
i Theoretical

ELSEVIER Theoretical Computer Science 210 (1999) 245-260

Computer Science

Alphabet indexing for approximating features of symbols’

Shinichi Shimozono *

Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, 820 Japan

Abstract

We consider two maximization problems to find a mapping from a large alphabet forming
given two sets of strings to a set of a very few symbols specifying a symbol wise transformation
of strings. First we show that the problem to find a mapping that transforms the most of the
strings as to form disjoint sets cannot be approximated within a ratio n1/16 in polynomial time,
unless P = NP. Next we consider a mapping that retains the difference of the maximum number
of pairs of strings over the given sets. We present a polynomial-time approximation algorithm
that guarantees a ratio /c/(k - 1) for mappings to k symbols, as well as proving that the problem
is hard to approximate within an arbitrary small ratio in polynomial time. Furthermore, we extend
this algorithm as to deal with not only pairs but also tuples of strings and show that it achieves
a constant approximation ratio. @ 1999-Elsevier Science B.V. All rights reserved

Keywords: Alphabet indexing; Polynomial-time approximation; Nonapproximability; Knowledge
acquistion; Data compression

1. Introduction

A large number of combinatorial problems in computer science arise from compu-

tational methods in molecular biology for identifying essential amino acid sequence
elements that encode functional domains of proteins. Algorithmic operations required
in these methods are heavy and have to deal with a huge amount of sequences. One
major technique to obtain both time efficiency and succinctness of results in practice is
the use of similarities determined among amino acids by some appropriate properties
[6,8,13]. Such a set of similarities often defines a mapping that partitions the amino
acids into disjoint sets, which can be associated with features and regarded as a reduced
alphabet for expressing proteins [11,2 1,221.

Assume that a set I of a few symbols and two disjoint sets P and Q of strings
over an arbitrary large alphabet A are given. An alphabet indexing f for P and Q

l Tel.: +81-948-29-7642; fax: +81-948-29-7601; e-mail: sin@ai.kyutech.acjp.
’ A portion of this work was presented as a preliminary version in [17].

0304-3975/99/$ - see front matter @ 1999-Elsevier Science B.V. All rights reserved
PZZ SO304-3975(98)00088-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82207706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

246 S. Shimozonol Theoretical Computer Science 210 (1999) 245-260

by I is a mapping from A to I whose homomorphism (symbol-wise transformation)

transforms the strings in each P and Q into strings forming the corresponding sets that

are disjoint from each other. It was formulated in [18, 191 to represent a classification

of amino acids that will be found in knowledge acquisition processes. Since finding an

alphabet indexing turned out NP-hard [181, an approximate alphabet indexing allowing

nonempty overlap between the transformed sets was also defined with the help of a

learning algorithm in [18, 191. The knowledge acquisition system devised in [19] has

successfully found an approximate alphabet indexing which coincides with ‘hydropathy
scale’ [131 of amino acids.

Our purpose in this paper is firstly to formalize approximate alphabet indexings

for combinatorial problems dealing with string classifications and comparisons. We

consider optimization problems defined by two maximization criteria for approxi

mate alphabet indexings. To clarify the computational complexity to deal with ap-

proximate alphabet indexings, we secondly present the approximability and the non-

approximability of the defined problems. The obtained results give insights for the

hardness of the problem considered in [18,191 as well as for the problem associated

with new formulation.

Firstly, we consider the problem MAX INDEXING FOR DISJOINT SUBSETS that gives a

simple and direct formulation to deal with knowledge acquisition problems, includ-

ing [18, 191. Given two sets P, Q of strings in A* and a small alphabet I, the problem

is to find an approximate alphabet indexing f that maximizes the product of the sizes

of subsets P’ G P and Q’ C Q for which f is an alphabet indexing. We show that this

problem is APX-hard if the length of strings in given sets is at least four. This implies

that there is no polynomial-time approximation scheme (PTAS) for the problem, i.e.,

there exists a constant ratio within which no polynomial-time algorithms can guarantee

a performance ratio unless P = NP. Furthermore, we show that, if the length of strings

is not limited, then there is no polynomial-time algorithm that can approximate the

problem within ratio n1/16, unless P = NP, where n is the coding size of a whole input.

Secondly, we consider a new problem MAX INDEXING FOR STRING DISTINCTION. It is,

given two sets P and Q of strings in A* and a small alphabet I, to find an approximate

alphabet indexing that can distinguish the maximum number of pairs of strings in

P x Q after the transformation. It formalizes an approximate alphabet indexing which

is suitable to use with a symbol-wise lossy text compression by a fixed encoding

length [20], Z-gram (or l-tuple, Z-length substring) dependent methods for approximate

string matching [2, 10,231, and the substring dissimilarity problem [l].

We show that this problem is intractable even if two sets are completely the same

one, and in general APX-hard. Then we present a polynomial-time greedy algorithm and

prove that it can guarantee the worst-case performance ratio k/(k - 1) for approximate

alphabet indexings by k symbols. Furthermore, we extend the problem to that deals

with the maximization of distinguishing tuples of strings over more than two sets of

strings. We present a polynomial-time algorithm for this problem which follows the

same idea of the algorithm for MAX INDEXING, and prove that the algorithm guarantees

a constant performance ratio depending on k and the size of tuples.

