j_p),
\]
for all $j_p \in J_p(x + y)$. This completes the proof.

Remark 1. In [16], Reich proved the following result: If X is a uniformly smooth Banach space, then there exists a continuous and a nondecreasing function $b: [0, \infty) \to [0, \infty)$ such that $b(0) = 0$ and $b(ct) \leq cb(t)$ for all $c \geq 1$ and the following inequality holds
\[
\|x + y\|^2 \leq \|x\|^2 + 2(y, J_2(x)) + \max\{\|x\|, 1\} \cdot \|y\| \cdot b(\|y\|),
\]
for all $x, y \in X$. Because X is a uniformly smooth Banach space, it follows from Proposition 1.1(7) that $J_p, 1 < p < \infty$, is a single-valued mapping. Taking $p = 2$, from (2.1) it follows that
\[
\|x + y\|^2 \leq \|x\|^2 + 2 \cdot (y, J_2(x + y)),
\]
for all $x, y \in X$. Comparing (2.3) with (2.2), we know that (2.1) is more succinct and more convenient than Reich’s inequality (2.2).
(2) The inequality (2.3) was proved by Zhou and Jia [22] and Chang [3] by using other methods, respectively.

Lemma 2.2 [19]. Let \((\gamma_n)\) be a nonnegative real sequence and let \((\lambda_n)\) be a real sequence in \([0, 1]\) such that \(\sum_{n=0}^{\infty} \lambda_n = \infty\).

1. For any given \(\epsilon > 0\), if there exists a positive integer \(n_0\) such that
 \[\gamma_{n+1} \leq (1 - \lambda_n) \gamma_n + \epsilon \lambda_n,\]
 \hspace{1cm} (2.4)
 for all \(n \geq n_0\), then we have \(0 \leq \limsup_{n \to \infty} \gamma_n \leq \epsilon\).

2. If there exists a positive integer \(n_1\) such that
 \[\gamma_{n+1} \leq (1 - \lambda_n) \gamma_n + \lambda_n \cdot \sigma_n,\]
 \hspace{1cm} (2.5)
 for all \(n \geq n_1\), where \(\sigma_n \geq 0\) for all \(n = 0, 1, 2, \ldots\) and \(\sigma_n \to 0\) as \(n \to \infty\), then we have \(\lim_{n \to \infty} \gamma_n = 0\).

Proof. (1) By induction, from condition (2.4), we can prove that
\[\gamma_{n+i} \leq \exp \left(\frac{1}{n_0+i} \sum_{j=n_0}^{n_0+i-1} \lambda_j \right) \cdot \gamma_{n_0} + \epsilon,\]
for \(i = 1, 2, \ldots\). Because \(\sum_{n=0}^{\infty} \lambda_n = \infty\), letting \(i \to \infty\) and taking superior limits, we have
\[0 \leq \limsup_{i \to \infty} \gamma_i = \limsup_{i \to \infty} \gamma_{n_0+i} \leq \epsilon.\]

(2) Because \(\sigma_n \to 0\) as \(n \to \infty\), for any given \(\epsilon > 0\), there exists a positive integer \(n_2 \geq n_1\) such that \(\sigma_n < \epsilon\) for all \(n \geq n_2\). Therefore, from (2.5), it follows that
\[\gamma_{n+1} \leq (1 - \lambda_n) \cdot \gamma_n + \lambda_n \cdot \epsilon,\]
for all \(n \geq n_2\). By the conclusion (1), we know that \(0 \leq \limsup_{n \to \infty} \gamma_n \leq \epsilon\) and so, in view of the arbitrariness of \(\epsilon > 0\), we have \(\lim_{n \to \infty} \gamma_n = 0\). This completes the proof.

