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Summary Automated CO2 partial pressure, pCO2, measurements were performed on a cargo
ship that commutes between the Gulf of Finland and the Mecklenburg Bight in the southwest of
the Baltic Sea. The data from 2004 to 2014 along a sub-transect in the Mecklenburg Bight are used
to analyze the timing and intensity of the net community production (NCP). The start of the spring
bloom, identified by the first continuous drop of the pCO2 below the atmospheric level, spanned
from mid-February to mid-March. Converting the pCO2 decrease during spring to changes in the
total CO2 concentration and taking into account air-sea gas exchange, the spring NCP was
determined. The NCP increased by about 80% during 2004—2014, the mean amounted to
40 mmol L�1. In two years a distinct second pCO2 minimum in mid-summer succeeded the
minimum in spring. This was attributed to production fuelled by nitrogen fixation since the
nitrate concentrations were virtually zero and since the atmospheric deposition could not satisfy
the NCP nitrogen demand. Furthermore, investigations of the plankton composition revealed a
cyanobacteria biomass peak in the year with the highest mid-summer NCP. Based on the
calculation of the mid-summer NCP in the two particular years and on the C/N ratio of particulate
organic matter, the corresponding nitrogen fixation activity was calculated. These values and
the analysis of the relationship between the integrated NCP and temperature indicated that the
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nitrogen fixation activity in the Mecklenburg Bight was by a factor 3—4 lower than in the central
Baltic Sea.
# 2015 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by
Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A fully automated measurement system for the continuous
recording of the surface water CO2 partial pressure, pCO2,
was deployed on cargo ship “Finnpartner” in summer
2003. The ship commuted regularly at 2—3 days intervals
between the Gulf of Finland in the northeast and the Meck-
lenburg Bight in the southwest of the Baltic Proper (Fig. 1). In
2007 the instrumentation was moved to cargo ship “Finn-
maid” that had taken over the line of “Finnpartner”, and
since then the measurements are continued. Because bio-
chemical processes such as biomass (organic matter) pro-
duction and mineralization (respiration) are intimately
connected with the consumption and generation of CO2,
respectively, the high resolution of the pCO2 data can be
used to detect and quantify plankton bloom events and their
relationship to the availability of nitrogen and phosphorus in
the various regions of the Baltic Proper. This approach is
similar to the use of oxygen concentrations as an indicator
for biomass production (e.g. Stigebrandt, 1991). However,
since O2 equilibrates relatively fast with the atmosphere,
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Figure 1 Route of the cargo ship “Finnmaid” (“Finnpartner”) betw
sub-transect in the Gotland Sea indicates the area of previous pCO2

analysis of the pCO2 data in the Mecklenburg Bight (dashed ellip
concentrations (circle) and the two stations for the analysis of the 
the O2 gas exchange constitutes a major term in the O2

budget calculation and increases the uncertainty of the
production estimate. In contrast, equilibration of CO2 with
the atmosphere is 5—10 times slower and the biologically
induced changes of the CO2 budget are conserved for a
longer time in the water column and are less affected by
CO2 gas exchange.

Previous analysis of the pCO2 data were mainly confined to
the Baltic Proper and in particular to the eastern Gotland Sea
(Schneider et al., 2014b; Schneider et al., 2006; Schneider
et al., 2009). A characteristic bimodal seasonal distribution
pattern with minima in May and in July was observed. These
were attributed to the spring bloom and to the mid-summer
production period fuelled by nitrogen fixation. Based on a
CO2 mass balance that included the gas exchange with the
atmosphere, the net community production (NCP) during
spring (April/May) was estimated and it was shown that
the net production after the nitrate depletion by mid-April
requires an external nitrogen source. However, the hypoth-
esis of a spring nitrogen fixation (termed “cold fixation”)
could not yet be confirmed by other methods.
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Based on the second pCO2 minimum the mid-summer NCP
was determined and, using the C/N ratio of particulate
organic matter (POM), facilitated the estimate of the nitro-
gen fixation. Furthermore, it was shown that the exposure to
solar radiation is the major control for the development of
the cyanobacteria bloom and that the temperature as such
plays only a minor role. In contrast to the Baltic Proper,
blooms of nitrogen-fixing species are not a common phenom-
enon in western Baltic Sea. Therefore the annual Environ-
mental Fact Sheet of HELCOM on the “Cyanobacteria
Biomass” did not consider the western Baltic Sea (Wasmund
et al., 2014) and published data on cyanobacteria abundance
from this area are rare.

Here we present the pCO2 data collected during 2003—
2014 in the Mecklenburg Bight located in the southwest of the
Baltic Sea (Fig. 1). This region has not been included into our
previous data analysis since it has specific hydrographic
characteristics due to its location in the highly dynamic
transition zone between the North Sea and the Baltic Proper.
We are aiming at the determination of the timing, the
intensity and the relationship to the nutrient availability
of the spring bloom in the Mecklenburg Bight. Furthermore,
the data will be analyzed for evidence of mid-summer pro-
duction based on nitrogen fixation.