S. Shimozonol Theoretical Computer Science 210 (1999) 245-260 241

The remainder of this paper is organized as follows. In the next section, we re-

view some notions and definitions relating to alphabet indexing, combinatorial opti-

mization problems and their approximation. In Section 3, we introduce MAX INDEXING

FOR DISJOINT SUBSETS, and then show the nonapproximability results for this problem.

Section 4 deals with m INDEXING FOR STRING DISTINCTION problem. After showing

the nonapproximability of the problem, we present a polynomial-time greedy algorithm

and prove its worst-case performance ratio. Section 5 discusses the extended problem

MAX TUPLE INDEXING, and its polynomial-time algorithm that also guarantees a constant

performance ratio. We conclude with some discussion in Section 6.

2. Basic notions and definitions

The set JC denotes the distinguished alphabet consisting of two symbols 0 and 1,

throughout this paper. Let A be an alphabet of arbitrarily many symbols. Then A*

denotes the set of all strings formed from symbols in A. For a string s in A*, IsI

denotes the length of s, and s[i] denotes the ith symbol of s for any 1 <i,< IsI. Let I

be a positive integer. An l-gram on A is a sting s E A* of length 1. The set A’ denotes

the set of all Z-grams on A.
Let f be a mapping from an alphabet A to another smaller alphabet Z with 111-c IAl.

Then we denote by f* both the homomorphisms that map (i) a string s in A* to

f*(s) = f(sl). . . f(q 1 in I*, and (ii) a set S CA* of strings to f*(S)={f*(s) I s

ES}. Let P and Q be disjoint sets of strings over A. An alphabet indexing f of A
for P and Q by Z is a mapping from A to Z that satisfies f*(P) f~ f*(Q) = 0. In

the similar context, an approximate alphabet indexing, or indexing in short, refers

to any mapping from A to I. The set Z is called the indexing alphabet, and an ele-

ment in Z is called an index. An indexing by { 1,. . . , k} of k indices is said to be a

k-indexing.
Let A be an arbitrary large alphabet, and let Z be a small indexing alphabet. For

a, b E A, we say that an indexing f of A by Z distinguishes a and b if f(a) # f (b).
Also, we say that f distinguishes strings s, t E A* if f*(s) # f *(t). Let ~$5” GA*

be sets of strings, and let s E A* be a string not included in S. Then we say that

an indexing f of A separates s from S if f *() s is not included in f*(S). Also, if

f *(S’) fl f *(S) = 0 holds, then we say that f separates S’ from S. In the following, we

denote by S’/fS the subset of S’ consisting of all elements that are separated from S by

f, i.e., S/&S = {s E S’ I f*(s) $ f*(S)}. For the sake of simplicity, we will deal with

only strings of the same length when we compare them, i.e., we consider indexings

for sets of Z-grams for some positive integer Z>O.

Now we review notions and definitions of combinatorial optimization problems, their

approximation, and approximation preserving reductions among the problems. By as-

suming some standard encoding on z’, a maximization problem Zl is defined by the

following polynomial-time computable functions gn, hn and mn: (i) gn recognizes an

instance x E E;* of ZZ, (ii) hn recognizes a solution s E C* of x, and (iii) mu computes

248 S. Shimozonol Theoretical Computer Science 210 (1999) 245-260

the nonnegative integer measure mn(x,s) of s with respect to x. Then the purpose of II

is, given an instance of II, to find a solution which maximizes its measure.

Let ll be a maximization problem and x an instance of ZZ. An optimal solution of

x is a solution whose measure is maximum. We denote by opt(x) the measure of an

optimal solution of x. The performance ratio Rn(x,s) of a solution s for x with respect

to ZI is the ratio opt(x)/m&x,s) 2 1. Let I be a function that maps a natural number

to a fraction greater than one. An r(n)-approximation algorithm for Il is an algo-

rithm that produces, for any instance x of n, a solution s such that R&s) <r(1x1).
If a maximization problem II admits a polynomial-time r(n)-approximation algorithm,

then we say that II can be approximated in polynomial time within a ratio r(n).
A polynomial-time approximation scheme (PTAS) for Il is an algorithm that approx-

imates n, for any supplied parameter E > 1, within a ratio E and runs in polynomial

time with respect to the size 1x1 (but can depend exponentially on l/s).

Next we define the reduction between maximization problems that preserves perfor-

mance ratios. Among various notions [4], we will follow the one defined by Khamra

et al. [12]. It is essentially the same as the L-reduction by Papadimitriou and

Yannakakis [15], and is an instance of the PTAS-reduction defined by Ausiello

et al. [4].

Definition 1. Let Il and 0 be maximization problems, and let c be a constant. Then,

a c-approximation preserving reduction from II to O2 is a pair (p,z) of logspace-

computable functions p : C* + Z* and r : Z* x C* + Z* that satisfies the following

three conditions for any instance x of II:

(i) The function p maps x to an instance p(x) of 0,

(ii) For any solution s of p(x), the function r maps a pair (x,s) to a solution r(x,s)

of x, and

(iii) For any solution s of p(x) and the solution r(x,s) of x, there holds

Rn(x,z(x,s)) - 1 <@dp(x),s) - 1).

Also, the problem 17 is said to be c-reducible to 0 if a c-approximation preserving

reduction from II to 0 exists.

The approximation preserving reducibility is reflexive and transitive. If for maximiza-

tion problems n and 0 there exist (i) an s-approximation polynomial-time algorithm

for 0 and (ii) a c-approximation preserving reduction from 17 to 0, then II can be

approximated in polynomial time within a ratio C(E - 1) + 1. We say that a problem 0

is APX-hard if there is an APX-complete problem n such that Zl is c-reducible to 0.