3. Convergence of Ishikawa Iteration Sequences for Strongly Pseudo-Contractive Mappings

Lemma 3.1. Let \(X\) be a Banach space and let \(T : X \to 2^X\) be a multivalued strongly pseudo-contractive mapping. Then, for any given \(x, y \in X\), \(u \in Tx\), and \(v \in Ty\), there exists \(\tilde{f}_p \in J_p(x - y)\), \(1 < p < \infty\), such that
\[(u - v, \tilde{f}_p) \leq (1 - k) \cdot \|x - y\|^p,\]
where \(k \in (0, 1)\) is the strongly accretive constant of \(I - T\).
THEOREM 3.2. Let X be a uniformly smooth real Banach space, let K be a nonempty closed convex subset of X (it need not be bounded) and let $T: K \rightarrow K$ be a single-valued Lipschitzian strongly pseudo-contractive mapping. Let $L \geq 1$ be the Lipschitz constant of T and let $k \in (0, 1)$ be the strongly accretive constant of $I - T$. Let $\{\alpha_n\}, \{\beta_n\}$ be two real sequences satisfying the following conditions:

(i) $0 \leq \alpha_n \leq 1$ for all $n = 0, 1, 2, \ldots$,
(ii) $0 \leq \beta_n \leq k(1 - k)(L + L^2)^{-1}$ for all $n = 0, 1, 2, \ldots$,
(iii) $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\alpha_n \rightarrow 0$ as $n \rightarrow \infty$.

If $F(T) \neq \emptyset$ (i.e., the set of all fixed points of T in K), then, for any given $x_q \in K$, the Ishikawa iteration sequence $\{x_n\}$ defined by

\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_n Ty_n, \\
y_n &= (1 - \beta_n)x_n + \beta_n Tx_n,
\end{align*}
\]

for all $n = 0, 1, 2, \ldots$ converges strongly to the unique fixed point of T in K.

Proof. Take $q \in F(T)$ and hence $q = Tq$. If there exists a positive integer n_0 such that $x_{n_0} = q$, then we have

\[
\|y_{n_0} - q\| = \|(1 + \beta_{n_0})(x_{n_0} - q) + \beta_{n_0}(Tx_{n_0} - q)\| = \beta_{n_0}\|Tx_{n_0} - q\| \leq \beta_{n_0} \cdot L \cdot \|x_{n_0} - q\| = 0,
\]

i.e., $x_{n_0 + 1} = q$. By induction, we can prove that $x_{n_0 + i} = q$ for all $i \geq 1$. This implies that $x_n \rightarrow q$ as $n \rightarrow \infty$. Consequently, without loss of generality, we can assume that $x_n \neq q$ for all $n \geq 0$, i.e., $\|x_n - q\| > 0$ for all $n = 0, 1, 2, \ldots$. Because X is uniformly smooth, by Proposition 1.1(7), J_2 is single-valued and uniformly continuous on any bounded subset of X. It follows from (3.1) and Lemma 2.1 that

\[
\|x_{n+1} - q\|^2 = \|(1 - \alpha_n)(x_n - q) + \alpha_n(Ty_n - q)\|^2 \\
\leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n \cdot (Ty_n - q, J_2(x_{n+1} - q)) \\
= (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n(Ty_n - q, J_2(x_n - q)) \\
+ 2\alpha_n \cdot b_n \cdot \|x_n - q\|^2,
\]

where

\[
b_n = \left(\frac{Ty_n - q}{\|x_n - q\|}, J_2\left(\frac{x_{n+1} - q}{\|x_n - q\|}
ight) - J_2\left(\frac{x_n - q}{\|x_n - q\|}\right)\right).
\]
(I) First we consider the second term on the right side of (3.3). From Lemma 3.1 and the condition (ii), it follows that

$$\langle Tx_n - q, J_2(x_n - q) \rangle \leq (1 - k) \cdot \|x_n - q\|^2,$$

(3.4)

and

$$\|Ty_n - Tx_n\| \leq L \cdot \|y_n - x_n\| = L \cdot \beta_n \cdot \|Tx_n - x_n\|$$
$$\leq L \cdot \beta_n \cdot (\|Tx_n - q\| + \|x_n - q\|)$$
$$\leq L \cdot \beta_n \cdot (1 + L) \cdot \|x_n - q\|$$
$$\leq k \cdot (1 - k) \cdot \|x_n - q\|. \quad (3.5)$$

Thus, in view of (3.4) and (3.5), we have

$$\langle Ty_n - q, J_2(x_n - q) \rangle$$
$$= \langle Ty_n - Tx_n, J_2(x_n - q) \rangle + \langle Tx_n - q, J_2(x_n - q) \rangle$$
$$\leq k \cdot (1 - k) \cdot \|x_n - q\|^2 + (1 - k) \cdot \|x_n - q\|^2$$
$$= (1 - k^2)\|x_n - q\|^2. \quad (3.6)$$