2. Methods

2.1. Cruise details

The route of cargo ship “Finnpartner” that was replaced by
“Finnmaid” in 2007, between the Mecklenburg Bight and the
Gulf of Finland is shown in Fig. 1. The measurements were
stopped when the ship passed polluted waters in the vicinity
of the ports of destination. When leaving the harbour area,
the measurements system was first calibrated before the
pCO2 measurements started. For the study presented here,
we used the mean pCO2, temperature and salinity from the
eastern part of the Mecklenburg Bight (12.08E—12.68E, Fig. 1,
inset). The temporal resolution of the data resulted from the
frequency of transits, the annual docking period of 1—2
weeks and occasional malfunctions of the measurement
system. For example, in 2014 we obtained 160 pCO2 transects
across the entire Baltic Proper which corresponded to a mean
temporal resolution of 2.7 days.

2.2. Analytical methods

The pCO2 measurements were based on equilibration of air
with surface water and determination of the CO2 content in
the equilibrated air by infrared detection (Licor 6262).
Therefore, surface water from a depth of about 3 m is
continuously pumped into a bubble-type equilibrator, while
at the same time air is pumped in a closed loop through the
water column in the equilibrator. The infrared spectrometer
that is integrated into the air loop, is equipped with a channel
for the analysis of both CO2 and water vapour and displays the
CO2 mole fraction in dry air. Furthermore, the water tem-
perature in the equilibrator and the pressure in the head-
space of the equilibrator are measured in order to account for
the temperature increase during pumping (�1 K) and to
convert the CO2 mole fraction into pressure units. The spatial
resolution of the pCO2 data is given by the equilibration time
(e-fold equilibration time �5 min) and by the ship's speed
(about 20 knots), and amounts thus to about 2 nautical miles.
The estimated uncertainty of the measurements amounts to
less than 5 matm. The pCO2 measurements were accompa-
nied by records of the in situ temperature (SST) and salinity
(S). More details about the measurement system and the
procedure to calculate the in situ pCO2 from the mole frac-
tion in dry air are given in Koertzinger et al. (1996).

For the determination of the nutrient concentrations
24 samples were taken automatically along the route of
“Finnmaid” at irregular time intervals of 1—4 weeks. One
sampling position was located within the Mecklenburg Bight
sub-transect at 12.58E (Fig. 1). The samples were analyzed in
the home laboratory immediately after arrival of “Finnmaid”
in the harbour (Helsinki). The concentrations of nitrate and
phosphate were determined on the basis of the classical
photometric methods (Grasshoff et al., 1983). Ammonium
concentrations were measured only sporadically during the
first years of our study. Since the concentrations were in
general below 0.5 mmol L�1, ammonium is neglected when
considering the availability of nitrogen for primary produc-
tion and the dissolved inorganic nitrogen (DIN) is given by the
nitrate concentrations.

2.3. Calculation of the CO2 gas exchange

The CO2 flux by gas exchange at the sea surface was calcu-
lated according to:

FAS
CO2

¼ k660 � Sc
660

� ��0:5

� ko � ðpCOatm
2 � pCO2Þ; (1)

with k660 the gas exchange transfer velocity normalized to a
Schmidt number of 660, Sc the Schmidt number, ko the CO2

solubility constant (function of temperature and salinity,
Weiss, 1974), pCO2 the surface water pCO2 and pCOatm

2 the
atmospheric CO2 partial pressure.

The atmospheric CO2 partial pressure, pCOatm
2 , was calcu-

lated from the mole fraction of CO2 in dry air that was
determined in air over the central Baltic Sea in 2005 (Schneider
et al., 2014a). For the calculations water vapour saturation was
assumed at the sea surface. To transfer the data to individual
years before/after 2005, an annual increase of the atmospheric
CO2 of 2 ppm was taken into account (Keeling et al., 2008). The
Schmidt number, Sc, that accounts mainly for the temperature
dependency of the gas exchange transfer velocity, was calcu-
lated according to Wanninkhof (1992) for zero salinity. The
variable k660 represents the gas exchange transfer velocity
normalized to Sc = 660 that corresponds to the transfer velocity
of CO2 at 208C and a salinity of 35. The dependency of k660 on
wind speed (at a height of 10 m, u10) was parameterized by a
quadratic function (Wanninkhof et al., 2009):

k660 ¼ 0:24 � u210: (2)

Geostrophic wind speed data (u10) for the southwest Baltic
Sea were obtained from the Swedish Meteorological and
Hydrological Institute (SMHI) and reduced to the wind speed
at 10 m height according to Omstedt and Axell (2003). Mean
u10 were calculated for the determination of daily fluxes,
whereas the variables (Eq. (1)) with a lower temporal reso-
lution were linearly interpolated.
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Figure 2 Time series of the (a) mean surface water temperature and (b) salinity along the transect in the Mecklenburg Bight.
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2.4. Calculation of changes in total CO2

concentrations

For the determination of the NCP on the basis of the CO2

consumption, it is necessary to convert changes in pCO2 to
changes in the total CO2 concentrations, CT. This is facilitated
by the fact that the abundance of calcifying plankton is
negligible in the Mecklenburg Bight and that thus significant
internal alkalinity (AT) changes do not occur. But varying
salinities during the individual periods for the NCP determi-
nation indicate that different water masses with different AT
were encountered. These cause changes in CTwhich are not
related to biological CO2 consumption or gas exchange.
Hence, it is not meaningful to calculate the in situ CT from
the in situ AT and the pCO2 measurements. Instead, we used
the measured pCO2 and the mean AT for the considered time
span to calculate the CT. The CTcalculated in this way may be
considered as the CT normalized to the mean AT and its
changes, DCT, are no longer affected by variations in AT
and are equivalent to the CO2 loss by organic matter produc-
tion that is partly compensated for by gas exchange.

