
An lntemattonal Journal

computers &
mathematics
with applications

PERGAMON Computers and Mathematics with Applications 42 (2001) 1239-1253
www.elsevier.nl/locate/camwa

Implementation of
Different Computational Variations

of Biconjugate Residual Methods

M. T. VESPUCCI
Facolta di Ingegneria, Universita degli Studi di Bergamo

Via G. Marconi, 5, 24044 Dalmine (BG), Italy

C. G. BROYDEN
Facolta di Scienze, MM.FF.NN., University of Bologna

via Sacchi N.3, 47023 Cesena (FO), Italy

Abstract-In this paper, we describe the derivation of the biconjugate residual (BCR) method
from the general framework of the Block-CG algorithm; we then introduce different versions of BCR
and test their numerical performance. @ 2001 Elsevier Science Ltd. All rights reserved.

Keywords-Conjugate gradients, Biconjugate residuals, Krylov methods.

1. INTRODUCTION

We want to solve the system of linear equations

Ax=b, (1)

where A E IRnX” is a nonsingular (usually large and sparse) nonsymmetric matrix. We are

interested in methods with the following properties:

(Pl) the theoretically exact solution is obtained (in exact arithmetic) in a finite number of

steps;

(P2) the coefficient matrix A is used along the solution process only for matrix-vector multi-

plications Av or ATv, with v some vector in II%“; indeed, we do not want to factorize A

as the factors may not be sparse.

Methods with properties (Pl) and (P2) can be obtained by defining a compound linear system

related to (l), which we denote by

GX=H, (2)

where G E LV”P is symmetric and nonsingular and X, H E lRPx”, and then computing the

sequences {Xj} and {Pj}, starting from Xr arbitrary in RPxr and from Pr E IKPxr suitably

defined, so that

(Cl) the matrix pi defined by

pi=[Pr P2 ... Pi] (3)

has full rank;

0898-1221/01/S - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. Typeset by &@-W
PII: SO898-1221(01)00236-X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82207691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1240 M. T. VESPUCCI AND C. G. BROYDEN

(C2) the residual matrix at Xi+1 of the compound system (a), i.e., the matrix defined by

Fi+l = GXi+l - H,

satisfies the so-called Galerkin condition

(4

(5)

Conditions (Cl) and (C2) guarantee that, as i increases, the residual matrix Fi+i is squeezed
into a sequence of subspaces of ever-decreasing dimension and is eventually forced to become
null.

One algorithm that satisfies the above conditions is the Block-CG algorithm, introduced by

O’Leary [l], which has the following structure.

BLOCK-CG (BLCG).

1. Select Xi E IRPxr arbitrary initial approximation of the solution. Select K E llVxP
symmetric and nonsingular. Compute Fi = GXi - H and Pi = KFi. Set i = 1.

2. while Di = PTGPi is nonsingular

(a) compute Xi+1 = Xi - PiD;‘PTFi

(b) compute Fi+i = Fi - GPiD,‘PTFi

(c) compute Pi+1 by either of the following formulae:

Pi+i = (I - PiD,‘PTG) KFi+i,

pi+l= (I - PiD;‘PTG - Pi-lD,--‘lP~_-lG) KGPi

(6)

(7)

(d) set i = i + 1
3. endwhile
4. end BlCG.

Formula (6) is referred to as the Hestenes-Stiefel (Hs) h c once as from it may be obtained the
two-term recurrence formulas associated with Hestenes and Stiefel [2]. Formula (7) is.referred to
as the Lanczos choice as it leads, under certain circumstances, to the characteristic three-term
recurrence formulae developed by Lanczos [3].

The solution process does not terminate as long as the matrices Di = PTGPi are nonsingular:

l if Di is nonsingular for i = 1,2,. . . , s and Ps+i is null, then Xs+i solves the matrix
equation (2);

l if for some i, Di becomes singular because Pi is rank-deficient (but not null), the algorithm
is forced to stop, and normally a partial solution of the equation can be found;

l if P, has full rank and Di is singular because G is indefinite, then serious breakdown
has occurred and rescue procedures, involving the so-called look-ahead versions of the
algorithms, have to be initiated (see [4]).

O’Leary [l] showed that if both G and K are positive definite, then algorithms of both HS and
Lanczos type are robust, that is, breakdown-free; if G is positive definite and K is indefinite, then
algorithms of Lanczos type are robust (with possible temporary stagnation), while algorithms of
HS type are uncertain, that is, susceptible to brealcdown (with possible permanent stagnation).