(II) Next we consider the third term on the right side of (3.3). We prove that $b_n \to 0$ as $n \to \infty$. In fact, we have

$$\|y_n - q\| \geq \|(\beta_n - 1) \cdot (x_n - q) + \beta_n \cdot (Tx_n - q)\|$$
$$\leq (1 - \beta_n) \cdot \|x_n - q\| + \beta_n \cdot L \cdot \|x_n - q\|$$
$$\leq L \cdot \|x_n - q\|, \quad (3.7)$$

and so, from (3.7), it follows that

$$\frac{\|Ty_n - q\|}{\|x_n - q\|} \leq L \cdot \frac{\|y_n - q\|}{\|x_n - q\|} \leq L^2. \quad (3.8)$$

By the assumption $\alpha_n \to 0$ as $n \to \infty$, from (3.8) we have

$$\frac{x_{n+1} - q}{\|x_{n+1} - q\|} - \frac{x_n - q}{\|x_n - q\|} = \frac{x_{n+1} - x_n}{\|x_n - q\|} = \alpha_n \cdot \|Ty_n - x_n\|$$
$$\leq \frac{\alpha_n}{\|x_n - q\|} \cdot (\|Ty_n - q\| + \|x_n - q\|)$$
$$\leq \alpha_n (L^2 + 1) \to 0, \quad (3.9)$$
which implies that, as $n \to \infty$,
\[
J_2\left(\frac{x_{n+1} - q}{\|x_n - q\|}\right) - J_2\left(\frac{x_n - q}{\|x_n - q\|}\right) \to 0.
\]
Besides, from (3.8) it follows that $((Ty_n - q)/\|x_n - q\|)_{n \geq 0}$ is a bounded sequence in X. Therefore we have, as $n \to \infty$,
\[
b_n \to 0.
\]
(3.10)
Substituting (3.6) into (3.3), we have
\[
\|x_{n+1} - q\|^2 \leq \left[(1 - \alpha_n)^2 + 2\alpha_n(1 - k^2) + 2\alpha_n \cdot b_n\right] \cdot \|x_n - q\|^2
\]
\[
= \left[1 - k^2\alpha_n + \alpha_n(\alpha_n - k^2 + 2b_n)\right] \cdot \|x_n - q\|^2.
\]
Because $\alpha_n \to 0$ and $b_n \to 0$ as $n \to \infty$, there exists a positive integer n_1 such that $\alpha_n - k^2 + 2b_n \leq 0$ for all $n \geq n_1$. Therefore, we have
\[
\|x_{n+1} - q\|^2 \leq (1 - k^2\alpha_n) \cdot \|x_n - q\|^2,
\]
(3.11)
for all $n \geq n_1$. Letting $\|x_n - q\|^2 = \gamma_n$, $\lambda_n = k^2\alpha_n$, and $\sigma_n = 0$, it follows from Lemma 2.2(2) that $x_n \to q$ as $n \to \infty$.

(III) Finally, we prove that q is the unique fixed point of T in K. If q_1 is also a fixed point of T in K, by Lemma 3.1, we have
\[
\|q - q_1\|^2 = (q - q_1, J_2(q - q_1)) \leq (1 - k) \cdot \|q - q_1\|^2.
\]
Because $k \in (0, 1)$, we have $q = q_1$. This completes the proof.

Remark 2. Theorem 3.2 improves and extends the results of Chidume [5, Theorem 2], Chidume [6, Theorem 4], Deng and Ding [10, Theorem 1], Deng [8, Theorem 2], Deng [9, Theorem 4], and Tan and Xu [18, Theorem 4.2].

Theorem 3.3. Let X be a real uniformly smooth Banach space, let K be a bounded closed convex subset of X and let $T : K \to K$ be a strongly pseudocontractive mapping. Let $(\alpha_n), (\beta_n)$ be two real sequences satisfying the following conditions:

(i) $0 \leq \alpha_n, \beta_n \leq 1$ for all $n = 0, 1, 2, \ldots$,
(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$, $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$.

