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Abstract 

For a pump station supplying water, this paper is analyzing the real situation of the station considering all the real 
existing factors related to set a mathematic model, in the goal of reducing the cost thru adjusting the water flow in 
different time sections. The dynamic programming model method with detailed analyses is induced illustrated by an 
example of optimizing the cost of a single unit in a single day with a fixed water-supply amount in the paper. More 
interesting, a special case of this model is illustrated to proof that non-stop pump working is more power saving than 
intermittent working given the unchangeable electricity price.  

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 

Keyword: pump station, electricity price, time sections, mathematic model, dynamic programming, single unit 

1. Introduction 

1.1 The general situation where we are 

In the irrigation work or the water conservancy work, we always use pumps. As the electricity cost 
varies in every time section with the flux and reflux etc., how to save the cost while assuring the water 
supply without increasing the other kinds of costs is the key question to solve in this paper. After 
investigation, it is found out that the water pump flow can be controlled in any time section. Let Q-the 
pump flow be the decision variable, now the problem becomes what we do to adjust Q in every time 
section to reduce the total electricity cost.  

What’s more, if the time section is big enough and we can warrant the water supply in that section. In 
this case, which is more electricity saving to run the pump in a non-stop way or intermittently to adjust 
the water flow in that time section is an interesting question to be solved. We need to give more detailed 
analyses about that. That’s why we press forward a special case in the flowing part of this paper. 
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1.2 Why we use dynamic programming here 

Dynamic programming is a computational technique to solving dynamic optimization problems 
pioneered by Richard Bellman in the late 1950s. It was developed initially as the result of studying certain 
types of programming problems which arose in inventory theory. It is more powerful in deterministic and 
stochastic environments, especially in sequential decision of this kind, and it can be used in both 
continuous and discrete time. As we make different decisions in different time, we make sequential 
decisions, thus it can be taken as a multiple –stage deterministic problem. Here we can divide a whole 
24h day into different time stages so that this optimization process of cost –save for the single pump in a 
single day can be done with this right fitting method. 

2. Mathematic Model Setting 

There are 24h a day, considering the peak-valley price, the range of water level etc, we divide a day 
into SN time sections. The objective function is the total electrical cost of the unit in one day. The 
decision variable is the water flow in every time section. The constraint condition is the fixed 
water-supply amount and the supply power or the limited supplying speed for the unit. According to the 
water project knowledge, we can get the model as: 
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(0<a 1)i eQ aW≤ ≤                               (Power Constraint)    (1.3) 

Where fd  is the total electricity cost in one day (Let 10 thousand RMB as one unit), ρ is the water 

density, g is the acceleration of the gravity, iH is the average pressure head, iθ  is the vane angle, in
is the rotation speed, ( , )i i iQ nθ  means the water flow thru the unit in time section i, iTΔ  is the length 

of time section i, iP  is the electricity price of time section i (RMB/KW), eW  is the necessary daily 

water  needs in one day, and , ( , )z i i inη θ , motη , intη , fη  are respectively plant efficiency, motor 

efficiency, transmission efficiency and conversion efficiency, ,z iη  is subject to water flow and pressure 
head.

3. Analyses of the Model 

3.1 How we get the dynamic programming model 

In equation 1.1, given the divided time sections, and electricity prices in every time section, therefore it 
is obvious that ρ , g, iT , and iP  are all known constants. According to the authority of water 

engineering, motη  keeps invariable as 94% for big engines when the load ratio is above 60%. The 

transmission efficiency intη of the direct motors can be considered as 1, fη  of the higher power 
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frequency convertor is around 96%, hence, motη , intη , fη  can all be taken as constants. And let’s 

assume that iθ  is 00  to get the equation of ,z iη to make it simple to analyze. 

Let
intmot f

gρ
η η η

⋅
⋅ ⋅

. i iP b=  (2.1), where ib  is a calculated constant.  