Finally, note that a recursion formula is used in 2(b) to compute the residual matrix Fi+i: in
the computational algorithms derived later, the use of this recursion formula will make it possible
to avoid one matrix-vector multiplication.

Biconjugate Residual Methods 1241

2. DERIVATION OF THE BCR ALGORITHM

The BCR algorithm was originally introduced by Hegediis [5-71 and is obtained in the frame-

work of the Block-CG algorithm by defining p = 2n, r = 2,

K= [zT *;‘I, (8)

(9)

(10)

and

x= ; ;.
[1 (11)

The residual matrices Fi+l generated by the BCR algorithm satisfy the relation

where Ri+l is defined by

and has the structure

From (12)-(14), it follows that

Fi+l = K-%+1, (12)

Ri+l = KGXi+l - KH, 03)

Ri+l = [rP,, szl] . (14)

Fi+l = AT;+1 Asy
a+1

] . (15)

The residual vector ri+r could be computed by ri+r = Axi+ - b, but is normally computed

recursively to avoid unnecessary matrix-vector multiplications. The vector of shadow residuals
S+,+l = ATzi+l - c has to be computed recursively as the sequence {zi} is not computed at all.

The initial value sr of si is chosen arbitrarily.

2.1. The HS Version of BCR

The HS version of BCR is obtained by computing Pi+1 by the two-term formula (6), which
gives rise to block skew-diagonal matrices for all i; i.e.,

Pi+l = [VP,1 u;‘] .

The following algorithm is obtained.

(1’3)

1242 M. T. VESPUCCI AND C. G. BROYDEN

ALGORITHM BCR20.

Initial values: xi and si arbitrary, ri = AxI - b,

ul = ~1, VI = q, WI = Aul, and yi = ATvl.

Recursions: Xi+1 = Xq, - Ui

ri+l = ri - Wi

()

WTl?i

WTWj, ’

Si+l = Si - yi

()

yTsi

YTYi)

Vi+l=ri+l -Vi (Y’$I+l),

Wi+l = Aui+l>

Yi+l = ATVi+l.

Algorithm BCR20 requires four matrix-vector multiplications per iteration, namely, Asi+l,

ATri+l, Aui+l, and ATvi+l. This computational cost can be reduced by the following strate-

gies:

(a) finding an alternative formulation of the HS version which requires less computation;

(b) generating the azl&iaq sequences {Wi} and {yi} recursively, so that the matrix-vector

products Aui and ATvi do not need to be computed.

2.1.1. An alternative form of BCR-HS

The number of matrix-vector multiplications per iteration required by algorithm BCR20 can

be reduced from four to three if the matrix Pi+1 is computed by the alternative formula

pi+l = Ri+l + PiCc’Ci+l, (17)

where
rj Asi

o 1 , forj=i,i+l. (18)

Formula (17) has been introduced in [l]. We note that formula (17) is the version of the original

conjugate gradient method which is quoted in all textbooks. From (17), it follows that the

computation of either Asi+ or ATri+l can be avoided.

The following algorithm is obtained.

ALGORITHM BCR2A.

Initial values: xi and si arbitrary, ri = AxI - b,

~1 = ~1, ~1 = rl, w1 = Aul, and yi = ATvl.

Recursions: Xi+1 = Xi - Ui

r?As.
ri+l = rz - Wi

()

2
WTWi '

Si+l = Si - yi

Biconjugate Residual Methods 1243

vi+1 = ri+l + vi

wi+l = Aui+l,

yi+l = ATvi+l.

We note that both Aui+r and ATvi+i still need to be computed.

2.1.2. The computation of the auxiliary sequences {wi} and {yi} in BCR-HS

We show now how the computation of the matrix-vector products Aui+i and ATvi+i can be
avoided.

In Algorithm BCR20, the vector ui+i is computed by the formula

Ui+l =Si+l -U.j (w$zt’>,

If we substitute (19) in wi+i = Aui+i, we obtain the recursion formula for wi+r

Wi+l=ASi+l-Wi (waft+‘),

(19)

(20)

with wi = Aui, which only depends on Wi, the previous vector in the sequence, and on the
vector Asi+i. The matrix-vector product Aui+i may therefore be avoided.