If $F(T) \neq \emptyset$, then, for any given $x_0 \in K$, the Ishikawa iteration sequence (x_n) defined by
\[
\begin{align*}
x_{n+1} & = (1 - \alpha_n)x_n + \alpha_n Ty_n, \\
y_n & = (1 - \beta_n)x_n + \beta_n Tx_n,
\end{align*}
\]
(3.12)
for all $n = 0, 1, 2 \ldots$ converges strongly to the unique fixed point of T in K.
Proof. Take $q \in F(T)$ and so $q = Tq$. By (3.12) and Lemma 2.1, we have, for $1 < p < \infty$,

\[
\|x_{n+1} - q\|^p = \|(1 - \alpha_n)(x_n - q) + \alpha_n(Ty_n - q)\|^p
\]

\[
\leq (1 - \alpha_n)^p \|x_n - q\|^p + p\alpha_n \cdot (Ty_n - q, J_p(x_{n+1} - q))
\]

\[
= (1 - \alpha_n)^p \|x_n - q\|^p + p \cdot \alpha_n \cdot (Ty_n - q, J_p(y_n - q))
\]

\[
+ p \cdot \alpha_n \cdot c_n,
\]

where

\[
c_n = (Ty_n - q, J_p(x_{n+1} - q) - J_p(y_n - q)).
\]

(1) First, from Lemma 3.1, it follows that

\[
(Ty_n - q, J_p(y_n - q)) \leq (1 - k) \cdot \|y_n - q\|^p.
\]

(11) Next we prove that $c_n \to 0$ as $n \to \infty$.

In fact, because K is a bounded set in X and $x_n, Tx_n, Ty_n, q \in K$, then $(Ty_n - q), (Tx_n), (Ty_n)$, and (x_n) all are bounded sequences in X. It follows from the conditions (i) and (ii) that, as $n \to \infty$,

\[
x_{n+1} - q - (y_n - q) = (\beta_n - \alpha_n) x_n + \alpha_n Ty_n - \beta_n Tx_n \to 0.
\]

In view of the uniform continuity of J_p on any bounded subset of X, we have

\[
J_p(x_{n+1} - q) - J_p(y_n - q) \to 0,
\]

and so $c_n \to 0$ as $n \to \infty$.

(111) Now we estimate $\|y_n - q\|^p$.

From (3.12) and Lemma 2.1,

\[
\|y_n - q\|^p = \|(1 - \beta_n)(x_n - q) + \beta_n(Tx_n - q)\|^p
\]

\[
\leq (1 - \beta_n)^p \|x_n - q\|^p + p \cdot \beta_n \cdot (Tx_n - q, J_p(y_n - q))
\]

\[
\leq (1 - \beta_n)^p \|x_n - q\|^p + \beta_n \cdot M,
\]

where $M = \max \{\sup_{n \geq 0} \|Tx_n - q\| \|y_n - q\|^{p-1}, \sup_{n \geq 0} \|x_n - q\|^p\} < \infty$.

Substituting (3.16) into (3.15) and (3.15) into (3.13), we have

\[
\|x_{n+1} - q\|^p \leq \left[\left(1 - \alpha_n\right)^p + p \alpha_n (1 - k)(1 - \beta_n)^p\right]
\]

\[
\cdot \|x_n - q\|^p + \alpha_n \cdot e_n,
\]

(3.17)
where \(e_n = p \cdot [c_n + p(1 - k)\beta_n \cdot M] \). Because we have

\[
0 \leq (1 - \alpha_n)^p + p\alpha_n(1 - k)(1 - \beta_n)^p \leq (1 - \alpha_n)^p + p\alpha_n(1 - k)
\]

\[
= 1 - p\alpha_n + \frac{p(p - 1)}{2!} \alpha_n^2 - \frac{p(p - 1)(p - 2)}{3!} \alpha_n^3
\]

\[
+ \cdots + (-\alpha_n)^p + p\alpha_n(1 - k)
\]

\[
\leq 1 - k\alpha_n + \alpha_n h_n,
\]

where \(h_n = \left\{ \frac{p(p - 1)}{2!} \alpha_n - \left[\frac{p(p - 1)(p - 2)}{3!} \right] \alpha_n^2 + \cdots + (-\alpha_n)^p - 1 \right\} \). (3.17) can be written as follows,

\[
\|x_{n+1} - q\|^p \leq (1 - k\alpha_n)\|x_n - q\|^p + \alpha_n h_n\|x_n - q\|^p + \alpha_n c_n
\]

\[
\leq (1 - k\alpha_n)\|x_n - q\|^p + \alpha_n (h_n M + e_n).
\]

