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ABSTRACT This article focuses on  
the potential impact of big data analysis 
to improve health, prevent and detect 
d isease at  an ear l ier  s tage,  and 
personalize interventions. The role 
that big data analytics may have in 
interrogating the patient electronic health 
record toward improved clinical decision 
support is discussed. We examine 
developments in pharmacogenetics 
that have increased our appreciation 
of the reasons why patients respond 
differently to chemotherapy. We also 
assess the expansion of online health 
communications and the way in which 
this data may be capitalized on in order 
to detect public health threats and 
control or contain epidemics. Finally, 
we describe how a new generation of 
wearable and implantable body sensors 
may improve wellbeing, streamline 
management of chronic diseases, and 
improve the quality of surgical implants. 
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1 Introduction 
The complexity, diversity, and rich con-
text of data being generated in health-
care are driving the development of big 
data for health [1]. Volume, velocity, 
variety, veracity, variability, and value 
are the “V’s” of big data, and these are 
encapsulated in the inherent challenges 
of biomedical and health informatics. 
Effective ways of tackling these chal-
lenges would pave the way for more 
intelligent healthcare systems focused 
on prevention, early detection, and per-
sonalized treatments. 

2 Big data for precision medicine 
The electronic patient health record 
(EHR) is a source of big data contain-
ing information regarding socio-demo-
graphics, medical conditions, genetics, 
and treatments; yet the human ability 
to process this data without effective 
decision support is finite. For health-
care, the goal is to provide a continually 
learning infrastructure with real-time 
knowledge production and to develop 
a system that is preventative, predic-
tive, and participatory [2]. In order to 
achieve this goal, computer models are 
required to help clinicians organize 
the data, recognize patterns, interpret 
results, and set thresholds for actions. 
Examples of big data analytics for new 
knowledge generation, improved clini-
cal care, and streamlined public health 
surveillance are already apparent. For 
example, the EHR has been successfully 
mined for post-market surveillance of 
medications and improved pharmaco-
vigilance.

In the United Kingdom, the National 
Health Service intends to be paperless 
by 2018. The EHR will provide an inte-
gral resource for future clinical decision 
support systems (CDSSs) that may over-
come human limitations in data com-
prehension and multitasking. CDSSs 
are already being developed to assess 
and improve protocol adherence [3], for 
medication reminders [4], to improve 
screening [5], and to predict hospital re-
admission [6]. Certain conditions have 
multiple treatment options and CDSSs 
are being developed to help clinicians 
optimize strategies. For example, prob-
lems associated with anterior cruciate 
ligament (ACL) may be treated by phys-
iotherapy, medicine, or surgery. In this 

regard, hierarchical learning for EHR 
data, along with information regarding 
occupational, recreational, and muscu-
loskeletal data, has been used to classify 
treatment options [7].   

It is expected that big data for health 
can play an important role in pharma-
cogenetics and stratified healthcare. 
Patients with a similar cancer subtype 
often respond differently when chal-
lenged with the same chemotherapeu-
tics. For example, CYP2D6 is a poly-
morphic gene associated with response 
to Tamoxifen [8], BRAF  mutations 
(Y472C) have been linked to Dasatinib 
response in non-small cell cancer of the 
lung [9], and multiple gene signatures 
have been recently associated with the 
response of rectal cancer to chemora-
diotherapy [10]. Genomic instability 
is believed to be responsible for the 
observed diversity of drug response. 
Recent efforts have focused on expos-
ing the complex interplay of genom-
ics and chemotherapeutic sensitivity, 
resistance, and toxicity [11–13]. For 
example, the Cancer Genome Atlas re-
search network has launched the Pan-
Cancer project [11] to analyze multiple 
tumor types and molecular aberrations 
in cancer types, and to enable scientists 
to discover new aberrations. Similarly, 
several projects such as the Cancer Cell 
Line Encyclopedia [12] and the Genom-
ics of Drug Sensitivity in Cancer [13] 
are generating large genomic databases 
to specifically interrogate links between 
genomic biomarkers and drug sensitiv-
ity in hundreds of cancer cell lines. As 
evidence of the ability to leverage large 
pharmacogenetic databases to predict 
drug sensitivity, recent data suggests 
that computational algorithms for pre-
dicting drugs for individual cell lines 
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can be improved based on genomic 
profiles and drug-response data [14]. 
Future work will involve testing the re-
sults of such algorithmic predictions on 
tumor response and toxicity in patients 
undergoing chemotherapy. 