Analogously, the vector vi+1 is computed in BCR20 by the formula

The substitution of (21) in yi+i = ATvi+i yields the recursion formula for yi+i

yi+l = ATri+l - yi (y:;;+l) I

(21)

(22)

with yi = ATvi, which only depends on yi, the previous vector in the sequence, and on the
vector ATri+i. The matrix-vector product Avi+l may therefore be avoided.

In order to test how the convergence behaviour of BCR20 is affected by the use of the
recursion formula for Wi+i and yi+i, we have considered the following four versions.

BCR20-a: it computes both wi+i and yi+i by matrix-vector multiplication. It requires
four matrix-vector multiplications per iteration (Asi+i, ATri+i, Aui+i, and ATvi+i).
BCR20-b: it computes Wi+i by matrix-vector multiplication and yi+i by formula (22).
It requires three matrix-vector multiplications per iteration (Asi+i, ATri+i, and Aui+i).
BCR20-c: it computes Wi+i by formula (20) and yi+i by matrix-vector multiplica-
tion. It requires three matrix-vector multiplications per iteration (Asi+i, ATri+i, and

ATvi+i).
BCR20-d: it computes wi+i by (20) and yi+i by (22). It requires two matrix-vector
multiplications per iteration (Asi+i and ATri+i).

1244 M. T. VESPUCCI AND C. G. BROYDEN

With an analogous procedure applied to Algorithm BCR2A, we obtain the following four
versions of the alternative form of Algorithm BCR-HS.

l BCR2A-a: it computes both wi+i and yi+l by matrix-vector multiplication. It requires
three matrix-vector multiplications per iteration (Aui+r, ATvi+r, and either As,+1 or

l BCR2A-b: it computes wi+r by matrix-vector multiplication and yi+r by the formula.

Y~+I = ATri+l + yi

It requires two matrix-vector multiplications per iteration (ATri+r and Aui+r).
l BCR2A-c: it computes wi+r by the formula

Wi+l = Asi+ + Wi

(23)

and yi+i by matrix-vector multiplication. It requires two matrix-vector multiplications
per iteration (Asi+r and ATvi+r).

l BCR2A-d: it computes Wi+r by (24) and yi+i by (23). It requires two matrix-vector
multiplications per iteration (Asi+ and ATri+r).

2.2. The Lanczos Version of BCR

The Lanczos version of BCR is obtained by computing Pi+1 by the three-term formula (7),
which gives rise to matrices whose form alternates from one iteration to the next, that is,

Pi+1 = [Yp,, uri] , for i even and Pi+1 = [url vZtl] , for i odd.

It has been observed that when the sequence {Pi} is generated by a three-term recursion,
the columns of the successive matrices Pj often tend rapidly towards linear dependence, unless
column scaling is introduced. There is also the possibility of overflow and underflow. We have,
therefore, defined the Lanczos version of BCR in terms of the matrices

&+I = P,+lB&

where Bf+,, = PT++,Pi+r; that is,

Bi+l =
[
‘~vi~1”2 ,,u,:l,,2] , for i even,

3

and

Bi+i = 0
[

II”i+l 112 0

hi+1 112
for i odd,

which imply that Pl+rPi+i = I.

The following algorithm is obtained.

(26)

(27)

Biconjugate Residual Methods

ALGORITHM BCRSO.

1245

Initial values: 60 = ?a = wa = yo = 0, (70 = rc = 1,

xi and si arbitrary, ri = Axi - b,

Ul = Sl, ~1 = rl,

w1 = A&, y1 = ATVi,

01 = w;wi, 71 = YTYl.

Recursions:

ri+l = ri - Wi

vi+1 = jl::Izij 7

wi+l = AG+l,

yz+l = ATGi+l,

oi+l = WT+1Wi+l,

Tifl = YT+lYi+l.