It is known in [3] that for an APX-hard problem there is no PTAS, unless P = NP.

* In [121 Khanna et al. referred to this reduction as error-preserving reduction (E-reduction) and formulated
it naturally by relative error E&-C, S) = R&X, S) - 1. In spite of this, we use only the notions with performance
ratio.

S. Shimozono I Theoretical Computer Science 210 (1999) 245-260 249

3. Nonapproximability of indexing for maximum disjoint subsets

In the preceding works [18,19], the measure of an indexing f for sets P and Q
is defined as follows. Let M be an algorithm that produces for f*(P) and f*(Q) a
representation y of a language L(y) C I*. Then, with respect to the output of M, the
measure of f is computed as the geometric mean (square-root mean) of the ratios

I{P EP I f *(p)EW)HIlPI and I{4 E Q I f*(q) 4Q)MQl. This fordation was in-
troduced to find an indexing as well as a representation of a language that maximizes
the precision of the classification for both positive examples in P and negative examples
in Q.

It turns out that this measure function played an important role to obtain the suc-
cessful computational results in [191. The system employing Quinlan’s algorithm [161
to produce a decision tree as a representation of a language. Since the classification
is into two classes, information gain involved in the Quinlan’s algorithm is almost
equal to the geometric mean given above. It seems that this coincidence is one of
the reasons that the optimization carried out by a local search algorithm was suc-
ceeded.

To concentrate on the hardness, we simplify the measure of indexing as to maximizes
the “disjointness” between two transformed sets f*(P) and f*(Q). It would be at
least retained naturally by an algorithm producing a representation of a language. The
problem is defined as follows.

Definition 2 (MAXIMUM INDEXING FOR DISJOINT SUBSETS, MAX DISJOINT SUBSETS). An

instance is a quadruple (A, P, Q, k), where A is an arbitrary large alphabet, P and Q are
sets of strings over A, k is an integer strictly smaller than]A I. A solution for (A, P, Q, k)

is a k-indexing f of A. The measure of a solution f is the product IP/fQl . IQ/,-PI of
the sizes of the subsets separated from each other.

In [181 finding an alphabet indexing that completely separates P and Q from each
other was shown to be NP-hard. Therefore, our interest is in whether it is possi-
ble by a polynomial-time algorithm to find an approximate alphabet indexing which
separates the most of strings. However, the problem is hard even for approximation
algorithms.

Lemma 3. MAX DISJOINT SUBSETS is APX-hard even if the length of strings is

restricted to four.

PrOOf. It is proved by a 2approximation preserving reduction from MAX 2-SATISFIABI-

LITY (MAX ~-SAT). The reduction follows the PLS-reduction presented in [18]. We
can construct for a given 2-CNF formula 4 an instance (A, P, Q,2) such that (i) a
2-indexing f has non-zero measure with lQ/fPI = 1 if and only if f distinguishes the
two symbols in A associated with ‘true’ and ‘false’, and (ii) a Boolean assignment
de&red by a 2-indexing f satisfies IP/fQl - 1 clauses in 4. Then, for any 2-CNF

250 S. Shimozonol Theoretical Computer Science 210 (1999) 245-260

formula 4 and for any 2-indexing f such that apt(4) 22 and opt($) 2m(n, f) >2,

OP44) ~-
m(4,f)

1 = opt(n) - 1
m(n,f) - 1

-1<2(%-1).

(Exceptions for the conditions can be detected and handled in polynomial time.) With

the function pair, it suffices for a 2-approximation preserving reduction. 0

Generally, we can show a stronger result.

Theorem 4. MAX DISJOINT SUSSETS cannot be approximated in polynomial time within

a ratio n1/16--E for any E >O unless P = NP.

Proof. We show an approximation preserving reduction from MAX INDEPENDENT SET

(symbolized as MIS) to m DISJOINT SWSETS (MDS). To show the nonapproxima-

bility thresholds depending on the size of inputs, we will use, in spite of the con-

dition (iii) of the reducibility, a polynomial relationship between the performance

ratios.

The problem MAX INDEPENDENT SET is, given a graph G = (N, E), to find the largest

independent set N’ C N on G, i.e., a largest subset N’ to which no edge in E contributes

its both endpoints. Let G = (N, E) be a graph with a set N = { 1,. . . , n} of nodes given as

an instance of MAX INDEPENDENT SET. Let (i) be a string in {bo, bl}rlognl+l representing

an integer i by some natural binary encoding. We construct an instance no = (A, P, Q, k)
of m DISJOINT SUBSETS for G as follows:

(1) A={bo,bi,ai,..., a,} and k=2 (thus 1={1,2}).

(2) For every node iEN, P includes three strings (i)boai, (i)bobo and (i)bobl.
(3) For every node i E N and edge (i,j) E E, Q includes two strings (i)blai and (i)boaj.

The strings (i)boai in P and (i)blai in Q are associated with the node i, and are

called node-strings. The string (i) boaj in Q is associated with the node j which is

adjacent to i. Note that all strings in P and Q are of length [log n1 + 3.

Let f be a 2-indexing of A. If f satisfies f (bo) = f(bl), then the measure of f
is exactly zero. On the other hand, if f satisfies f (bo) # f (bl), then f can have

some non-zero measure. Therefore, without loss of generality, we can assume that any

2-indexing f satisfies f (bo) # f (bl).