Taking \(r_n = \|x_n - q\|^p \), \(\lambda_n = k\alpha_n \), and \(\sigma_n = (h_n M + e_n)/k \), we have

\[
r_{n+1} \leq (1 - \lambda_n) r_n + \lambda_n \sigma_n,
\]

for \(n = 0, 1, 2, \ldots \). From Lemma 2.2 it follows that \(x_n \to q \) as \(n \to \infty \).

The uniqueness of the fixed point \(q \) can be proved as in Theorem 3.2. This completes the proof.

Remark 3. (1) Theorem 3.3 generalized Chidume [5, Theorem 2] in several aspects and contains it as a special case.

(2) Theorem 3.3 improves and extends the results of Chidume [6, Theorem 4], Tan and Xu [18, Theorem 4.2] and Zhou and Jia [22, Theorem 2.1].

Theorem 3.4. Let \(X \) be a real Banach space, let \(K \) be a nonempty bounded closed convex subset of \(X \) and let \(T: K \to K \) be a uniformly continuous strongly pseudo-contractive mapping. Let \(\{\alpha_n\}, \{\beta_n\} \) be two real sequences satisfying the following conditions:

(i) \(0 \leq \alpha_n, \beta_n < 1 \), and \(\alpha_n \to 0, \beta_n \to 0 \) as \(n \to \infty \),

(ii) \(\sum_{n=0}^{\infty} \alpha_n = \infty \).

If \(F(T) \neq \emptyset \), then, for any given \(x_0 \in K \), the Ishikawa iteration sequence \(\{x_n\} \) defined by

\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_n T y_n, \\
y_n &= (1 - \beta_n)x_n + \beta_n T x_n
\end{align*}
\]

for all \(n = 0, 1, 2, \ldots \) converges strongly to the unique fixed point of \(T \) in \(K \).
Proof. Take \(q \in F(T) \) and so \(q = Tq \). From (3.18) and Lemma 2.1, it follows that
\[
\|x_{n+1} - q\|^2 \leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n \cdot (T_{y_n} - q, j_2) \\
= (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n(T_{y_n} - T_{x_{n+1}}, j_2) \\
+ 2\alpha_n(T_{x_{n+1}} - q, j_2),
\]
for all \(j_2 \in J_2(x_{n+1} - q) \).

(1) First we consider the third term on the right side of (3.19).

From Lemma 3.1, it follows that there exists \(j_2(x_{n+1} - q) \in J_2(x_{n+1} - q) \) such that
\[
(T_{x_{n+1}} - q, j_2(x_{n+1} - q)) \leq (1 - k) \cdot \|x_{n+1} - q\|^2. \tag{3.20}
\]
Substituting (3.20) into (3.19), we have
\[
\|x_{n+1} - q\|^2 \leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n(T_{y_n} - T_{x_{n-1}}, j_2(x_{n+1} - q)) \\
+ 2\alpha_n(1 - k) \cdot \|x_{n+1} - q\|^2, \tag{3.21}
\]
for all \(n = 0, 1, 2, \ldots \).