For the determination of DCTon the basis of the pCO2 data,
we used the in situ SST and salinity, and the mean AT
(1,696 mmol kg�1). The latter resulted from the mean salinity
(9.4) during the development of the spring bloom and the
salinity—alkalinity relationship for the area south of the Got-
land Sea (Schneider et al., 2010). The computations were then
performedbythe use of the equilibriumconstants ofthe marine
CO2 system (Millero et al., 2006; Weiss, 1974). Since the
relationship between the observed change in pCO2 and the
calculated DCT is not entirely independent on AT, the uncer-
tainty of DCT that is associated with the choice of the mean AT,
was calculated. Based on the standard deviation of AT
(�43 mmol kg�1) that was obtained from the variability of
the salinity during the individual spring bloom periods, an
uncertainty of �3% was obtained for DCT. When using instead
the maximumdifference between the meanATand individual AT
(about 100 mmol kg�1) the difference in DCTamounted to �7%.

3. Results and discussion

3.1. Hydrography

The Mecklenburg Bight is part of the transition zone between
the Baltic Sea and the North Sea. The mean depth along the
sub-transect of our data analysis is about 25 m. The Mecklen-
burg Bight is characterized by the outflow of low-salinity
Baltic seawater and the inflow of North Sea water with a
higher salinity. This leads to a salinity stratification at an
average depth of about 10—15 m. Due to fast changing wind
driven inflow/outflow conditions and to vertical mixing, the
surface salinities show a large short-term variability and
range between about 7 and 18 (Fig. 2b). In most of the years
the salinity maxima occurred in autumn and winter, however,
in some years high salinities were also observed during
summer and only the long-term mean salinity distribution
reveals a clear seasonality. The extreme salinities of about
20 observed in December 2014 were the precursor of a major
inflow of high-salinity water from the North Sea that has
caused the renewal of stagnant and anoxic water masses in
the deep basins of the Baltic Proper (Mohrholz et al., 2015).

Surface water temperatures show a distinct seasonal cycle
(Fig. 2a). Temperature maxima of about 19—238C are
observed in July/August whereas the temperature minima
range between 48C and slightly below 08C in February/March.
Sea ice formation that occurred in rare cases, was generally
restricted to regions close to the coast.

3.2. Time series and seasonality of the pCO2

The mean pCO2 along the sub-transect in the Mecklenburg
Bight is shown in Fig. 3. The data gap in 2007 was caused by
the changeover of the instrumentation from “Finnpartner” to
“Finnmaid”. The data show a distinct seasonality with mini-
mum pCO2 due to CO2 consumption during the spring bloom.
The pCO2 maxima in autumn/winter are attributed to mixing
with deeper water masses that have been in contact with the
sediment surface and are enriched in CO2 by mineralization
of organic matter. Fig. 3 also indicates an increase of the
seasonal pCO2 amplitude resulting from both enhanced pCO2

maxima and more pronounced pCO2minima. This points to an
increased net community production during spring/summer
during the last decade and consequently to an intensified
organic matter mineralization at the sediment surface.

Details of the seasonal pCO2 cycle are visible in Fig. 4a that
presents the pCO2 data from all years as a function of the
Julian day. For comparison, the mean pCO2 in the eastern
Gotland Sea (Fig. 1) from the same years are shown in Fig. 4b.
In order to account for the increasing atmospheric CO2

(2 ppm yr�1) that causes a corresponding shift of the surface
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Figure 3 Time series of the mean surface water CO2 partial pressure along the transect in the Mecklenburg Bight.
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water pCO2, the data were approximately adjusted to the
year 2010 by adding/subtracting an annual offset of 2 matm
to the data. The seasonal pCO2 distribution in the Gotland
Sea is characterized by two pronounced minima which are
observed in April/May and in July/August and which can be
attributed to NCP in spring and during the nitrogen fixation in
midsummer, respectively. The spring draw down of the pCO2

occurs also in the Mecklenburg Bight, however, the minimum
is less distinctive. In the Mecklenburg Bight there is only a
slight hint for a pCO2minimum in mid-summer. Furthermore,
the pCO2 variability during late summer and autumn is much
stronger in the Mecklenburg Bight than in the Gotland Sea.
This is not the consequence of the interannual variability,
but it is caused by the high pCO2 variability within individual
years. The latter can be explained by the low water depth
that favours sporadic wind driven mixing with CO2-enriched
bottom water that is alternating with inflow of CO2-depleted
surface water from the Baltic Proper. During winter the pCO2

evens out at and approaches the atmospheric level of about
400 matm at the start of the spring bloom in February/March.
This is the case in both the Mecklenburg Bight and in
the Gotland Sea, and is attributed to the gradual equilibra-
tion of the surface water with the atmospheric CO2 by gas
exchange.
3.3. Characteristics of the spring bloom