Claim 5. A 2-indexing f separates every string of the form (i)blai E Q from P, and
separates no string of the form (i)boaj E Q from P.

The first statement is true because f (bo) # f (bl) and all the strings in P has bs at

before the last symbol. Also, f (bo) # f (bl) implies that every string (i)boaj with i #j
is identical to either (i)bobo or (i)bobl in P after the transformation by f *.

The above claim guarantees that every indexing f (satisfying f (bo) # f (bl)) sepa-

rates exactly n = INI strings in Q from P. It keeps that the measure of f to be just

S. Shimozono I Theoretical Computer Science 210 (1999) 245-260 251

n times the number of strings separated in P/fQ. On the other hand, for strings in P,
the following claim holds.

Claim 6. A 2-indexing f separates (i)boai E P from Q if and only if either (i)bobo
or (i)bobl is in P/ye.

A node-string (i)boai E P is in P/fQ if and only if all the symbols that correspond

to the nodes adjacent to i are distinguished by f from ai. If f separates (i)boai E P
from Q, then either (i)bobo or (i)bobl must be in P/ye, and vice versa. Therefore, the

size of P/fQ is twice the number of the node-strings separated from Q.

The above two claims are summarized as follows:

Proposition 7. Let N,’ and N{ be the subsets of N defined by

NA = {i EN 1 f (ai) = 1 and (i)boai E P/fQ},

Ni = {i EN 1 f (ai) = 2 and (i)boai E PlfQ}.

Then, both Ni and Ni are independent sets of G.

Note that conversely we can construct an indexing f for 716 from an independent

set N’ of G by assigning 0 to all symbols except bl and any ai E A corresponding to

the node i E N’.
Without loss of generality, we can assume that N,$ is larger than N,‘. Then the

following is immediate:

Proposition 8. Let f be an alphabet indexing f of no, and let NA be an independent
set constructed from f. Then (i) the size of P/“Q is no greater than 4 times the size
of N& and (ii) the size of P/fQ is at least the size of N,‘.

Let f be an optimum indexing for no, and let i$, and 3, be the independent

sets with respect to f-. Since the sizes of both Q/fP and QffP are equal to n, the

performance ratio of an indexing f is simply IPb Ql/lPlfQl. By Proposition 8, between

the performance ratios Rt.&G, Ni) and RMDS(IZG, f), we have

RMDS(zG 9 f) = I’bl + I’: I > OptCG) ’ . RMIs(G N;)
INAl +/Nil m=T ’ ’

Therefore, if MAX DISJOINT SUBSETS can be approximated within a ratio r(1~~1) for

some function r, then MAX INDEPENDENT SET can be approximated within a ratio 2 .

r(1~61). Now recall that the construction of an instance XG satisfies IA] = n + 2 and

IP U Ql<3n + n2. Since all symbols in A can be encoded in Zrlosnlfi and the length

of every string is [logn] + 3,]rcG] <n4 is satisfied for sufficiently large n. It is known

in [5] that MAX INDEPENDENT SET problem cannot be approximated within n4 l-b for any

252 S. Shimozonol Theoretical Computer Science 210 (1999) 245-260

6>0 unless P = NP. This implies that, for any 0<6<~/4,

1 hdW,f)+hdG,N;)~ in l/4-6 > ; /nGl W---E

holds for sufficiently large instances. q

The above nonapproximability threshold can be tightened with stronger assumptions.
In [5] it is also presented that m INDEPENDENT SET is hard to approximate within
ratio d3 if coRP # NP is supposed. Therefore,

Corollary 9. MAX DISJOINT SUFBETS cannot be approximated within n1/12-E for any
E > 0 in polynomial time, unless coRP = NP.

4. Indexing for maximizing pair-wise distinction of strings

In this section, we discuss the hardness and the approximability of the maximization
of an approximate alphabet indexing by the pair-wise string identification measure. We
firstly introduce some notions.

Let P and Q be sets of strings over an alphabet A. We denote by [P x Q] the set of
all pairs of different strings over P and Q, i.e., [P x Q] = {(p, q)1 p E P, q E Q, p # q}.
Let p and q be strings in A’ for some I > 0, and let a and b be symbols in A. For a pair
of strings (p, q), we say that a and b are facing in (p, q) if, for some i with 1 <i < 1,
either (p[i] = a) A (q[i] = b) or (p[i] = b) A (q[i] = a). Note that (p,q) is distinguished
by f if (p, q) has at least one facing pair of symbols a and b with different indices,

f(a)#f(W.

Definition 10 (MAX INDEXING FOR STRING DISTINCTION, MAX INDEXING). An instance
is a quadruple (A, P, Q, k), where A is an arbitrary large alphabet, P and Q are sets of
strings over A, k is an integer strictly smaller than IAl. A solution for (A, P, Q, k) is a
k-indexing f of A. The measure of a solution f, a k-indexing, is the number of pairs
in P x Q whose strings are transformed into different ones, i.e. I { (p, q) E P x Q I f*(p)

#f *m.
Iihx k-INmxmG is the subproblem of m INDEXING wherein the number of indices

is always k and an instance is supplied as a triple (A,P, Q).

