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Abstract

We shall discuss Riemannian metrics of fixed diameter and controlled lower curvature bound. As in [34], we
give a general construction of invariant metrics on homogeneous vector bundles of cohomogeneity one, which
implies, in particular, that any cohomogeneity one manifold admits invariant metrics of almost nonnegative
sectional curvature. This provides positive evidence for a conjecture by Grove and Ziller [24] which states that
any cohomogeneity one manifold should have invariant metrics of nonnegative curvature. 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

One of the classical problems of differential geometry is the investigation of manifolds which admit
(complete) Riemannian metrics with given lower curvature bounds, and the study of relations between
the existence of such metrics and the topology and geometry of the underlying manifold. Despite many
efforts during the past decades, this problem is still far from being understood. While certain topological
obstructions for the existence of metrics with positive, nonnegative or almost nonnegative sectional
curvature are known, general methods for the construction of such metrics are rare, leaving an enormous
gap between the known examples and those manifolds for which all known obstructions vanish.
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Quite recently, K. Grove and W. Ziller discovered a large class of new examples of closed
manifolds admitting Riemannian metrics of nonnegative sectional curvature. These manifolds all admit
a cohomogeneity one action, i.e., a smooth action by a compact Lie group whose principal orbit has
codimension one. In [24], Grove and Ziller showed that any such cohomogeneity one manifold admits
an invariant metric of nonnegative sectional curvature if it has two singular orbits of codimension two,
where we call a metric invariant if the Lie group acts by isometries. This class already contains many
interesting new examples. In fact, Grove and Ziller conjectured that any cohomogeneity one manifold
admits an invariant metric with nonnegative sectional curvature.

There is some positive evidence for this conjecture. Apart from the aforementioned special case
considered in [24], Grove and Ziller showed in [25] that any cohomogeneity one manifold admits an
invariant metric ofnonnegative Ricci curvatureand in fact an invariant metric ofpositive Ricci curvature
if it is closed and its fundamental group is finite.

Moreover, in [34] W. Tuschmann and this author showed that any cohomogeneity one manifold admits
invariant metrics of almost nonnegative sectional curvature, i.e., for everyε > 0 there is a metricgε on
M such that Sec(M,gε) ·diam(M,gε)

2 >−ε. This is equivalent to saying that in the Gromov–Hausdorff
topologyM can be collapsed to a single point under a lower curvature bound.

While there are examples of simply connected closed manifolds with positive Ricci curvature which
do not admit metrics of almost nonnegative curvature (cf. [23,35]), there are neither obstructions nor
examples known which tell the class of closed simply connected manifolds withalmost nonnegative
sectional curvaturefrom the class of such manifolds withnonnegative sectional curvature. In this sense,
the result from [34] is indeed significant support for the above mentioned conjecture.

Following this introduction, we shall recall some standard methods of constructing manifolds
of nonnegative sectional curvature, including compact homogeneous manifolds and biquotients. In
Section 3, we shall discuss metrics on homogeneous vector bundles, generalizing some ideas of Cheeger,
and discuss when such bundles admit invariant metrics with normal homogeneous collar. In the following
section, we shall apply these results to cohomogeneity one manifolds, describing the aforementioned
results in greater detail. In Section 5, we shall give some applications, describing examples of manifolds
with nonnegative or almost nonnegative sectional curvature. Finally, in Section 6 we give a survey of
known obstructions for the existence of metrics of almost nonnegative curvature in order to put these
results into a broader context.

2. Nonnegative curvature: standard techniques and examples

2.1. General construction methods

The first almost trivial observation is that the Riemannian product(M1 × M2, g1 + g2) of two
nonnegatively curved Riemannian manifolds(Mi, gi) has itself nonnegative sectional curvature.