The spring bloom starts as soon as the phytoplankton receives
sufficient light to maintain net growth. In the Baltic Proper
this is the case when vertical mixing is confined to the photic
zone (about 30 m). This happens during the development of a
shallow thermal surface layer that prevents plankton from
circulating through dark deeper layers (Smetacek and Pas-
sow, 1990) and that increases the mean exposition of plank-
ton to sunlight (Wasmund et al., 1998). In the shallow waters
of the Mecklenburg Bight with a mean depth of about 25 m,
one may therefore expect that the spring bloom starts each
year at approximately the same date when the daily solar
radiation has exceeded a certain threshold value. However,
this conclusion contrasts with the results of our approach to
identify the start of the spring bloom. We considered the first
continuous decrease of the surface water pCO2 below the
atmospheric pCO2 (DpCO2 < 0) that could not be explained
by a decrease in temperature, as the start of the spring
bloom. According to this definition the spring bloom started
within a time slot of 5 weeks from February 12 to March 21. To
illustrate the temporal development of the spring bloom, the
DpCO2 together with the SSTare shown for the years 2005 and
2009 (Fig. 5a and b). In 2009 the DpCO2 dropped below the
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zero line on February 12 whereas in 2005 this happened much
later, on March 6. The delay of the spring bloom in
2005 occurred although the temperature by mid-February
was higher than at the same time in 2009 when the early
spring bloom start was observed. Hence, the temperature as
such does obviously not control the development of the
plankton bloom. However, Fig. 5a and b indicate that the
first slight pCO2 decrease coincided with the minimum of the
SSTand that a stronger pCO2 decrease followed when the SST
started to increase. This shows that despite the low water
depth the spring bloom is triggered by the development of a
shallow thermocline as reflected by the reversal of the winter
cooling towards higher SST. Fig. 5 also illustrates that the
spring bloom pCO2 decrease does not occur strictly in a
steady way, but is superimposed by temporal fluctuations.
In case of the strong temporary peak in Fig. 5b, this can be
explained by wind-driven strong vertical mixing and trans-
port of water masses to the surface that were less exposed to
photosynthesis. On the other hand, during extremely calm
conditions when mixing is widely inhibited, it is conceivable
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that the pCO2 determined in water from a depth of about 3 m
differs from the value that is obtained when mixing reaches
again the main thermocline.

The spring bloom is fuelled by nitrate and phosphate that
accumulated in the surface water during winter. Fig. 6 shows
that the NO3 is rapidly consumed and, with one exception,
stays below 0.2 mmol L�1 from mid March until the end of
August. This is not the case for PO4 that in most years still
existed at substantial concentrations throughout the produc-
tive period. An exception is the year 2011 (Fig. 6, green line)
when extraordinarily high NO3 concentrations were observed
and yielded a nutrient N/P ratio of 25 at the start of the spring
bloom. Hence, based on the fact that the nutrient uptake by
plankton occurs according to the classical N/P Redfield ratio
(16), no PO4 is left over after the consumption of NO3. In
contrast, one could expect an excess of NO3, which, however,
is not observed possibly because of enhanced nitrogen uptake
by plankton. But we must also take into account the hydro-
graphic dynamics in the Mecklenburg Bight that limits the
interpretation of data from a single station.
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Table 1 Periods between the start of the spring bloom and the date of the nitrate depletion, consumption of nitrate (DNO3) and
phosphate (DPO4), total CO2 depletion (DCT) and net community production (NCP) during the spring bloom in the Mecklenburg
Bight. The elemental ratios C/N, C/P and N/P of particulate organic matter are calculated on the basis of DNO3, DPO4 and NCP.

Time period DNO3 [mmol L�1] DPO4 [mmol L�1] DCT [mmol kg�1] NCP [mmol L�1] C/N C/P N/P

22.2.04—28.3.04 3.5 0.23 31.5 35.3 10.0 154 15
6.3.05—5.4.05 23.6 22.2
22.2.06—21.3.06 3.4 0.26 15.3 17.4 5.2 67 13
13.2.08—24.3.08 3.4 0.16 19.3 33.1 9.7 207 21
15.2.09—1.4.09 4.2 0.40 25.6 42.8 10.2 107 11
15.2.10—14.3.10 3.8 0.29 38.5 36.3 9.5 125 13
7.2.11—30.3.11 10.4 0.39 66.0 75.0 7.2 192 27
7.3.12—3.4.12 5.4 0.40 50.5 50.1 9.3 125 14
21.3.13—3.4.13 3.7 0.31 31.6 30.4 8.4 98 12
20.2.14—9.3.14 5.8 0.37 50.6 49.6 8.6 134 16

