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1. INTRODUCTION 

We want to solve the system of linear equations 

Ax=b, (1) 

where A E IRnX” is a nonsingular (usually large and sparse) nonsymmetric matrix. We are 

interested in methods with the following properties: 

(Pl) the theoretically exact solution is obtained (in exact arithmetic) in a finite number of 

steps; 

(P2) the coefficient matrix A is used along the solution process only for matrix-vector multi- 

plications Av or ATv, with v some vector in II%“; indeed, we do not want to factorize A 

as the factors may not be sparse. 

Methods with properties (Pl) and (P2) can be obtained by defining a compound linear system 

related to (l), which we denote by 

GX=H, (2) 

where G E LV”P is symmetric and nonsingular and X, H E lRPx”, and then computing the 

sequences {Xj} and {Pj}, starting from Xr arbitrary in RPxr and from Pr E IKPxr suitably 

defined, so that 

(Cl) the matrix pi defined by 

pi=[Pr P2 ... Pi] (3) 

has full rank; 
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(C2) the residual matrix at Xi+1 of the compound system (a), i.e., the matrix defined by 

Fi+l = GXi+l - H, 

satisfies the so-called Galerkin condition 

(4 

(5) 

Conditions (Cl) and (C2) guarantee that, as i increases, the residual matrix Fi+i is squeezed 
into a sequence of subspaces of ever-decreasing dimension and is eventually forced to become 
null. 

One algorithm that satisfies the above conditions is the Block-CG algorithm, introduced by 

O’Leary [l], which has the following structure. 

BLOCK-CG (BLCG). 

1. Select Xi E IRPxr arbitrary initial approximation of the solution. Select K E llVxP 
symmetric and nonsingular. Compute Fi = GXi - H and Pi = KFi. Set i = 1. 

2. while Di = PTGPi is nonsingular 

(a) compute Xi+1 = Xi - PiD;‘PTFi 

(b) compute Fi+i = Fi - GPiD,‘PTFi 

(c) compute Pi+1 by either of the following formulae: 

Pi+i = (I - PiD,‘PTG) KFi+i, 

pi+l= (I - PiD;‘PTG - Pi-lD,--‘lP~_-lG) KGPi 

(6) 

(7) 

(d) set i = i + 1 
3. endwhile 
4. end BlCG. 

Formula (6) is referred to as the Hestenes-Stiefel (Hs) h c once as from it may be obtained the 
two-term recurrence formulas associated with Hestenes and Stiefel [2]. Formula (7) is.referred to 
as the Lanczos choice as it leads, under certain circumstances, to the characteristic three-term 
recurrence formulae developed by Lanczos [3]. 

The solution process does not terminate as long as the matrices Di = PTGPi are nonsingular: 

l if Di is nonsingular for i = 1,2,. . . , s and Ps+i is null, then Xs+i solves the matrix 
equation (2); 

l if for some i, Di becomes singular because Pi is rank-deficient (but not null), the algorithm 
is forced to stop, and normally a partial solution of the equation can be found; 

l if P, has full rank and Di is singular because G is indefinite, then serious breakdown 
has occurred and rescue procedures, involving the so-called look-ahead versions of the 
algorithms, have to be initiated (see [4]). 

O’Leary [l] showed that if both G and K are positive definite, then algorithms of both HS and 
Lanczos type are robust, that is, breakdown-free; if G is positive definite and K is indefinite, then 
algorithms of Lanczos type are robust (with possible temporary stagnation), while algorithms of 
HS type are uncertain, that is, susceptible to brealcdown (with possible permanent stagnation). 