(11) Letting \(d_n = (T_{y_n} - T_{x_{n+1}}, j_2(x_{n+1} - q)) \), we prove that \(d_n \to 0 \) as \(n \to \infty \). In fact, because \((x_n), (T_{y_n}), (T_{y_n}) \) all are bounded sequences in \(K \),
\[
y_n - x_{n+1} = (\alpha_n - \beta_n) x_n + \beta_n T_{x_n} - \alpha_n T_{y_n} \to 0,
\]
as \(n \to \infty \). By virtue of the uniform continuity of \(T \), we have, as \(n \to \infty \),
\[
\|T_{y_n} - T_{x_{n+1}}\| \to 0. \tag{3.22}
\]
Again because \((x_n - q) \) is a bounded sequence in \(X \), by Proposition 1.1(5) we know that \(J_2((x_n - q)) \) is a bounded subset in \(X^* \). Because \(J_2((x_{n+1} - q)) \) is also a bounded sequence in \(X^* \). From (3.22), it follows that \(d_n \to 0 \) as \(n \to \infty \). Because \(\alpha_n \to 0 \) as \(n \to \infty \), there exists a positive integer \(n_3 \) such that, for all \(n \geq n_3, 1 - 2\alpha_n \cdot (1 - k) > 0 \). Therefore, for \(n \geq n_3 \), (3.21) can be written as follows,
\[
\|x_{n+1} - q\|^2 \leq \frac{(1 - \alpha_n)^2}{1 - 2\alpha_n(1 - k)}\|x_n - q\|^2 + \frac{2\alpha_n d_n}{1 - 2\alpha_n(1 - k)}. \tag{3.23}
\]
Take $\gamma_1, \gamma_2 \in (0, \infty)$ such that

$$0 < \gamma_1 < \min \left\{ 1, 2k, \frac{1}{2(1-k)} \right\},$$

$$\gamma_2 = \frac{(2k - \gamma_1)(1 - 2(1-k)\gamma_1)^{-1}}{1 - 2\gamma_2(1-k)}.$$

Because $\alpha_n \to 0$ as $n \to \infty$, there exists a positive integer $n_4 \geq n_3$ such that $\alpha_n < \gamma_2$ for all $n \geq n_4$. It is easy to prove that

$$\frac{(1 - \alpha_n)^2}{1 - 2\alpha_n(1-k)} \leq (1 - \gamma_1 \cdot \alpha_n),$$

(3.24)

for all $n \geq n_4$. Therefore, (3.23) can be written as the following form: For all $n \geq n_4$,

$$\|x_{n+1} - q\|^2 \leq (1 - \gamma_1 \alpha_n)\|x_n - q\|^2 + \gamma_1 \alpha_n \cdot \sigma_n,$$

(3.25)

where $\sigma_n = 2d_n / [\gamma_1 (1 - 2\alpha_n(1-k))]$. Thus by Lemma 2.2(2), we have $x_n \to q$ as $n \to \infty$.

The uniqueness of the fixed point q can be proved as in Theorem 3.2. This completes the proof.

Remark 4. Theorem 3.4 also improves and extends the results of Chidume [4], Chidume [5, Theorem 2], Chidume [6, Theorem 4], Tan and Xu [18, Theorem 4.2], and Deng and Ding [10, Theorem 1].

4. CONVERGENCE OF MANN ITERATION SEQUENCES FOR STRONGLY PSEUDO-CONTRACTION MAPPINGS

Theorem 4.1. Let X be a real uniformly smooth Banach space, let K be a nonempty bounded closed convex subset of X and let $T: K \to K$ be a strongly pseudo-contractive mapping. Let (α_n) be a real sequence in $[0, 1]$ satisfying $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\alpha_n \to 0$ as $n \to \infty$. If $F(T) \neq \emptyset$, then, for any given $x_0 \in K$, the Mann iteration sequence (x_n) defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTx_n,$$

for $n = 0, 1, 2, \ldots$ converges strongly to the unique fixed point of T in K.

Proof. Taking $\beta_n = 0$ for all $n = 0, 1, 2, \ldots$ in Theorem 3.3, then the conclusion of Theorem 4.1 can be obtained from Theorem 3.3 immediately.
Remark 5. (1) Because $L_p, 1 < p < \infty$, is a special uniformly smooth Banach space, Theorem 4.1 improves and extends the results of Chidume [4, Theorem 2].

(2) Theorem 4.1 also improves and extends the results of Chidume [5, Theorem 1], Chidume [6, Theorem 3], and Tan and Xu [18, Theorem 3.2].

Theorem 4.2. Let X be a real Banach space, let K be a nonempty bounded closed convex subset of X, let $T: K \to K$ be a uniformly continuous strongly pseudo-contractive mapping. Let (α_n) be a real sequence satisfying the following conditions:

(i) $0 \leq \alpha_n < 1$ for all $n = 0, 1, 2, \ldots$ and $\alpha_n \to 0$ as $n \to \infty$,

(ii) $\sum_{n=0}^{\infty} \alpha_n = \infty$.