Algorithm BCRSO requires three matrix-vector multiplications per iteration (AGi+i, AT?i+i,

and either ATwi or Ayi). This computational cost can be reduced by computing the se-

quences {wi} and {yi} recursively: we therefore consider the following versions of BCR30.

l BCR30-a: it computes both Wi+i and yi+i by matrix-vector multiplication. It requires

three matrix-vector multiplications per iteration (AGi+i, ATVi+i, and either ATwi or

Ayi).
l BCRSO-b: it computes wi+i by matrix-vector multiplication and yi+i by the formula

Yi+l = [ATwi-yi (e) -yi_l (yL~~~wi)] &.
L

It requires two matrix-vector multiplications per

l BCR30-c: it computes wi+i by the formula

Wi+l= [*,i-Wf (*) -Wi-_I

iteration (ATwi and AGi+i).

w:lAyi ()I 1

gi-1 Il”i+l II

(28)

and yi+i by matrix-vector multiplication. It requires two matrix-vector multiplications

per iteration (Ay, and ATGi+i).

l BCRSO-d: it computes w,+i by (29) and yi+i by (28). It requires two matrix-vector

multiplications per iteration (Ayi and ATwi).

1246 M. T. VESPUCCI AND C. G. BROYDEN

It has been shown [8] that the following relations hold:

$-iAyi = livill ,i-i (30)

and

yLIATwi = Ijuill gi. (31)

Relations (30) and (31) imply that the vectors ui+i and vi+1 can be computed alternatively by

and

Ui+l=yi_ai(~)-iii_l(!J$)

vi+1 =wi_Gi (!+) _?i_l (E);

the recursion formulae for wi+i and yi+i then become

and

wi+l = byi_Wi (*) -Wi_l (E)] j-$yj

(32)

(33)

(34)

(35)

Four alternative versions of the BCR-Lanczos algorithm have therefore been considered.

l BCR3A-a: it computes both Wi+i and yi+i by matrix-vector multiplication. It requires

three matrix-vector multiplications per iteration (either Asi+i or ATri+ir AG,+i, and

ATGi+i).

l BCRSA-b: it computes Wi+i by matrix-vector multiplication and yi+i by formula (35).

It requires two matrix-vector multiplications per iteration (ATri+i and A&+1).

l BCR3A-c: it computes wi+i by formula (34) and yi+i by matrix-vector multiplication.

It requires two matrix-vector multiplications per iteration (Asi+i and ATVi+i).

l BCRSA-d: it computes Wi+i by (34) and yi+i by (35). It requires two matrix-vector

multiplications per iteration (Asi+iand ATri+i).

In all these versions, ui+i is computed by (32) and vi+1 is computed by (33).

3. NUMERICAL COMPARISONS

3.1. Test Problems

The 16 versions of BCR introduced in the previous sections have been tested on problems of

the form
Ax=O. (36)

Indeed, if A is nonsingular, the unique solution x* of (36) is the null vector, which implies that

the error vector ei at the approximate solution xi, defined by

ei =X, -X*,

equals xi. Note that the error vector ei cannot be monitored if the test problem is constructed

by the following procedure:

1.

2.

3.

4.

give the coefficient matrix A;

assign a nonzero solution vector x* # 0;

compute in finite arithmetic the right-hand side g = Ax*;

define the test problem: find x such that

Ax=& (37)

Biconjugate Residual Methods 1247

Indeed, in general the right-hand side g computed in finite arithmetic differs from the vector b

which would be obtained if the product Ax* were performed in exact arithmetic; therefore, the

solution of the test problem (37) is actually unknown, and so is the error ei of the approximate

solution.

The coefficient matrices we considered, all from the Harwell-Boeing collection, are listed in

Table 1, where dimensions and condition number estimates (obtained by the MATLAB routine

cond) are also given. For all problems, the starting vector was x: = (1, 1, . . . , 1).

Table 1.

Test Matrix n Condition Number

JPWH991

PDE9511

FS5411

IMPCOLE

SHL400

ARC130

3.2. Estimation of the Condition Number of A

Along the solution process, any time a matrix-vector multiplication Aq, or ATq, with q some

vector, is performed, the ratio p = IIAqjlz/llqll2, or p = l~ATq~~s/~~q~~~, is computed and the cur-

rent maximum and minimum ratios are then stored in the variables pmax and Pmin, respectively:

the ratio Pmax/Pmin is an estimate (a lower bound in fact) of the condition number of A.