Finally, note that a recursion formula is used in 2(b) to compute the residual matrix Fi+i: in 
the computational algorithms derived later, the use of this recursion formula will make it possible 
to avoid one matrix-vector multiplication. 
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2. DERIVATION OF THE BCR ALGORITHM 

The BCR algorithm was originally introduced by Hegediis [5-71 and is obtained in the frame- 

work of the Block-CG algorithm by defining p = 2n, r = 2, 

K= [zT *;‘I, (8) 

(9) 

(10) 

and 

x= ; ;. 
[ 1 (11) 

The residual matrices Fi+l generated by the BCR algorithm satisfy the relation 

where Ri+l is defined by 

and has the structure 

From (12)-(14), it follows that 

Fi+l = K-%+1, (12) 

Ri+l = KGXi+l - KH, 03) 

Ri+l = [ rP,, szl] . (14) 

Fi+l = AT;+1 Asy 
a+1 

] . (15) 

The residual vector ri+r could be computed by ri+r = Axi+ - b, but is normally computed 

recursively to avoid unnecessary matrix-vector multiplications. The vector of shadow residuals 
S+,+l = ATzi+l - c has to be computed recursively as the sequence {zi} is not computed at all. 

The initial value sr of si is chosen arbitrarily. 

2.1. The HS Version of BCR 

The HS version of BCR is obtained by computing Pi+1 by the two-term formula (6), which 
gives rise to block skew-diagonal matrices for all i; i.e., 

Pi+l = [ VP,1 u;‘] . 

The following algorithm is obtained. 

(1’3) 
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ALGORITHM BCR20. 

Initial values: xi and si arbitrary, ri = AxI - b, 

ul = ~1, VI = q, WI = Aul, and yi = ATvl. 

Recursions: Xi+1 = Xq, - Ui 

ri+l = ri - Wi 

( ) 

WTl?i 

WTWj, ’ 

Si+l = Si - yi 

( ) 

yTsi 

YTYi ) 

Vi+l=ri+l -Vi (Y’$I+l), 

Wi+l = Aui+l> 

Yi+l = ATVi+l. 

Algorithm BCR20 requires four matrix-vector multiplications per iteration, namely, Asi+l, 

ATri+l, Aui+l, and ATvi+l. This computational cost can be reduced by the following strate- 

gies: 

(a) finding an alternative formulation of the HS version which requires less computation; 

(b) generating the azl&iaq sequences {Wi} and {yi} recursively, so that the matrix-vector 

products Aui and ATvi do not need to be computed. 

2.1.1. An alternative form of BCR-HS 

The number of matrix-vector multiplications per iteration required by algorithm BCR20 can 

be reduced from four to three if the matrix Pi+1 is computed by the alternative formula 

pi+l = Ri+l + PiCc’Ci+l, (17) 

where 
rj Asi 

o 1 , forj=i,i+l. (18) 

Formula (17) has been introduced in [l]. We note that formula (17) is the version of the original 

conjugate gradient method which is quoted in all textbooks. From (17), it follows that the 

computation of either Asi+ or ATri+l can be avoided. 

The following algorithm is obtained. 

ALGORITHM BCR2A. 

Initial values: xi and si arbitrary, ri = AxI - b, 

~1 = ~1, ~1 = rl, w1 = Aul, and yi = ATvl. 

Recursions: Xi+1 = Xi - Ui 

r?As. 
ri+l = rz - Wi 

( ) 

2 
WTWi ' 

Si+l = Si - yi 
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vi+1 = ri+l + vi 

wi+l = Aui+l, 

yi+l = ATvi+l. 

We note that both Aui+r and ATvi+i still need to be computed. 

2.1.2. The computation of the auxiliary sequences {wi} and {yi} in BCR-HS 

We show now how the computation of the matrix-vector products Aui+i and ATvi+i can be 
avoided. 

In Algorithm BCR20, the vector ui+i is computed by the formula 

Ui+l =Si+l -U.j (w$zt’>, 

If we substitute (19) in wi+i = Aui+i, we obtain the recursion formula for wi+r 

Wi+l=ASi+l-Wi (waft+‘), 

(19) 

(20) 

with wi = Aui, which only depends on Wi, the previous vector in the sequence, and on the 
vector Asi+i. The matrix-vector product Aui+i may therefore be avoided. 