If $F(T) \neq \emptyset$, then, for any given $x_0 \in K$, the Mann iteration sequence (x_n) defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Tx_n,$$

for all $n = 0, 1, 2, \ldots$ converges strongly to the unique fixed point of T in K.

Proof. Taking $\beta_n = 0$ for all $n = 0, 1, 2, \ldots$ in Theorem 3.4, the conclusion of Theorem 4.2 can be obtained immediately.

5. CONVERGENCE OF ISHIKAWA ITERATION SEQUENCES FOR STRONGLY ACCRETIVE MAPPINGS

Lemma 5.1. Let X be a real Banach space and let $T: X \to 2^X$ be a multivalued strongly accretive mapping with a strongly accretive constant $k \in (0, 1)$. For any given $f \in X$, define a mapping $S: X \to 2^X$ by

$$Sx = f - Tx + x,$$

for all $x \in X$. Then for any given $x, y \in X$, $u \in Sx$, and $v \in Sy$, there exists $\tilde{j}_p \in J_p(x - y), 1 < p < \infty$, such that

$$\langle u - v, \tilde{j}_p \rangle \leq (1 - k)\|x - y\|^p.$$

Because T is strongly accretive if and only if $(I - T)$ is strongly pseudo-contractive, the following theorem is obtained from Theorem 3.2.

Theorem 5.2. Let X be a real uniformly smooth Banach space and let $T: X \to X$ be a Lipschitzian strongly accretive mapping. Let $k \in (0, 1)$ and
\(L > 1 \) be the strongly accretive constant and Lipschitz constant of \(T \), respectively. For any given \(f \in X \), define a mapping \(S : X \rightarrow X \) by

\[
Sx = f - Tx + x,
\]

for all \(x \in X \). Let \(\{\alpha_n\}, \{\beta_n\} \) be two real sequences satisfying the following conditions:

(i) \(0 \leq \alpha_n \leq 1 \) for all \(n = 0, 1, 2, \ldots \),

(ii) \(0 \leq \beta_n \leq k \cdot [2(1 + L)(2 + L)]^{-1} \) for all \(n = 0, 1, 2, \ldots \),

(iii) \(\sum_{n=0}^{\infty} \alpha_n = \infty \) and \(\alpha_n \to 0 \) as \(n \to \infty \).

If \(ST \neq \emptyset \) (the set of solutions of the equation \(f = Tx \) in \(X \)), then, for any given \(x_0 \in X \), the Ishikawa iteration sequence \(\{x_n\} \) defined by

\[
\begin{align*}
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nSy_n, \\
y_n &= (1 - \beta_n)x_n + \beta_nSx_n,
\end{align*}
\]

for \(n = 0, 1, 2, \ldots \) converges strongly to the unique solution of the equation \(f = Tx \) in \(X \).

Proof. Taking \(q \in ST \), we have \(f = Tq \) and so \(q = Sq \). If there exists a positive integer \(n_0 \) such that \(x_{n_0} = q \), then, by the same way as stated in Theorem 3.2, we can prove that \(x_{n+n} = q \) for all \(n = 1, 2, \ldots \) and so \(x_n \to q \) as \(n \to \infty \). Therefore, without loss of generality, we can assume that \(x_n \neq q \) for all \(n = 0, 1, 2, \ldots \) and so \(\|x_n - q\| > 0 \) for all \(n = 0, 1, 2, \ldots \). Because \(X \) is uniformly smooth, it follows from Proposition 1.1(7) that \(J_2 \) is single-valued and uniformly continuous on any bounded subset of \(X \). From (5.1) and Lemma 2.1, it follows that

\[
\begin{align*}
\|x_{n+1} - q\|^2 &\leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n(Sx_n - q, J_2(x_{n+1} - q)) \\
&\leq (1 - \alpha_n)^2\|x_n - q\|^2 + 2\alpha_n(Sy_n - q, J_2(x_n - q)) \\
&\quad + 2\alpha_n \cdot \beta_n \cdot \|x_n - q\|^2,
\end{align*}
\]

where

\[
g_n = \left(\frac{Sy_n - q}{\|x_n - q\|}, J_2 \left(\frac{x_{n+1} - q}{\|x_n - q\|} \right) - J_2 \left(\frac{x_n - q}{\|x_n - q\|} \right) \right).
\]