Mean 8.7 134 16
Std. dev. 1.6 44 5
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Figure 7 Net community production in the Mecklenburg Bight.
The regression line corresponds to a mean increase of about 80%
during 2004—2014.
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In all other years the N/P ratios of the winter nutrient pool
ranged between 5 and 12 and were thus considerably below
the Redfield ratio of 16. As a consequence, a PO4 excess
existed and was still observed after the complete exhaustion
of NO3. In most years the PO4 excess was preserved through-
out the productive period as shown by the blue line in
Fig. 6. However, in some years the initial PO4 decrease
continued after the NO3 depletion (Fig. 6, red line) and
was accompanied by a decrease in pCO2. Similar observations
were made in the central Gotland Sea and lead to the
conclusion that net production had occurred despite the lack
of nitrogen (Schneider et al., 2009). Here we hesitate to
postulate the continuation of the net community production
and to speculate about a potential nitrogen source (Eggert
and Schneider, 2015) because the pCO2 did not always follow
the PO4 trend and because the high variability did not allow
for an unambiguous interpretation of the nutrient data.
Therefore, we consider the spring bloom in the Mecklenburg
Bight to be limited by the nitrogen (nitrate) availability. To
quantify the NCP, we first calculated the total CO2 decrease,
DCT, between the start of the spring bloom and the date when
the nitrate concentrations dropped to about 0.5 mmol L�1 or
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effect of the gas exchange on CT ðDCAS

T Þ. The sum of DCT and
J-15J-14J-13J-12J-11J-1009

ate

10.4

he start of the spring bloom. The regression line was calculated
and corresponds to a mean increase of 63% during 2004—2014.
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Figure 9 The seasonality of the pCO2 and sea surface temper-
ature in (a and b) two years with a distinct mid-summer minimum
of the pCO2 (shadowed area) and (c) a year without a prolonged
mid-summer minimum.
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DCAS
T represents the internal CT loss that in the absence of

calcium carbonate formation is equivalent to the net organic
matter production. The mean contribution of the DCAS

T term
to the calculated organic matter production amounted to 35%
and constitutes the major uncertainty in our estimate. The
net production of particulate organic matter, termed here
NCP, is obtained (Table 1, Fig. 7) by assuming that 20% of the
produced organic matter contributes to the dissolved organic
matter pool (Hansell and Carlson, 1998; Schneider and Kuss,
2004). A linear regression analysis indicates that the NCP
increased by roughly 80% during 2004—2014 (Fig. 7). The
mean NCP amounted to 40 mmol L�1 and corresponds to an
integrated production of 0.8 mol m�2 when assuming a depth
of the mixed layer of 20 m.

The NCP increase is also reflected in an increase of the
winter nitrate concentrations (Table 1, Fig. 8). Neglecting
the extremely high nitrate concentration in 2011
(10.4 mmol L�1), the regression line yields a mean increase
of the winter nitrate of 0.19 mmol L�1 yr�1 and corresponds
to an increase of 63% during the period 2004—2014. This is by
about 25% less than the NCP increase, but we must take into
account that the nutrient data were obtained at just one
station and had a lower temporal resolution.

Finally, we related the NCP to the consumption of nitrate
and phosphate (Table 1) during the respective time period. In
the case of the nitrate, the atmospheric deposition of dis-
solved inorganic nitrogen (DIN = nitrate + ammonium) was
taken into account. We used the deposition estimate by
Bartnicki et al. (2011) and distributed the flux of
0.1 mmol m�2 yr�1 within the upper 20 m of the surface
water. The nitrate and phosphate depletion in 2005 were
by some reason out of phase and were therefore omitted
from the analysis of the elemental ratios during the spring
bloom. The mean C/N and C/P ratios (Table 1) amounted to
8.7 � 1.6 and 134 � 44, respectively, and indicate a slight
carbon enrichment with respect to nitrogen and phosphorus
when compared with the classical C/N and C/P ratios of
6.6 and 106, respectively. The mean N/P ratio was 16
� 5 and agreed perfectly with the Redfield N/P ratio despite
the high standard deviation of the individual ratios.

3.4. Mid-summer nitrogen fixation

In contrast to the Gotland Sea, mid-summer pCO2 minima did
not occur regularly in the Mecklenburg Bight (Fig. 4a and b).
Nonetheless, distinct pCO2 minima were detected in June/
July of 2006 and 2008 (Fig. 9a and b, shadowed area). Since
the decrease in pCO2 was not accompanied by a lowering of
the salinity, we could exclude that advection of low-CO2

water from the Baltic Proper was the cause of the pCO2

decrease, but rather on-site NCP in this area of the Mecklen-
burg Bight. The onset of the mid-summer production
becomes also evident by the plot of the pCO2 versus SST
(Fig. 10). After the spring bloom minimum, the pCO2

increased with rising SST because the temperature effect
on the pCO2 prevailed over any NCP. However, by about May
28 the pCO2 started to decrease despite the continuation of
the SST increase and indicates the start of a NCP period.