One of the major contributors of 
dramatic change in healthcare is the 
upsurge in communication instigated 
by social media. One recent estimate 
suggests over one billion healthcare 
tweets, reflecting the enormity of dia-
logue between healthcare providers, 
patients, organizations, and third par-
ties. Approximately 20% of patients 
with chronic healthcare conditions 
such as diabetes, cardiovascular dis-
ease, and cancer, go online to actively 
seek others and share experiences of 
related conditions; such actions are 
creating patient communities on so-
cial media sites such as Twitter and 
Facebook. Social media is providing 
new avenues for investigators to enroll 
patients in research, and for patients 
to engage in sharing their health data. 
For example, in TuAnalyze [15], a joint 
initiative between TuDiabetes and the 
Boston Children’s Hospital, diabetics 
can monitor, evaluate, and share their 
results while actively participating in 
research on diabetes. Arguably one of 
the most interesting applications of big 
data analytics is in the ability to pre-
dict and track major outbreaks in order 
to improve public healthcare resources 
and the dissemination of healthcare 
messages to victims using social me-
dia. Predictions of serious healthcare 
emergencies such as exacerbations of 
asthma can be better predicted in mod-
els that combine social media analysis 
with environmental data. Unlike con-
ventional models that base predictions 
with a two-week lag, Ram et al. [16] 
were able to create accurate predic-
tion models of the volume of daily 
emergency-department visits for acute 
asthma (volume defined as low, mod-
erate, or high) using Twitter activity, 
Google searches, and air-quality data 
[16]. Similarly, for major public epi-
demics such as Ebola, data can be col-
lected and analyzed to support early 
warning systems for epidemic trends 
and to deliver messages for healthcare 
education interventions [17]. For ex-
ample, Odlum et al. [17] demonstrated 
that analyzing tweet activity around 

Ebola virus detection (EVD) captured 
progressive increases in the number of 
tweets discussing EVD case identifica-
tion in Nigeria occurring at least three 
days prior to the news alert and seven 
days before the official Centre for Dis-
ease Control warnings. Finally, several 
investigators are exploiting the poten-
tial of social media toward behavioral 
change and improvements in health-
care, including targeted interventions 
for developing countries for the pur-
pose of global health promotion [18].  

Another important driver for big 
data is the widespread deployment 
of sensing technologies. There has 
been increasing interest in wearable 
and implantable sensing owing to 
improvements in technologies, includ-
ing sensors with enhanced wireless 
communications that have increased 
bandwidth and improved microelec-
tronics. As a result of these develop-
ments, continuous, multimodal, and 
context-aware sensing is now feasible 
[19]. Simultaneously, advances in sen-
sor miniaturization, embodiment, bio-
fouling mitigation, and microelectronic 
fabrication schemes have improved the 
versatility and reliability of implant-
able biosensors. Episodic monitoring is 
being replaced, therefore, with continu-
ous sensing and parallel improvements 
in integrated care, toward personal-
ized and stratified healthcare. Patients 
at high risk of critical events, such as 
arrhythmias, following myocardial in-
farction may benefit from continuous 
monitoring of blood pressure, pulse, 
and cardiac rhythm such that arrhyth-
mias can be detected in near real time 
and signals sent to a smartphone for 
ulterior processing [20]. Similarly, pa-
tients with chronic health conditions 
such as diabetes may benefit from 
implantable microsystems for continu-
ous monitoring [21], toward improved 
long-term glucose control. Neuro-
modulation, such as with implantable 
spinal stimulators, is having an impact 
in the management of chronic back 
pain [22]. Implantable sensors that 
monitor the axial load on an individual 
subject’s spine [23] may lead to person-
alized orthopedic prostheses. In future, 
it is hoped that sensors applied in close 
proximity to the site of operative in-
tervention, which monitor local hemo-
dynamics or tissue ionic content, will 

enable wound infections to be detected 
and treated at a sub-clinical stage, pre-
venting fulminant sepsis. White blood 
cells and neutrophil counts could be 
continually monitored in patients un-
dergoing chemotherapy cycles such 
that the earliest sign of neutropenia 
could be coupled with granulocyte 
stimulation to mitigate sepsis. 

3 Conclusions
In conclusion, the sources and com-
putational techniques for big data are 
rapidly increasing and the possible uses 
for improving health and well-being 
are manifold. For healthcare, the goal 
is to provide a continually learning in-
frastructure with real-time knowledge 
production and to develop a system 
that is preventative, predictive, and 
participatory. Big data analysis clearly 
has tremendous potential to improve 
healthcare and transform the health 
of populations. However, successfully 
exploiting this potential will depend on 
solving challenges associated with data 
privacy, security, ownership, and gov-
ernance. 
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