(1) First we consider the second term on the right side of (5.2). We have

\[
(Sy_n - q, J_2(x_n - q)) = (Sy_n - Sx_n, J_2(x_n - q)) \\
+ (Sx_n - q, J_2(x_n - q)).
\]
By Lemma 5.1, we have
\[(S x_n - q, J_2(x_n - q)) \leq (1 - k) \cdot \|x_n - q\|^2,\] \hfill (5.4)
\[\|S y_n - S x_n\| \leq (1 + L) \cdot \|y_n - x_n\|.\] \hfill (5.5)

Hence we have, by the condition (ii),
\[(S y_n - S x_n, J_2(x_n - q)) \leq (1 + L) \|y_n - x_n\| \cdot \|x_n - q\| \]
\[= (1 + L) \cdot \beta_n \cdot ||S x_n - x_n|| \cdot \|x_n - q\| \]
\[\leq (1 + L) \cdot \beta_n \|S x_n - q\| + \|x_n - q\| \cdot \|x_n - q\| \]
\[\leq (1 + L) \cdot \beta_n (2 + L) \cdot \|x_n - q\|^2 \]
\[\leq \frac{1}{2} \cdot k \cdot \|x_n - q\|^2.\] \hfill (5.6)

Substituting (5.4) and (5.6) into (5.3), we have
\[(S y_n - q, J_2(x_n - q)) \leq (1 - \frac{1}{2}k) \cdot \|x_n - q\|^2.\] \hfill (5.7)

(11) Next we prove that \(g_n \to 0, n \to \infty\). In fact, by the same way as in the proof of (3.7)–(3.9), we can prove that
\[\|y_n - q\| \leq (1 + L) \|x_n - q\|,\] \hfill (5.8)
\[\frac{\|S y_n - q\|}{\|x_n - q\|} \leq \frac{(1 + L) \|y_n - q\|}{\|x_n - q\|} \leq (1 + L)^2,\] \hfill (5.9)
\[\frac{x_{n+1} - q}{\|x_n - q\|} - \frac{x_n - q}{\|x_n - q\|} \leq \alpha_n \left((1 + L)^2 + 1 \right) \to 0, \quad (n \to \infty).\] \hfill (5.10)

By the uniform continuity of \(J_2\), from (5.9) and (5.10), it follows that \(g_n \to 0\) as \(n \to \infty\). Substituting (5.7) into (5.2), we obtain
\[\|x_{n+1} - q\|^2 \leq \left[(1 - \alpha_n)^2 + 2 \alpha_n \left(1 - \frac{k}{2} \right) + 2 \alpha_n \cdot g_n \right] \cdot \|x_n - q\|^2 \]
\[= \left[1 - \frac{k}{2} \alpha_n + \alpha_n \left(\alpha_n - \frac{k}{2} + 2 g_n \right) \right] \cdot \|x_n - q\|^2.\] \hfill (5.11)

Because \(\alpha_n \to 0\) and \(g_n \to 0\) as \(n \to \infty\), there exists a positive integer \(n_6\) such that, for all \(n \geq n_6\), \(\alpha_n + 2 g_n - k/2 < 0\). Therefore, from (5.11), we have, for all \(n \geq n_6\),
\[\|x_{n+1} - q\|^2 \leq \left(1 - \frac{k}{2} \alpha_n \right) \cdot \|x_n - q\|^2.\]

It follows from Lemma 2.2(2) that \(x_n \to q\) as \(n \to \infty\).
In addition, it is easy to prove that q is the unique solution of the equation $f = Tx$ in X. This completes the proof.

Remark 6. Theorem 5.2 improves and extends the results of Deng and Ding [10, Theorem 2], Chidume [6, Theorem 2], Tan and Xu [18, Theorem 4.1], and Deng [8, Theorem 1].

ACKNOWLEDGMENTS

The authors thank the referees for their valuable suggestions.

REFERENCES