Analogously, the vector vi+1 is computed in BCR20 by the formula 

The substitution of (21) in yi+i = ATvi+i yields the recursion formula for yi+i 

yi+l = ATri+l - yi (y:;;+l) I 

(21) 

(22) 

with yi = ATvi, which only depends on yi, the previous vector in the sequence, and on the 
vector ATri+i. The matrix-vector product Avi+l may therefore be avoided. 

In order to test how the convergence behaviour of BCR20 is affected by the use of the 
recursion formula for Wi+i and yi+i, we have considered the following four versions. 

BCR20-a: it computes both wi+i and yi+i by matrix-vector multiplication. It requires 
four matrix-vector multiplications per iteration (Asi+i, ATri+i, Aui+i, and ATvi+i). 
BCR20-b: it computes Wi+i by matrix-vector multiplication and yi+i by formula (22). 
It requires three matrix-vector multiplications per iteration (Asi+i, ATri+i, and Aui+i). 
BCR20-c: it computes Wi+i by formula (20) and yi+i by matrix-vector multiplica- 
tion. It requires three matrix-vector multiplications per iteration (Asi+i, ATri+i, and 

ATvi+i). 
BCR20-d: it computes wi+i by (20) and yi+i by (22). It requires two matrix-vector 
multiplications per iteration (Asi+i and ATri+i). 
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With an analogous procedure applied to Algorithm BCR2A, we obtain the following four 
versions of the alternative form of Algorithm BCR-HS. 

l BCR2A-a: it computes both wi+i and yi+l by matrix-vector multiplication. It requires 
three matrix-vector multiplications per iteration (Aui+r, ATvi+r, and either As,+1 or 

l BCR2A-b: it computes wi+r by matrix-vector multiplication and yi+r by the formula. 

Y~+I = ATri+l + yi 

It requires two matrix-vector multiplications per iteration (ATri+r and Aui+r). 
l BCR2A-c: it computes wi+r by the formula 

Wi+l = Asi+ + Wi 

(23) 

and yi+i by matrix-vector multiplication. It requires two matrix-vector multiplications 
per iteration (Asi+r and ATvi+r). 

l BCR2A-d: it computes Wi+r by (24) and yi+i by (23). It requires two matrix-vector 
multiplications per iteration (Asi+ and ATri+r). 

2.2. The Lanczos Version of BCR 

The Lanczos version of BCR is obtained by computing Pi+1 by the three-term formula (7), 
which gives rise to matrices whose form alternates from one iteration to the next, that is, 

Pi+1 = [Yp,, uri] , for i even and Pi+1 = [ url vZtl] , for i odd. 

It has been observed that when the sequence {Pi} is generated by a three-term recursion, 
the columns of the successive matrices Pj often tend rapidly towards linear dependence, unless 
column scaling is introduced. There is also the possibility of overflow and underflow. We have, 
therefore, defined the Lanczos version of BCR in terms of the matrices 

&+I = P,+lB& 

where Bf+,, = PT++,Pi+r; that is, 

Bi+l = 
[ 
‘~vi~1”2 ,,u,:l,,2] , for i even, 

3 

and 

Bi+i = 0 
[ 

II”i+l 112 0 

hi+1 112 
for i odd, 

which imply that Pl+rPi+i = I. 

The following algorithm is obtained. 

(26) 

(27) 
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ALGORITHM BCRSO. 
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Initial values: 60 = ?a = wa = yo = 0, (70 = rc = 1, 

xi and si arbitrary, ri = Axi - b, 

Ul = Sl, ~1 = rl, 

w1 = A&, y1 = ATVi, 

01 = w;wi, 71 = YTYl. 

Recursions: 

ri+l = ri - Wi 

vi+1 = jl::Izij 7 

wi+l = AG+l, 

yz+l = ATGi+l, 

oi+l = WT+1Wi+l, 

Tifl = YT+lYi+l. 