Now, let’s see how to do with 
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Based on the previous research done by the other pump related professionals, by using the nonlinear 
programming method, in equation 2.2, we can get 2

1 2 3i i iH Q Qα α α= + +  (2.2.1) where 1 2 3, ,α α α
are calculated constants. Similarly, given that iθ  = 00 , 3 2

1 2 3 4i i iQ Q Qη β β β β= + + +  (2.2.2), 

where 1 2 3 4, , ,β β β β can be calculated. Thru using these two results, consequently, we can have: 
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Where 1 2 3, ,γ γ γ  are derived from ,α β  thru polynomial division. Thus, we can let 
2

1 2 3 1
3 2

1 2 3 4 1

i i

i i i

Q Q
Q Q Q
γ γ γ α

β β β β β
+ +

+
+ + +

= ( )if Q    (2.2.4) 

Therefore, the equation 1.1, 1.2, 1.3 can be rewritten as : 
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Here 3.1 is an obvious dynamic programming model, it is efficient using dynamic optimization method 
to solve this problem. It can be solved thru the recursion algorithm. That can be shortly expressed as 
following. 
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In this equation, it means the optimization result of the first few stages can be inherited by the 
following steps, hence, the recursive algorithm can be implemented to solve the problem. 

3.2 One special but meaningful case 

When calculating the model, a special case is found very interesting. When we assume that the 
electricity price is always the same for all the time in a day, then ib  will be always the same, let us say 
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∧

 according to equation 2.1. Also let us divide every time stage equally, so we have
24

i
hT
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on 3.1, if the time section is big enough, the total water supply in that one stage can meet the whole water 
need, therefore, it can be deduced that (0<a 1)i eQ aW≤ ≤  this constraint can be omitted. In this 
case, we can have the model as: 
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In 4.1, we have that 0iQ ≥ , and given the condition above, I can figure out, normally, we have the 

result that for any integer k between 0 and SN, when ,  0<k SN,
24k e
SNQ W

h
= ≤ and Q 0i = , i k≠ ,

we can have the minimized electricity cost. In another word, we just have the pump on in one time section 
while all the other off, in this condition, it is the most power saving solution. Non-stop way is the best 
solution to save the electricity in this case. 

The following steps are about how to proof it. 
1) In equation 2.2.3, according to the water engineering experiments, we can get the values of , ,α β γ

thru nonlinear programming. Normally, after calculation of the function, we 
have '( ) '( ),  x,t 0f x t f x+ ≤ ≥ , the increasing speed is descending. 

2) Thus, we calculate the derivation of 1 2 1 2( ) ( ) ( )f Q f Q f Q Q+ − + , considering 1Q  as a 

variable and 2Q  as a constant, then, we have: 

1 2 1 2 1 1 2[ ( ) ( ) ( )] ' '( ) '( ) 0f Q f Q f Q Q f Q f Q Q+ − + = − + ≥ , 1 2 1 2( ) ( ) ( )f Q f Q f Q Q∴ + ≥ +
3) Using the recursion, we can speculate that 
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4) Finally, we have the optimized and minimized value as: 
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Note that, as for equation 2.2.4, this rule only works, when function f(x) is constrained 
to '( ) '( ),  x,t 0f x t f x+ ≤ ≥ . From experiments, in most cases, with α β γ， ，  got from the 
nonlinear programming method, that 2.2.4 can meet this condition. It can only be tested by experience but 
hard to be logically proved. 

4. Conclusion and Prospect 

In the mathematic model, we can calculate to optimize the electric cost thru adjusting the water flow in 
every time section. In the special case, we can conclude that normally when a pump is non-stop working 
is more power efficient than intermittent working. Though the model and the general algorithm is given, 
there is still more work to optimize the recursion steps to save computational time and space. The blade 
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angle can also be taken as the decision variable to optimize the energy cost. The dynamic programming 
method can be used to solve how to adjust the blade angle to optimize the efficiency. Questions like how 
to combine these decision factors together is still in front of us. 
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