The mid-summer NCP were calculated in the same manner
than the previous calculations for the spring NCP bloom
except for the choice of the mixed layer depth. Here we
used a value of only zmix = 10 m which is consistent with the
vertical temperature distribution at monitoring stations in
the Mecklenburg Bight (IOW, unpublished data) and which is
more plausible in view of the rapid SST increase during the
considered periods. For the two selected periods from May
28 to August 5 (2006) and from June 3 to June 29 (2008) the
NCP amounted 60 mmol L�1 and 45 mmol L�1, respectively.
Since the nitrate concentrations were virtually zero during
this time of the year, we concluded that nitrogen fixation
provided nitrogen for the NCP. To quantify the nitrogen
demand, the NCP was divided by the C/N ratio (8.4) of
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POM that was observed during periods of nitrogen fixation in
the central Baltic Sea (Schneider et al., 2003). Taking into
account the atmospheric deposition of DIN (0.26 mmol L�1 and
0.69 mmol L�1), the nitrogen fixation amounted to 6.4 mmol-
N L�1 and 5.1 mmol-N L�1 for 2006 and 2008, respectively.
Based on a mixed layer depth of 10 m, these estimates corre-
spond to depth-integrated values of 64 mmol-N m�2 and
51 mmol-N m�2 and are by a factor of about 2 below the mean
N2 fixation (138 mmol-N m�2) that was obtained from pCO2

records in the eastern Gotland Sea by Schneider et al. (2014a).
The Gotland Sea study by Schneider et al. (2014a)

revealed clear relationships between the accumulated NCP
and temperature during periods of nitrogen fixation in dif-
ferent years. This has led to the conclusion that the ratio
between solar radiation and mixed layer depth — hence the
exposure of plankton particles to sunlight — controls both the
temperature and the nitrogen fixation. The data from the
Mecklenburg Bight showed two longer periods with continu-
ously rising temperatures during the suspected nitrogen
fixation period in 2006. These were used to plot the accu-
mulated NCP as a function of SST (Fig. 11). Reasonable linear
relationships were found for both phases with slopes that
amounted to 4.7 and 3.8 mmol-C L�1 K�1 and that are by a
factor of 3—4 lower than during nitrogen fixation in the
central Gotland Sea (11—16 mmol L�1 K�1).
The pronounced mid-summer NCP in 2006 that was
attributed to nitrogen fixation, is consistent with investi-
gations of the composition of the plankton community.
These were performed within the IOW monitoring pro-
gramme at two stations (12 and 46) in the Mecklenburg
Bight (Fig. 1). The results of the cyanobacteria counting for
the years 2004—2014 (Table 2) show the second largest
cyanobacteria abundance by the end of July in 2006 when
the pCO2 minimum was observed. Furthermore, 2006 was
the only year in a time series of satellite images that
showed distinct summer blooms in the Mecklenburg Bight
(Öberg, 2013). In that year the blooms were so severe that
some beaches in northwestern Mecklenburg had to be
closed in the beginning of August. The second significant
mid-summer NCP derived from the pCO2 data occurred in
2008, which, however was not reflected in an outstanding
cyanobacteria abundance at the two stations in the Meck-
lenburg Bight. Vice versa, the highest cyanobacteria bio-
mass detected in August 2011 was not reflected in a draw
down of the pCO2 (Fig. 9c). However, previous to the date
of the biological observations the pCO2 shows short-term
decreases in July during which the pCO2 dropped to about
300 matm (unfortunately this is somewhat masked in Fig. 9c
because of the wide pCO2 range in 2011). These low pCO2

coincided with the increase of SST and may reflect nitrogen



Table 2 Cyanobacteria biomass during mid-summer at two stations in the Mecklenburg Bight (bold letters indicate agreement
between high biomass and high nitrogen fixation estimate).

Year Station 12 Station 46

Date Biomass [mg m�3] Date Biomass [mg m�3]

2004 14.07.2004 87.2 22.07.2004 42.0
2005 20.07.2005 132.0 21.07.2005 45.6
2006 27.07.2006 235.0 27.07.2006 168.0
2007 27.07.2007 50.1 27.07.2007 67.6
2008 01.07.2008 76.6 30.07.2008 38.2
2009 25.07.2009 54.0 25.07.2009 57.7
2010 25.07.2010 116.6 25.07.2010 104.1
2011 04.08.2011 252.2 14.08.2011 175.6
2012 04.08.2012 41.1 26.07.2012 32.6
2013 08.08.2013 62.9 08.08.2013 28.1
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fixation events which was still detectable as high biomass
in August.

4. Summary and conclusions

Despite the strong hydrographic dynamics in the transition
area between the North Sea and the Baltic Sea, measure-
ments of the surface water pCO2 are a useful tool to study
basic biogeochemical processes in the Mecklenburg Bight.
The start of the spring bloom in different years could unam-
biguously and precisely be determined by the drop of the
pCO2 below the atmospheric level. It was shown that the
temperature as such does not control the onset of the spring
bloom, but that also in the Mecklenburg Bight with a mean
water depth of only about 25 m, the development of a
shallow surface layer is a prerequisite for efficient photo-
synthesis.