Algorithm BCRSO requires three matrix-vector multiplications per iteration (AGi+i, AT?i+i, 

and either ATwi or Ayi). This computational cost can be reduced by computing the se- 

quences {wi} and {yi} recursively: we therefore consider the following versions of BCR30. 

l BCR30-a: it computes both Wi+i and yi+i by matrix-vector multiplication. It requires 

three matrix-vector multiplications per iteration (AGi+i, ATVi+i, and either ATwi or 

Ayi). 
l BCRSO-b: it computes wi+i by matrix-vector multiplication and yi+i by the formula 

Yi+l = [ATwi-yi (e) -yi_l (yL~~~wi)] &. 
L 

It requires two matrix-vector multiplications per 

l BCR30-c: it computes wi+i by the formula 

Wi+l= [*,i-Wf (*) -Wi-_I 

iteration (ATwi and AGi+i). 

w:lAyi ( )I 1 

gi-1 Il”i+l II 

(28) 

and yi+i by matrix-vector multiplication. It requires two matrix-vector multiplications 

per iteration (Ay, and ATGi+i). 

l BCRSO-d: it computes w,+i by (29) and yi+i by (28). It requires two matrix-vector 

multiplications per iteration (Ayi and ATwi). 
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It has been shown [8] that the following relations hold: 

$-iAyi = livill ,i-i (30) 

and 

yLIATwi = Ijuill gi. (31) 

Relations (30) and (31) imply that the vectors ui+i and vi+1 can be computed alternatively by 

and 

Ui+l=yi_ai(~)-iii_l(!J$) 

vi+1 =wi_Gi (!+) _?i_l (E); 

the recursion formulae for wi+i and yi+i then become 

and 

wi+l = byi_Wi (*) -Wi_l (E)] j-$yj 

(32) 

(33) 

(34) 

(35) 

Four alternative versions of the BCR-Lanczos algorithm have therefore been considered. 

l BCR3A-a: it computes both Wi+i and yi+i by matrix-vector multiplication. It requires 

three matrix-vector multiplications per iteration (either Asi+i or ATri+ir AG,+i, and 

ATGi+i). 

l BCRSA-b: it computes Wi+i by matrix-vector multiplication and yi+i by formula (35). 

It requires two matrix-vector multiplications per iteration (ATri+i and A&+1). 

l BCR3A-c: it computes wi+i by formula (34) and yi+i by matrix-vector multiplication. 

It requires two matrix-vector multiplications per iteration (Asi+i and ATVi+i). 

l BCRSA-d: it computes Wi+i by (34) and yi+i by (35). It requires two matrix-vector 

multiplications per iteration (Asi+iand ATri+i). 

In all these versions, ui+i is computed by (32) and vi+1 is computed by (33). 

3. NUMERICAL COMPARISONS 

3.1. Test Problems 

The 16 versions of BCR introduced in the previous sections have been tested on problems of 

the form 
Ax=O. (36) 

Indeed, if A is nonsingular, the unique solution x* of (36) is the null vector, which implies that 

the error vector ei at the approximate solution xi, defined by 

ei =X, -X*, 

equals xi. Note that the error vector ei cannot be monitored if the test problem is constructed 

by the following procedure: 

1. 

2. 

3. 

4. 

give the coefficient matrix A; 

assign a nonzero solution vector x* # 0; 

compute in finite arithmetic the right-hand side g = Ax*; 

define the test problem: find x such that 

Ax=& (37) 
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Indeed, in general the right-hand side g computed in finite arithmetic differs from the vector b 

which would be obtained if the product Ax* were performed in exact arithmetic; therefore, the 

solution of the test problem (37) is actually unknown, and so is the error ei of the approximate 

solution. 

The coefficient matrices we considered, all from the Harwell-Boeing collection, are listed in 

Table 1, where dimensions and condition number estimates (obtained by the MATLAB routine 

cond) are also given. For all problems, the starting vector was x: = (1, 1, . . . , 1). 

Table 1. 

Test Matrix n Condition Number 

JPWH991 

PDE9511 

FS5411 

IMPCOLE 

SHL400 

ARC130 

3.2. Estimation of the Condition Number of A 

Along the solution process, any time a matrix-vector multiplication Aq, or ATq, with q some 

vector, is performed, the ratio p = IIAqjlz/llqll2, or p = l~ATq~~s/~~q~~~, is computed and the cur- 

rent maximum and minimum ratios are then stored in the variables pmax and Pmin, respectively: 

the ratio Pmax/Pmin is an estimate (a lower bound in fact) of the condition number of A. 