3.3. Indicators of Performance

At each iteration of the solution process, the following indicators of performance have been

computed:

l the ratio erri between the Euclidean norm of the error in the approximate solution xi and

the Euclidean norm of the initial approximation

IlXill:! erri = p-&i

l the ratio rei between the Euclidean norm of the exactly computed residual at xi and the

Euclidean norm of the initial residual

llAxi II2 Tei = -;
IIAXlll, (39)

l the ratio rii between the Euclidean norm of the iteratively computed residual at xi and

the Euclidean norm of the initial residual

r& - lM2 ;
IlAx1 II2

l the estimate cAi of the condition number of A

cAi _ (Pmax)i
(PmiIl)i ’

(40)

(41)

where (Pmax)i and (Pmin)i are, respectively, the maximum and the minimum among all ra-

1248 M. T. VESPUCCI AND C. G. BROYDEN

tics IIAqlldll~ll 2 and IIATWl14 2, with q some vector, computed in the first i iterations

of the solution process;

l the product

re_cAi = cAi . rei (42)

to be compared with erri.

1o”O -

IO* I I

0 50 100
number of iterations (i)

Figure 1. Matrix FS5411 (n = 541), Algorithm BCR2A-b, behaviour of rei and ri,.

10”

1O-2

IO”

lob

10”

16”

re,, n, 9
1o-‘2 I I J

0 50 100 150
number of iterations (i)

Figure 2. Matrix FS5411 (n = 541), Algorithm BCR30-c, behaviour of rei and rii.

Biconjugate Residual Methods 1249

1 o- I

0 50 100 150

number of iterations (i)
Figure 3. Matrix FS5411 (n = 541), Algorithm BCRBA-b, behaviour of erri, cAi,

and re_cAi.

3.4. Numerical Results

We first describe the results obtained by solving the test problem (36) where A is the matrix

FS5411 (n = 541):

. all HS versions required about 70 iterations to get the ratio rei (39) down to lOem; in

the following iterations, the ratio rei remained constant while the ratio rii (whose value

equals the value of rei in the first 70 iterations) continued decreasing; in Figure 1, the

graphs of the ratios rei and rii related to the version BCR2A-b are presented;

. all Lanczos versions required about 50 iterations to get the ratio rei down to 10V1’; in

the first 50 iterations, the value of rii was equal to that of rei; in the following iterations,

two different behaviours were observed:
_ in versions a and b of both BCR30 and BCR3A, the ratios rei and rii remained

constant at the value lo-r2;
_ in versions c and d of both BCRSO and BCRSA, the ratio rii remained constant

at the value 10-12, while the ratio rei started increasing again at iteration 105 (see

Figure 2, which relates to BCR30-c);

l all versions of BCR required 20 iterations for the condition number estimate CA, to be

equal to the estimate computed by the MATLAB routine cond; the product re_cAi was

in all cases an upper bound to the ratio erri (see Figure 3, which relates to BCR2A-b).

With problems JPWH991 (n = 991) and PDE9511 (n = 961) (both low condition number

problems), the convergence behaviour in terms of the ratio rei was similar to that of FS5411,

and therefore, we do not present the results in detail: we just mention that for both problems all

versions required about 750 iterations to reduce the ratio rei down to 10-14.

On low condition number problems, comparable convergence behaviours were obtained by all
versions of BCR, with the exception of BCR30-c/d and BCXUA-c/d: therefore, we can conclude

that for these problems, the most efficient versions are BCR20-d, BCR2A-b/c/d, BCRSO-b, and

BCRSA-b, since they only require two matrix-vector multiplications per iteration.

Let us now consider the results obtained with the matrices SHL400 (n = 663) and ARC130 (n =

130). Among the versions requiring three matrix-vector multiplications per iteration, BCR2A-a

1250 M. T. VESPUCCI AND C. G. BROYDEN

showed the fastest convergence, in terms of ret, on both problems. Among the versions requiring

two matrix-vector multiplications per iteration, BCR2A-b showed the fastest convergence, in

terms of rei, on both problems. In Figure 4, the curves rei related to BCR20-a (four matrix-

vector multiplications per iteration), BCR2A-a, and BCR2A-b are reported for matrix SHL400,

and in Figure 5, the curves rei related to BCR20-a, BCR2A-a, and BCR2A-b are reported for

matrix ARC130. These comparisons again suggest that a good convergence behaviour can be

obtained at the cost of only two matrix-vector multiplications per iteration.

loo*
10’

BCRZA-a, BCR2A-b

200 400 600 600 1000 1200 1400 1600 1600 2
number of iterations (i)

Figure 4. Matrix SHL400 (n = 663), behaviour of rei in BCR20-a, BCR2A-a, and
BCR2A-b.

lo0

10”

1 o-

1O-‘8
0 100 200 300 400 500 600 700 600 900 1000

number of iterations (i)

Figure 5. Matrix ARC130 (n = 130), behaviour of rei in BCR20-a, BCR2A-a, and
BCRPA-b.