The weighted version of this problem can be naturally defined, by instances providing
the weight functions w : P -+ Z+ and w’ : Q + Z+, where Z+ is the set of nomregative
integers, and the measure

c W(P) * w’(q)
Cm) E PxQU*(p)#f*(q)

of an indexing f. In the following, we only consider the unweighted version of m
INDEXING. Note that, however, the results obtained for the unweighted problem in this
paper also hold for the weighted version.

S. Shimozono I Theoretical Computer Science 210 (1999) 24S-260 253

From the definition, instances of m DISJOINT SUEEETS whose sets of strings are

completely the same are negligible. However, MAX INDEXING remains still intractable

even if the two sets of strings are identical.

Lemma 11. Even for instances of MAX INDEXING with two same sets of strings, decid-

ing whether there exists or not a k-indexing that distinguishes all pairs of diflerent
strings is N&complete.

Proof. We show a sketch of a reduction from ~-SAT. Given an instance (CJ) of

~-SAT, a set C of 3-literal clauses over variables X, we C0nStII.m an instance (A, Q, Q)

of MAX Z-INDEXING as follows. Let A be X U {t, f), where t and f are symbols as-

sociated with Boolean values and not included in X. For each clause ci with liter-

als 11,12 and 13 in C, the set Q includes two strings (11)(12)(23)(i) and tftftf(i),

where (lj) is either txk or xkf for some Xk E x, depending on whether lj is positive

Xk or negative & and (i) E {t,f}rloglcll represents i in some natural binary coding.

Then an indexing f distinguishes all originally different pairs in Q x Q if and only

if f(t)# f(f) and f*((l1)(12)(13))# f*(tftftf), and this implies that there is an

assignment f :X --+ {t, f } satisfying all clauses in C. 0

Furthermore, in general case, the next lemma holds.

Lemma 12. MAX k-INDEXING is APX-hard

Proof. We show a l-approximation preserving reduction (an APX-reduction) to m

~-INDEXING from ti CUT-B, which is known APX-complete [15]. Given a graph

G = (V, E) with a constant degree bound B > 0, MAX CUT-B is the problem to find a

partition of the vertices S and s = V - S that maximizes the number of edges going

from S to 3.

We assume that the set V of nodes is given as V = {VI,. . . , vn} for some positive

integer n. Then, the transformation from an instance G of MAX CUT to an instance

(A,P,Q) of MAX ~-INDEXING is defined as follows. The alphabet A is equal to V, and

P consists of only one string

v; * v B ;..& .v,.

For every edge (vi, Vj) E E from Vi E V to Uj which is b(i,j)th smallest adjacent node

(thus 1 < b(i,j) <B), Q includes

vi”.. I
. . v$l--l B--b(W) . . . vB

Vj Vi n’

It is immediate that J[P x Q][= IEl and the facing pair associated with an edge (vi, vi)

occupies the position that is unique to it.

For these instances G and (A,P, Q), the partition corresponding to a 2-indexing f
is defined by Sf = {vi E VI f (vi) = 1). Then, f distinguishes a pair of uf . . . vi”. . . v,”
and ,,f . . . vib(i,i)-lvjViB-b(i,j) . . . v,,B . m P x Q if and only if the partition (Sf, V - Sf)

254 S. Shimozono I Theoretical Computer Science 210 (1999) 245-260

separates the edge (vi, Vi) E E. Therefore, there is an approximation preserving reduction

with a factor c=l. 0

This concludes that m ~-INDEXING is not approximable within 1.012 from [5]. Thus

our next goal is to devise a polynomial-time algorithm which can achieve a constant

performance ratio as small as possible. Let us consider applying algorithm Greedyk

explained below.

Algorithm 1. Greeu’y,(input : A, P, Q)
1. LetR:=[PxQ] and C:=0.
2. For each a E A do

(a) For each i~{l,..., k}, compute S(i) := {(p, q) E R j3b E C such that b faces a

in (p,q) and f(b) # i}.
(b) Find j that maximizes the size IS(j
(c) R:=R -S(j), f(a):=j and C:=CU {a}.

3. output f.

The set R initially consists of all possible pairs of different strings in P x Q. After

all the iterations in Step 2, R contains only pairs for which all chances to distin-

guish two strings have been failed. The set C holds symbols whose indices have been

fixed.

The algorithm takes O(k . IAl . IPI f IQl) t ime, and thus runs in 0(n3) with respect to

the coding length of P and Q. It is still polynomial even if k becomes a part of input.

For this algorithm, we have the following theorem.

Theorem 13. Greedy, approximates MAX k-INDEXING within ratio k/(k - 1).

Proof. Suppose that the algorithm has been applied to an instance 71 = (A, P, Q), and is

now computing Step 2(a) at the Ith iteration. Then, R is the set of pairs that are still

not distinguished after the (I - 1)th iteration. Let al E A be the symbol whose index is

going to be fixed at the Zth iteration. For all 1 <i< k, we define

di = {(p,q) E R I3b E C such that b faces al in (p,q) and f(b) = i}.

The pairs in di are included in S(j) for all i #j. Also, if f (al) # i, the pairs in di
will be removed from R in Step 2(c). We divide the union ut, di into k + 1 disjoint

partitions DC&, . . . , Dk as follows.