3.3. Indicators of Performance 

At each iteration of the solution process, the following indicators of performance have been 

computed: 

l the ratio erri between the Euclidean norm of the error in the approximate solution xi and 

the Euclidean norm of the initial approximation 

IlXill:! erri = p-&i 

l the ratio rei between the Euclidean norm of the exactly computed residual at xi and the 

Euclidean norm of the initial residual 

llAxi II2 Tei = -; 
IIAXlll, (39) 

l the ratio rii between the Euclidean norm of the iteratively computed residual at xi and 

the Euclidean norm of the initial residual 

r& - lM2 ; 
IlAx1 II2 

l the estimate cAi of the condition number of A 

cAi _ (Pmax)i 
(PmiIl)i ’ 

(40) 

(41) 

where (Pmax)i and (Pmin)i are, respectively, the maximum and the minimum among all ra- 
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tics IIAqlldll~ll 2 and IIATWl14 2, with q some vector, computed in the first i iterations 

of the solution process; 

l the product 

re_cAi = cAi . rei (42) 

to be compared with erri. 

1o”O - 

IO* I I 

0 50 100 
number of iterations (i) 

Figure 1. Matrix FS5411 (n = 541), Algorithm BCR2A-b, behaviour of rei and ri,. 

10” 

1O-2 

IO” 

lob 

10” 

16” 

re,, n, 9 
1o-‘2 I I J 

0 50 100 150 
number of iterations (i) 

Figure 2. Matrix FS5411 (n = 541), Algorithm BCR30-c, behaviour of rei and rii. 
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1 o- I 

0 50 100 150 

number of iterations (i) 
Figure 3. Matrix FS5411 (n = 541), Algorithm BCRBA-b, behaviour of erri, cAi, 

and re_cAi. 

3.4. Numerical Results 

We first describe the results obtained by solving the test problem (36) where A is the matrix 

FS5411 (n = 541): 

. all HS versions required about 70 iterations to get the ratio rei (39) down to lOem; in 

the following iterations, the ratio rei remained constant while the ratio rii (whose value 

equals the value of rei in the first 70 iterations) continued decreasing; in Figure 1, the 

graphs of the ratios rei and rii related to the version BCR2A-b are presented; 

. all Lanczos versions required about 50 iterations to get the ratio rei down to 10V1’; in 

the first 50 iterations, the value of rii was equal to that of rei; in the following iterations, 

two different behaviours were observed: 
_ in versions a and b of both BCR30 and BCR3A, the ratios rei and rii remained 

constant at the value lo-r2; 
_ in versions c and d of both BCRSO and BCRSA, the ratio rii remained constant 

at the value 10-12, while the ratio rei started increasing again at iteration 105 (see 

Figure 2, which relates to BCR30-c); 

l all versions of BCR required 20 iterations for the condition number estimate CA, to be 

equal to the estimate computed by the MATLAB routine cond; the product re_cAi was 

in all cases an upper bound to the ratio erri (see Figure 3, which relates to BCR2A-b). 

With problems JPWH991 (n = 991) and PDE9511 (n = 961) (both low condition number 

problems), the convergence behaviour in terms of the ratio rei was similar to that of FS5411, 

and therefore, we do not present the results in detail: we just mention that for both problems all 

versions required about 750 iterations to reduce the ratio rei down to 10-14. 

On low condition number problems, comparable convergence behaviours were obtained by all 
versions of BCR, with the exception of BCR30-c/d and BCXUA-c/d: therefore, we can conclude 

that for these problems, the most efficient versions are BCR20-d, BCR2A-b/c/d, BCRSO-b, and 

BCRSA-b, since they only require two matrix-vector multiplications per iteration. 