According to the increasing seasonal pCO2 amplitude, the
pCO2 based calculations of the net community production
shows a trend that amounts to an increase of about 80%
during 2004—2014. Future measurements will show whether
this is a long-term development or a result of decadal
variability. We concede that the calculation of the NCP
may be associated with systematic biases. These are partly
due to the gas exchange calculations which are mainly
affected by uncertainties in the parameterization of the
transfer velocity, k660, with wind speed (Eq. (2)). However,
even if assuming an extreme error in k660 by 50%, the impact
on the calculations of the NCP is on average only 17%, because
the gas exchange term contributes only 35% to the calculated
NCP. Furthermore, the use of the 20% DOC contribution to the
organic matter production is prone to an error which, how-
ever, is difficult to quantify. On the other hand, the elemental
C/N and C/P ratios of particulate organic matter which are
based on the calculation of the NCP, are widely consistent
with the standard Redfield stoichiometry and indicate that
our NCP estimate was not unreasonable.

Decreasing CO2 partial pressure during mid-summer
in particular years indicated NCP fuelled by nitrogen
fixation since DIN concentrations were virtually zero and
since the atmospheric DIN deposition could not satisfy the
nitrogen demand of DIN. This was confirmed by biological
investigations which showed a cyanobacteria biomass peak
in a year (2006) when the most extended pCO2 mid-summer
was found. However, this coincidence was not observed in
another year with high cyanobacteria biomass. Based on the
calculated NCP and a C/N ratio of particulate organic matter
(8.4), the nitrogen fixation activity was estimated for two
years, 2006 and 2008, which revealed unambiguously a mid-
summer pCO2 minimum. We obtained values of 64 mmol-
N m�2 and 51 mmol-N m�2, respectively, which are consid-
erably below the mean nitrogen fixation in the central Baltic
Sea that according to the most recent pCO2-based estimates
amounts 138 mmol-N m�2 (Schneider et al., 2014b). Since
furthermore the nitrogen fixation determined for 2006 and
2008 do not represent a mean, but are exceptional events
observed during 2004—2014, we conclude that nitrogen
fixation in the Mecklenburg Bight and possibly in the entire
transition area to the North Sea is of minor importance for
the Baltic Sea nitrogen budget.

The increased nitrogen fixation activity in the central
Baltic Sea is also reflected in the relationship between the
accumulated mid-summer NCP and temperature. The latter
can be interpreted as the dependency of nitrogen fixation on
the exposure of plankton to solar radiation that can be
approximated by the increase in temperature. The average
DNCP/DT for the eastern Gotland Sea calculated from six
nitrogen fixation events amounted to 12.5
� 1.8 mmol L�1 K�1, whereas the mean for the Mecklenburg
Bight was 4.3 (3.8 and 4.7) mmol L�1 K�1. Hence, the nitro-
gen fixation efficiency (reflected in the NCP) in the eastern
Gotland Sea was by a factor of three larger than in the
Mecklenburg Bight. This is possibly due to the higher salinity
in the Mecklenburg Bight that may slowdown nitrogen fixa-
tion (Stal et al., 2003).

Acknowledgements

This study is based on measurements on cargo ships “Finn-
partner” and “Finnmaid” and were performed in a coopera-
tion between the Leibniz Institute for Baltic Sea Research
(IOW) in Warnemünde and the Algaline Project of Finnish
Environment Institute (SYKE) in Helsinki. We appreciate very
much the generous support of our research by the Finnlines
Shipping Company and thank especially the engine staff for
their cooperation.



Characteristics of the spring/summer production in the Mecklenburg Bight 385
References

Bartnicki, J., Semeena, V., Fagerli, H., 2011. Atmospheric deposition
of nitrogen to the Baltic Sea in the period 1995—2006. Atmos.
Chem. Phys. 11, 10057—10069.

Eggert, A., Schneider, B., 2015. A nitrogen source in spring in the
surface mixed-layer of the Baltic Sea: evidence from total nitro-
gen and total phosphorus data. J. Mar. Syst. 148, 39—47.

Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater
Analysis, 2nd ed. Verlag Chemie, Weinheim, Germany.

Hansell, D.A., Carlson, C.A., 1998. Net community production of
dissolved organic carbon. Global Biogeochem. Cycles 12 (3),
443—453.

Keeling, R.F., Piper, S.C., Bollenbacher, A.F., Walker, J.S., 2008.
Atmospheric CO2 records from sites in the SIO air sampling
network. In: Trends: A Compendium of Data on Global Change.
Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A.

Koertzinger, A., Thomas, H., Schneider, B., Gronau, N., Mintrop, L.,
Duinker, J.C., 1996. At-sea intercomparison of two newly
designed underway pCO2 systems — encouraging results. Mar.
Chem. 52, 133—145.

Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H., Pierrot, D.,
2006. Dissociation constants of carbonic acid in seawater as a
function of salinity and temperature. Mar. Chem. 100 (1—2), 80—94.

Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015.
Fresh oxygen for the Baltic Sea — an exceptional saline inflow
after a decade of stagnation. J. Mar. Syst. 148, 152—166.

Öberg, J., 2013. Cyanobacterial blooms in the Baltic Sea in 2013. HEL-
COM Baltic Sea Environment Fact Sheets 2013, http://helcom.fi/
baltic-sea-trends/environment-fact-sheets/eutrophication/
cyanobacterial-blooms-in-the-baltic-sea/.