(1) DO = U i+j(di n dj), the set of pairs that are distinguished by any assignment of

index f(ar) to al.
(2) Di = di -DO, the set of pairs that are distinguished if and only if the index for al

is not i, f (al) # i.
Additionally, we define Exi c Di as the set of the pairs that will be lose all chances to

be distinguished if i is assigned to f (al). Note that Di n Dj = 0 for all 1 <i #j < k, and

if i is assigned to f (al), then all strings in Exi will remain in R forever. To choose

S. Shimozonol Theoretical Computer Science 210 (1999) 245-260 255

.iN , . . . , k} for f(ar), algorithm Greedy, maximizes the size of S(j) = Do U (Ui+j Di)

and thus j must be a number that minimizes IDi]. For the assignment j to f(al), we

lose the pairs in EXj, so we have

lW)l=lDol+ $0 ~ID~I+(k-l).lDjl~(k-l).IE~jl. I I
This inequality holds at any iteration. When the algorithm stops, R is the union of

all Ex’s of all iterations. Conversely, [P x Q] - R is the union of all sets S(j)

for f(al) = j with 1 < 1 d]A]. Therefore, with the inequality given above, we have

I[PxQ]-RJ>(k-l).IRI. S ince l[P x Q] -RI is the measure of the produced index-

ing f, and opt(~) d I [P x Q] 1, we have the inequality

~~t(~)6I[~xQll=l[~xQl -RI + IN& .4T f).

Therefore, the algorithm Greedy, guarantees a performance ratio k/(k - 1) for every

instances.

Now we show that there actually exist instances for which our algorithm produces

indexings whose performance ratio approach to k/(k - 1). Let m be a sufficiently large

positive integer. Let us consider the following instance I? with strings of length two:

In P x Q, we have (aibl,ajbz)
Clearly, an optimal indexing is,

J(U)=

{

1 if ~=ai with

i if a=bi,

2 if a=ci with

This distinguishes all k2 + mk

for l<i,j<k and (Uibl,cjbl) for l<i<k,l<j<m.

for example

16idk,

1 <i<m.

pairs of the forms (aibl,ajbz) and (aibl,cjbl), by

f(bl) # f(b2) and f(ai) # f(cj). However, the algorithm may assign k different sym-

bols to al,. . . , ak firstly with distinguishing 2(1 - 1) pairs at each Ith decision of index.

Then, in succession, the algorithm will assign different two symbols to bl and b2. As

a result, all pairs of the form (aibl,ajbz) can be distinguished, but at least one pair of

the form (aibl,cjbl) cannot be distinguished for each cj. This results that f produced

by the algorithm distinguishes all pairs of the form (aibl, ajb2), but for any succeeding

indexing to each cj, f can save only k - 1 pairs from (aibl, cjbl)‘s. With m + co, the

performance ratio goes to

k(k- l)+k+m(k- 1) k-l
k2 +mk +-F.

This realizes the worst-case performance ratio k/(k - 1). 0

256 S. Shimozono I Theorerical Computer Science 210 (1999) 245-260

5. Extending distinction in pair to tuples of strings

In this section, we consider a problem MAX rn-Tm%E ~-INDEXING, which is an exten-

sion of M.u K-INDEXING to deal with tuples of strings more than two.

Let t = (ql,. . . , qm) be atuple ofm strings ql,...,qmEA*, and let fbe ak-indexing

of A. We say that an indexing f totally distinguishes t if f *(qi) # f *(qi) for all qi # qj
in t. Let f and f’ be k-indexings, and let C be a subset of A. We say that f derives
f’ on C if, for any a E C, f(a) = i implies f’(a) = i.

Definition 14 (MAX m-TupLE k-INDEXING). An instance is an (m + 2)-tuple (A,k,

!a,..., Qm) of an alphabet A, a positive integer k and m sets of strings Ql,. . . , Qm

over A. A solution is a k-indexing f, and the measure of a solution f is the number

of tuples in Ql x . . . x Qm that are totally distinguished by f.

For MAX m-TuPLE K-INDEXING, we consider a greedy algorithm Greedy; defined as

follows.

Algorithm 2. Greedyjll(input: A, Ql, . . . , Qm)

1. Let T := Ql x . + . x Q,,,, C := 8 and w(t) := rPdiff@) for all t E T, where r 2 1 is
an arbitrarily Jixed “preserving constant,” and diff(t) is the number of originally
d@erent pairs in t.

2. For each a E A do
(a) For i~{l,..., k} and t E T, let f(a) := i, and compute the following:

(i) p(i, t) = the number of pairs of strings that are in t and are distinguished
by the assignment f(a):=& i.e., the number of pairs of strings in t in
which some symbol b E C with f(b) # i faces to a.

(ii) D(i) = the subset of T whose all tuples can be totally distinguished by
some indexing f’ derived from f on C U {a}.

(b) Choose index j that maximizes

c w(t). rP(j,*).
tED(j)&p(j,t)bl

(c) T := D(j), w(t) := w(t) . rJ’fjJ) fir all t E T, f(a) := j and C := CU {u}.
3. output f.

Notice that, for m = 2, the algorithm Greedy! is equivalent to Greedyk since for all

t E T the initial value of w(t) is fixed to l/r by diff (t) = 1, p(j, t) can have non-zero

value 1 at most only once, and D(j) is equivalent to the set R of remained pairs at

every iteration.

Claim 15. Greedy: runs in polynomial time.