Another standard fact which is of great importance in this context isO’Neill’s formula. For this,
consider a submersionπ :M→N between two Riemannian manifolds, i.e., a surjective map for which
the differentialdπp is an epimorphism for allp ∈M . Define the vertical and horizontal distributions on
M asV := ker(dπ) andH := V⊥, and call sections ofV andH vertical and horizontal vector fields,
respectively. Then we say thatπ :M → N is a Riemannian submersionif the restrictiondπp :Hp→
Tπ(p)N is an isometry w.r.t. the Riemannian metrics on each space. Then we have the following
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Proposition 2.1. Letπ : (M,g1)→ (N,g2) be a Riemannian submersion. Letp ∈M andx, y ∈ Tπ(p)N .
Let x̄, ȳ ∈Hp be the unique tangent vectors withdπ(x̄)= x anddπ(ȳ)= y. Then

(1)RN(x, y;y, x) =RM(x̄, ȳ; ȳ, x̄)+ 3

4

∥∥A(x̄, ȳ)∥∥2
g1
,

whereA :Λ2H→ V is the tensor given byA(x̄, ȳ) = [
X,
Y ]V , where
X,
Y are horizontal vector fields
with 
Xp = x̄ and
Yp = ȳ.

Here we use the conventionR(x, y; z,w) := g(R(x, y)z,w), so thatR(x, y;y, x) = Sec(x, y)‖x ∧
y‖2g . As an immediate consequence, we obtain

Corollary 2.2. If π : (M,g1)→ (N,g2) is a Riemannian submersion and(M,g1) has nonnegative
sectional curvature, then so does(N,g2).

As a further important standard formula we state the curvature for a warped product metric.

Proposition 2.3. Let (M,g) be a Riemannian manifold, and let̃M := I ×M whereI ⊂R is an interval.
For some smooth functionf : I →R

+, we define the metric̃g on M̃ by the formula

g̃ = dt2+ f (t)2g,
usingt as the parameter forI . Then the curvature tensor̃R of g̃ satisfies

R̃(c∂t + x, y;y, c∂t + x)=−c2f ′′f ‖y‖g + f 2(R(x, y;y, x)− f ′2‖x ∧ y‖2g),
whereR denotes the curvature tensor ofg and for x, y ∈ TM . Thus, ifC0 := inf(Sec(M,g)), then
(M̃, g̃) has nonnegative(positive, respectively) sectional curvature ifff ′′ � 0 andf ′2 �C0 (f ′′ < 0 and
f ′2 <C0, respectively).

2.2. Compact Lie groups

LetG be a compact Lie group and choose any right invariant Riemannian metric onG, i.e., such that
all right translationsRh :G→G,g �→ gh are isometries. Moreover, letV be a finite dimensional vector
space on whichG acts, i.e., such that there is a Lie group homomorphismρ :G→ Aut(V ). As usual, we
abbreviateρ(g)x by gx for g ∈G andx ∈ V . Let ( , ) be any inner product onV . Then the inner product
onV given by

(2)〈x, y〉 :=
∫
G

(gx, gy) dg

is G-invariant; indeed, sinceR∗
h−1dg = dg due to the right invariance, we have〈hx,hy〉 = ∫

G
(ghx,

ghy) dg = ∫
G
(gx, gy)R∗

h−1 dg = 〈x, y〉. Therefore, we obtain a morphismρ :G→O(V, 〈 , 〉), whence
its differential yields a linear mapdρ :g→ so(V , 〈 , 〉), so thatdρ(x) is skew-symmetric w.r.t.〈 , 〉 for
all x ∈ g.

In particular, sinceG acts on its Lie algebrag via the adjoint representation, we conclude that
there is an AdG-invariant inner product ong. The corresponding left invariant metric onG is then
evidently biinvariant, i.e., both the left and the right translations ofG are isometries. Since the differential
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ad:= d(Ad) :g→ End(g) is given by the Lie bracket, its skew symmetry reads

(3)
〈[x, y], z〉+ 〈y, [x, z]〉= 0 for all x, y, z ∈ g.

From (3) it is now immediate to verify that the connection onG given by

∇xy := 1

2
[x, y] for all left invariant vector fieldsx, y ∈ g

is the Levi-Civita connection of any biinvariant metric, and whence the sectional curvature satisfies

Sec(x, y)= 1

4

〈[x, y], [x, y]〉 � 0, wherex, y ∈ g is an orthonormal pair,

so that we have the following

Proposition 2.4. LetG be a compact Lie group. Then the sectional curvature of any biinvariant metric
onG is nonnegative.