Biconjugate Residual Methods 1251

In Figure 6, the curves erri, rei, rii, cAi, and re_cAi are plotted for the version BCRZA-b

on problem SHL400. We can observe that 800 iterations were needed for the condition number

estimate cAi to equal the MATLAB estimate; the product re_cAi was an upper bound to the

ratio erri. In Figure 7, the curves erri, rei, rii, cAi, and re_cAi are plotted for the version

BCR2A-b on problem ARC130. About 160 iterations were needed for the condition number

estimate cAi to equal the MATLAB estimate; again, the product re_cAi was an upper bound

to the ratio erri.

1o'O

10S

10"

lo.6

I I ! I I I ,

10"

i

~A-------4

10-= 1 I I I I I I I I 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

number of iterations(i)

Figure 6. Matrix SHLQOO (n = 663), Algorithm BCR2A-b, behaviour of erri, rei,

rii, cAi, and re_cAi.

10J"t I I 4 I 1 4 I I I 1
0 100 200 300 400 500 600 700 80 900 1000

numberofiteratfons(i)

Figure 7. Matrix ARC130 (n = 130), Algorithm BCRZA-b, behaviour of erri, rei,
rii, cAi, and re_c&.

1252 hI. T. VESPUCCI AND c. G. BHOYDEN

recA ,
-

err,

lo8 -
rei, ri,

lo9 I 0 I I I I I I
0 100 200 300 400 500 600 700 800 900 loo0

number of iterations (i)

Figure 8. Matrix IMPCOLE (n = 225), Algorithm BCR2A-b.

Finally, we mention that for problem IMPCOLE (n = 225), all versions reduced the ratio re,

only to 10m6 after 1000 iterations. In Figure 8, the curves erri, rei, rii, cAi, and re_cAi are

plotted for the version BCR2A-b.

3.5. Conclusions

The above-described numerical experiments have shown that efficient versions of Algorithm

BCR can be obtained which only require two matrix-vector multiplications per iteration. In

particular, the HS versions always performed at least as well as and often better than the Lanczos

versions. For the HS versions, it is as good to use the alternative formula for Pi+1 and the

recursive generation of the auxiliary sequences {wi} and {yi}. Among all the HS versions,

Algorithm BCR2A-b can be considered the most efficient.

All these algorithms should include a way of estimating the condition number of the coefficient

matrix. Indeed, the numerical experiments have shown that the value of re_cAi is an upper

bound to the ratio erri, provided the condition number estimate is accurate. Future work will

be devoted to the analysis of alternative estimates of the condition number.

Incidentally, we note that the final accuracy should always be assessed by checking the exactly

computed residual, instead of the iteratively computed residual.

Finally, more work will have to be done in order to avoid stagnation, which was shown in

problem IMPCOLE.

REFERENCES

1.

2.

3.

4.

5.

D.P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and Applications
29, 293-322, (1980).
M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau
of Standards 49, 409-436, (1952).
C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau of Standards
49, 33-53, (1952).
C.G. Broyden, Look-ahead block-CG algorithms, In Algorithms for Large Scale Linear Algebraic Systems,
(Edited by G. Winter Althaus and E. Spedicato), pp. 197-215, Kluwer Academic, (1998).
Cs.J. Hegediis, Generating conjugate directions for arbitrary matrices by matrix equations-Part I, Comput-
ers Math. Applic. 21 (l), 71-85, (1991).

Biconjugate Residual Methods 1253

6. Cs.J. Hegediis, Generating conjugate directions for arbitrary matrices by matrix equations-Part II, Com-

puters Math. Applic. 21 (l), 87-94, (1991).
7. Cs.J. Hegediis, Generation of conjugate directions for arbitrary matrices and solution of linear systems,

In Contributed Papers of the NATO Advanced Study Institute “Computer Algorithms for Solving Linear

Algebraic Equations: The State of the Art”, (Edited by E. Spedicato and M.T. Vespucci), University of

Bergamo Research Report, (1991).
8. C.G. Broyden and M.T. Vespucci, Krylov methods for linear systems, (in preparation).