Proof. The time needed for computing D(i)‘s in Step 2(a) dominates the running time

of the algorithm. Let n be the coding length of Ql, . . . , Qnt, and let 1 be the length

S. Shimozonol Theoretical Computer Science 210 (1999) 245-260 251

of the longest string in these sets. In a computation of D(i), we must decide whether

or not, for each tuple t, a k-indexing implied by f over C U {u} that distinguishes t

exists. This can be done by finding a set of pairs of symbols, namely a “witness set”,

that satisfies the following conditions:

(i) In every pair (p, q) of strings in t, at least one pair in a witness set must appear

as a facing pair of symbols in (p, q), and

(ii) At least one k-indexing f’ which can be implied by f over C U {u} must distin-

guish all pairs of symbols.

Since there are at most I facing pairs for each pair of strings in a tuple, the number

of candidates for a witness set is at most Zm(m-‘)/2. In each set, we have at most

m(m - 1) different symbols, and we have to verify at most km(m-l) k-indexings by

fixing IA - C 1 - 1 indices. Therefore, the computation of D(i) for each 1 < i <k can

be done in O(n . Zm(m-1)‘2~ km(m-1))=O(nm(m-1)‘2+1), and the whole algorithm runs in

0(nm(m-1)~2+2) time. 0

If m is unbounded, then deciding even for one tuple t whether a k-indexing that

totally distinguishes t exists is intractable. It is equivalent to the problem regarded in

Lemma 11.

For the above algorithm, we have the following result.

Theorem 16. If we choose r = k, algorithm Greedy: produces a k-indexing that to-
tally distinguishes at least l/r”’ (m-1)/2 of all the tuples. If k is suficiently large to
satisfy k > m(m - 1)/2, then r can be reduced to r = kfk - m(m - 1)/2.

The above statement gives an “absolute performance ratio” of the algorithm. We

can conclude this as follows.

Corollary 17. Greedy: approximates MAX m-TUPLE k-INDEXING within km(m-1)/2. If
k >m(m - 1)/2 is satisjied, then the performance ratio can be reduced to (kfk -
m(m - 1)/2)“(“-1)/2.

Notice that, for m = 2, the guaranteed performance ratio is also the same with that

of Greedy,.

Proof. At first, let us note the following two facts.

(1) At initialization of the algorithm in Step 1, the number diff(t) of originally differ-

ent pairs of strings in tuple t is at most m(m - 1)/2. Thus the sum of the weights

c IET w(t) is at least ITI . r-m(m-1)/2.

(2) While the iterations at Step 2, the weight w(t) assigned to a tuple t does not

exceed 1, since any tuple t with w(t) = 1 has no pairs to be distinguished.

Suppose that the algorithm is deciding an index for a symbol in Step 2. Let D’(i) be

the subset of D(i) defined by D’(i) = {t E D(i) I p(i, t) 3 1) for 1 Q i 6 k, and let T’ C T
be the union of all D’(i) for 1 <i <k. In Step 2(b), an index j is selected to maximize

258 S. Shimozono I Theoretical Computer Science 210 (1999) 245-260

the sum of the updated weights of tuples in D(j). If we choose r = k, the inequality

c w(t). rp(@)2r c w(t)> c w(t)
ED’(j) tED’(j) ET’

holds since T’= UL, D’(i). The weight w(t) of any tuple t E T for which ~(j,t)

equals zero is unchanged in Step 2(b). Therefore, we have

C w(t) . d&f) 2 xwp),
rWi) ET

i.e., the choice of an index j does not decrease the sum of the weights of tuples in

new T =D(j) in Step 2(c) compared with that of the previous iteration. This holds

at every iteration in Step 2, and thus the algorithm retains the initial weight sum and

finally produces a k-indexing that totally distinguishes at least r--m(m-1)/2 of all the

tuples for r= k.
Now we look into a special case, where the preserving constant r can be chosen

smaller than k. Let 1 dro <rn be a positive integer. If all totally distinguishable tuples

belong at least ro sets among all D’s, the sum of the weights of all D’s satisfies

k

C C w(t)#,‘) at-0 Cw(t).
i=l ED(~) ET

Since each selected index j maximizes the sum of the weights of survived tuples, the

weight sum in D(j) is larger than the average of those of all D’s. Thus CtEDCj) w(t)

is at least q/k CtEr w(t).
Let us estimate rs greater than 1 for a case m is relatively small. To totally distin-

guish the tuples, we have to distinguish pairs of facing symbols at most m(m - 1)/2.

Obviously, a tuple will remain distinguishable if symbols in every facing pair receive

different indices. Therefore, if k >m(m - 1)/2 holds, then ro = k - m(m - 1)/2. 0

Note that worst-case instances for Greedy: can be constructed in the similar way to

that shown in the proof of Theorem 13.

6. Conclusion

We have introduced two measures for approximate alphabet indexings which are

designated to cope with substring comparative methods. According to these measures,

we have defined two maximization problems, MAX DISJOINT SUBSETS and MAX INDEXING.

For MAX DISJOINT SUBSETS, we have proved APX-hardness when strings dealt with

are no shorter than four. Also, we have shown that the problem for strings of unlimited

length has no polynomial-time algorithm that can always find an approximate alphabet

indexing whose measure is more than l/r~‘/‘~ times the optimum unless P = NP.

These results indicate that even the approximation is hard in polynomial time.

However, in computational experiments, a local search algorithm employed in [191

S. Shimozono I Theoretical Computer Science 210 (1999) 245-260 259

produced with high probability a good solution which seems to be near-optimal in a

reasonable amount of time. Specifying sub-problems which can be solved or approx-

imated efficiently and are of interests from real applications is an open issue for this

problem.