Omstedt, A., Axell, L.B., 2003. Modeling the variations of salinity and
temperature in the large Gulfs of the Baltic Sea. Cont. Shelf Res.
23, 265—294.

Schneider, B., Gülzow, W., Sadkowiak, B., Rehder, G., 2014a. Detecting
sinks and sources of CO2 and CH4 by ferrybox-based measurements
in the Baltic Sea: three case studies. J. Mar. Syst. 140, 13—25.

Schneider, B., Gustafsson, E., Sadkowiak, B., 2014b. Control of the
mid-summer net community production and nitrogen fixation in
the central Baltic Sea: an approach based on pCO2 measurements
on a cargo ship. J. Mar. Syst. 136, 1—9.
Schneider, B., Kaitala, S., Maunula, P., 2006. Identification and
quantification of plankton bloom events in the Baltic Sea by
continuous pCO2 and chlorophyll a measurements. J. Mar. Syst.
59, 238—248.

Schneider, B., Kaitala, S., Raateoja, M., Sadkowiak, B., 2009. A
nitrogen fixation estimate for the Baltic Sea based on continuous
pCO2measurements on a cargo ship and total nitrogen data. Cont.
Shelf Res. 29, 1535—1540.

Schneider, B., Kuss, J., 2004. Past and present productivity of the
Baltic Sea as inferred from pCO2 data. Cont. Shelf Res. 24, 1611—
1622.

Schneider, B., Nausch, G., Nagel, K., Wasmund, N., 2003. The surface
water CO2 budget for the Baltic Proper: a new way to determine
nitrogen fixation. J. Mar. Syst. 42, 53—64.

Schneider, B., Nausch, G., Pohl, C., 2010. Mineralization of organic
matter and nitrogen transformations in the Gotland Sea deep
water. Mar. Chem. 119, 153—161.

Smetacek, V., Passow, U., 1990. Spring bloom initiation and Sver-
drup's critical depth model. Limnol. Oceanogr. 35, 228—234.

Stal, L., Albertano, P., Bergman, B., von Bröckel, K., Gallon, J.R.,
Hayes, P.K., Sivonen, K., Walsby, A.E., 2003. BASIC: Baltic Sea
cyanobacteria. An investigation of the structure and dynamics of
water blooms of cyanobacteria in the Baltic Sea — response to a
changing environment. Cont. Shelf Res. 23, 1695—1714.

Stigebrandt, A., 1991. Computation of oxygen fluxes through the sea
surface and the net production of organic matter with application
to the Baltic and adjacent seas. Limnol. Oceanogr. 36, 444—454.

Wanninkhof, R., 1992. Relationship between wind speed and gas
exchange over the ocean. J. Geophys. Res. 97, 7373—7382.

Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R.,
2009. Advances in quantifying air-sea gas exchange and environ-
mental forcing. Annu. Rev. Mar. Sci. 1 (1), 213—244.

Wasmund, N., Busch, S., Gromisz, S., Höglander, H., Jaanus, A.,
Johansen, M., Jurgensone, I., Karlsson, C., Kownacka, J., Kraś-
niewski, W., Lehtinen, S., Olenina, I., 2014. Cyanobacteria bio-
mass. HELCOM Baltic Sea Environment Fact Sheet 2014, http://
www.helcom.fi/baltic-sea-trends/environment-fact-sheets/
eutrophication/cyanobacteria-biomass/.

Wasmund, N., Nausch, G., Matthäus, W., 1998. Phytoplankton spring
blooms in the southern Baltic Sea — spatio-temporal development
and long-term trends. J. Plankton Res. 20, 1099—1117.

Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solu-
bility of a non-ideal gas. Mar. Chem. 2, 203—215.

http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0005
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0005
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0005
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0010
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0010
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0010
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0015
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0015
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0020
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0020
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0020
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0025
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0025
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0025
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0025
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0025
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0030
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0030
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0030
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0030
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0035
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0035
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0125
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0125
http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/
http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/
http://helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacterial-blooms-in-the-baltic-sea/
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0040
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0040
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0040
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0075
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0075
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0075
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0075
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0075
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0080
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0080
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0080
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0080
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0080
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0060
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0060
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0060
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0060
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0060
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0065
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0065
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0065
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0065
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0065
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0055
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0055
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0055
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0055
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0050
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0050
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0050
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0050
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0070
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0070
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0070
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0090
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0090
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0095
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0095
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0095
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0095
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0085
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0085
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0085
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0100
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0100
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0105
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0105
http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacteria-biomass/
http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacteria-biomass/
http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/eutrophication/cyanobacteria-biomass/
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0115
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0115
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0115
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0120
http://refhub.elsevier.com/S0078-3234(15)00090-1/sbref0120

	Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2 data
	1 Introduction
	2 Methods
	2.1 Cruise details
	2.2 Analytical methods
	2.3 Calculation of the CO2 gas exchange
	2.4 Calculation of changes in total CO2 concentrations

	3 Results and discussion
	3.1 Hydrography
	3.2 Time series and seasonality of the pCO2
	3.3 Characteristics of the spring bloom
	3.4 Mid-summer nitrogen fixation

	4 Summary and conclusions
	Acknowledgements
	References