Let us now consider the results obtained with the matrices SHL400 (n = 663) and ARC130 (n = 

130). Among the versions requiring three matrix-vector multiplications per iteration, BCR2A-a 
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showed the fastest convergence, in terms of ret, on both problems. Among the versions requiring 

two matrix-vector multiplications per iteration, BCR2A-b showed the fastest convergence, in 

terms of rei, on both problems. In Figure 4, the curves rei related to BCR20-a (four matrix- 

vector multiplications per iteration), BCR2A-a, and BCR2A-b are reported for matrix SHL400, 

and in Figure 5, the curves rei related to BCR20-a, BCR2A-a, and BCR2A-b are reported for 

matrix ARC130. These comparisons again suggest that a good convergence behaviour can be 

obtained at the cost of only two matrix-vector multiplications per iteration. 

loo* 
10’ 

BCRZA-a, BCR2A-b 

200 400 600 600 1000 1200 1400 1600 1600 2 
number of iterations (i) 

Figure 4. Matrix SHL400 (n = 663), behaviour of rei in BCR20-a, BCR2A-a, and 
BCR2A-b. 

lo0 

10” 

1 o- 

1O-‘8 
0 100 200 300 400 500 600 700 600 900 1000 

number of iterations (i) 

Figure 5. Matrix ARC130 (n = 130), behaviour of rei in BCR20-a, BCR2A-a, and 
BCRPA-b. 
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In Figure 6, the curves erri, rei, rii, cAi, and re_cAi are plotted for the version BCRZA-b 

on problem SHL400. We can observe that 800 iterations were needed for the condition number 

estimate cAi to equal the MATLAB estimate; the product re_cAi was an upper bound to the 

ratio erri. In Figure 7, the curves erri, rei, rii, cAi, and re_cAi are plotted for the version 

BCR2A-b on problem ARC130. About 160 iterations were needed for the condition number 

estimate cAi to equal the MATLAB estimate; again, the product re_cAi was an upper bound 

to the ratio erri. 

1o'O 

10S 

10" 

lo.6 

I I ! I I I , 

10" 

i 

~A-------4 

10-= 1 I I I I I I I I 1 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

number of iterations(i) 

Figure 6. Matrix SHLQOO (n = 663), Algorithm BCR2A-b, behaviour of erri, rei, 

rii, cAi, and re_cAi. 

10J"t I I 4 I 1 4 I I I 1 
0 100 200 300 400 500 600 700 80 900 1000 

numberofiteratfons(i) 

Figure 7. Matrix ARC130 (n = 130), Algorithm BCRZA-b, behaviour of erri, rei, 
rii, cAi, and re_c&. 
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recA , 
- 

err, 

lo8 - 
rei, ri, 

lo9 I 0 I I I I I I 
0 100 200 300 400 500 600 700 800 900 loo0 

number of iterations (i) 

Figure 8. Matrix IMPCOLE (n = 225), Algorithm BCR2A-b. 

Finally, we mention that for problem IMPCOLE (n = 225), all versions reduced the ratio re, 

only to 10m6 after 1000 iterations. In Figure 8, the curves erri, rei, rii, cAi, and re_cAi are 

plotted for the version BCR2A-b. 

3.5. Conclusions 

The above-described numerical experiments have shown that efficient versions of Algorithm 

BCR can be obtained which only require two matrix-vector multiplications per iteration. In 

particular, the HS versions always performed at least as well as and often better than the Lanczos 

versions. For the HS versions, it is as good to use the alternative formula for Pi+1 and the 

recursive generation of the auxiliary sequences {wi} and {yi}. Among all the HS versions, 

Algorithm BCR2A-b can be considered the most efficient. 

All these algorithms should include a way of estimating the condition number of the coefficient 

matrix. Indeed, the numerical experiments have shown that the value of re_cAi is an upper 

bound to the ratio erri, provided the condition number estimate is accurate. Future work will 

be devoted to the analysis of alternative estimates of the condition number. 

Incidentally, we note that the final accuracy should always be assessed by checking the exactly 

computed residual, instead of the iteratively computed residual. 

Finally, more work will have to be done in order to avoid stagnation, which was shown in 

problem IMPCOLE. 
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