For the another maximization problem, MAX INDEXING, we have shown that the prob-

lem is intractable even if two sets of strings are completely the same one, and in general

APX-hard. Then we have proposed a polynomial-time algorithm Greedyk that finds a

k-indexing, and proved that it achieves the worst-case performance ratio k/(k - 1).

The performance ratio of Greedy, seems far from good, especially when k is small.

In recent results [7,24], remarkable improvements of approximation algorithms for

MAX SAT and MAX CUT have been presented. Although both ideas of Greedyk and the

algorithm for MAX SAT in [24] comes from the same greedy algorithm by Johnson [9],

the techniques introduced in [24] cannot be directly applied to improve our algorithm.

Improvements of performance ratios of algorithms for hlAx INDEXING must be considered

as forthcoming issues.

Additionally, we have extended Greedy, to deal with problem MAX m-Ti.rPLE
R-INDEXING, and showed that it guarantees a constant performance ratio. Theorem 16

states that the guaranteed performance ratio rises with the size of the indexing alpha-

bet. This seems curious, since clearly using more indices makes distinguishing tuples

easier. In some sense, this result only states that if more and more indices are needed,

then distinguishing tuples is more and more difficult. If we can find other subprob-

lems that permit a larger factor r-0, we can fill the gap between the statement and this

observation.

Acknowledgements

I would like to thank Magnus M. Halldbrsson and Hiroki Arimura for their helpful

suggestions and comments. I also thank anonymous referees for their comments which

improved this paper.

References

[l] S. Abbasi, A. Sengupta, An O(n log n) algorithm for finding dissimilar strings, Inform Process. Lett. 62

(1997) 135-139.

[2] SE. Altschul, W. Gish, W. Miller, E.W. Mayers, D.J. Lipman, Basic local alignment search tool,

J. Mol. Biol. 215 (1990) 403-410.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation

problems, in: Proc. 33rd Annual Symp. on Foundations of Computer Science, IEEE, 1992, pp. 14-23.

[4] G. Ausiello, P. Crescenzi, M. Protasi, Approximate solution of NP optimization problems, Theoret.

Comput. Sci. 1.50 (1995) l-55.
[5] M. Bellare, 0. Goldreich, M. Sudan, Free bits, PCPs and non-approximability - towards tight results, in:

Proc. 36th Annual Symp. on Foundations of Computer Science, IEEE, New York, 1995, pp. 422-431.
[6] M.O. Dayhoff, R.M. Schwartz, B.C. Grcutt, A model of evolutionary change in proteins, in: Atlas of

Protein Sequence and Structure, Ch. 22, National Biomedical Research Foundation, Washington, 1978,

pp. 345-358.

260 S. Shimozonoi Theoretical Computer Science 210 (1999) 245-260

[7] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability

problem using semidelinite programming, J. Assoc. Comput. Mach. 42 (1995) 1115-1145.

[8] S. Henikoff, J.G. Henikoff, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci.

USA 89 (1992) 10915-10919.

[9] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Systems Sci. 9 (1974)

256-278.

[lo] P. Jokinen, E. Ukkonen, Two algorithms for approximate string matching in static texts, in: Proc.

Mathematical Foundations in Computer Science, Springer, Berlin, 1991, pp. 240-248.

[1 l] K. Karplus, Regularizers for estimating distributions of amino acids from small samples, Technical

Report UCSC-CRL-95-11, University of California, Santa Cruz, 1995.

[12] S. Khamra, R. Motwani, M. Sudan, U. Vazirani, On syntactic versus computational views of

approximability, in: Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE,

New York, 1994, pp. 819-830.

[13] J. Kyte, R.F. Doolittle, A simple method for displaying the hydropathic character of protein, J. Mol.

Biol. 157 (1982) 105-132.

[14] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1993.

[15] C.H. Papadimitriou, M. Yamiakakis, Optimization, approximation, and complexity classes, J. Comput.

Systems Sci. 43 (1991) 425-440.

[16] J. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106.

[171 S. Shimozono, An approximation algorithm for alphabet indexing problem, in: Proc. 6th Annual Intemat.

Symp. on Algorithms and Computation, Lecture Notes in Computer Science, vol. 1004, Springer, Berlin,

1995, pp. 2-11.

[18] S. Shimozono, S. Miyano, Complexity of finding alphabet indexing, IEICE Trans. Inform Systems

E78-D (1995) 13-18.

[19] S. Shimozono, A. Shinohara, T. Shinohara, S. Miyano, S. Kuhara, S. Arikawa, Knowledge acquisition

from amino acid sequences by machine learning system BONSAI, Trans. Inform Proc. Sot. Japan 35

(1994) 2009-2018.

[20] T. Shinohara, Private communication, 1995.

[21] R.F. Smith, T.F. Smith, Automatic generation of primary sequence patterns from sets of related protein

sequences, Proc. Natl. Acad. Sci. USA 87 (1990) 118-122.

[22] W.R. Taylor, The classification of amino acid conservation, J. Theoret. Biol. 119 (1986) 205-218.

[23] W.J. Wilbur, D.J. Lipman, Rapid similarity searches of nucleic acid and protein data banks, Proc. Natl.

Acad. Sci. USA 80 (1983) 726-730.

[24] M. Yamrakakis, On the approximation of maximum satisfiability, J. Algorithms 17 (1994) 475-502.