2.3. Compact homogeneous spaces

Let M be a closed manifold, and suppose that the compact Lie groupG acts transitively onM . If
we fix p ∈ M and letH := Stabp ⊂ G be the stabilizer ofp, thenH is also compact, and we can
naturally identifyM with the set of left cosetsG/H . In particular, there is a natural submersion map
π :G→M ∼=G/H . We fix a biinvariant metric〈 , 〉 ong and thus have the orthogonal decomposition

g= h⊕m.

Then any other inner product ong is of the form

(4)gϕ(x, y) := 〈x,ϕy〉,
whereϕ :g→ g is a linear map which is symmetric and positive definite w.r.t.〈 , 〉.

It is now easy to see that there is a unique Riemannian metric onM such that the natural projection
π : (G,g)→ M becomes a Riemannian submersion iffg(h,m) = 0 and the restrictiong|m is AdH -
invariant. Conversely, anyG-invariant metric onM is obtained by this procedure, so that there is a one-to-
one correspondence betweenG-invariant Riemannian metrics onM and AdH -invariant inner products on
m⊂ g. In particular, if we chooseg = 〈 , 〉 then the induced metric onG is called anormal homogeneous
metric, and from Corollary 2.2 and Proposition 2.4 we obtain

Proposition 2.5. Let M = G/H be a compact homogeneous space. Then every normal homogeneous
metric onM isG-invariant and has nonnegative sectional curvature.

In general, ifϕ :m→m is an Ad(H)-equivariant linear map which is symmetric and positive definite
w.r.t. 〈 , 〉, then we can extend it tog by settingϕ|h = Idh and definegϕ onG by (4). By abuse of notation,
we denote the induced submersion metric onM =G/H also bygϕ . Now, if we let

π±(x, y) := 1

2

([x,ϕy] ± [y,ϕx]),
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then the Levi-Civita connection∇ϕ and the curvature tensorRϕ of gϕ have been calculated in [33] to
satisfy

∇ϕx y =−
1

2
[x, y]m + ϕ−1π+(x, y),

(5)

Rϕ(x, y;y, x) = 〈π−(x, y), [x, y]〉− 3

4

〈
ϕ[x, y]m, [x, y]m

〉
+ 〈π+(x, y), ϕ−1π+(x, y)

〉− 〈π+(x, x), ϕ−1π+(y, y)
〉
.

An interesting question is to determine the invariant metrics ofpositive sectional curvature. These
spaces are well known due to the work of Berger [7], Aloff and Wallach [1,37] and Berard-Bergery [6].
We shall not give the classification here, but we would like to point out that other than the compact rank
one symmetric spaces which obviously have positive sectional curvature, such homogeneous spaces exist
only in dimensions at most 24. Indeed, in dimensions larger than 24 the compact rank one symmetric
spaces are the only known closed manifolds with positive sectional curvature.

2.4. Biquotients

Let G be a compact Lie group as before, and letH ⊂G×G be a closed subgroup which hence acts
onG via

(h1, h2) · g := h1gh
−1
2 .

An easy calculation shows that this action is free iff for alle �= (h1, h2) ∈H , h1 andh2 are not conjugate
in G. If this is the case, then the quotient spaceG �H is a manifold and is called abiquotient space.
Evidently, there is a projection mapπ :G→G�H . Moreover, any biinvariant Riemannian metric onG
induces a (unique) submersion metric onG�H whence by Corollary 2.2 and Proposition 2.4, we get

Proposition 2.6. LetM =G �H be a biquotient. ThenM carries a Riemannian metric of nonnegative
sectional curvature.

The biquotients are also of interest as a source of new examples of nonnegatively curved manifolds
with “interesting” topology, as well as for manifolds of positive sectional curvature, as the following
examples illustrate.

Examples.

1. G=Sp(2) andH = {(diag(q, q),diag(q,1)), q ∈ Sp(1)}.
Clearly, if q �= 1, these two matrices are not conjugate, whenceG � H is a biquotient and hence
admits a Riemannian metric of nonnegative sectional curvature. In fact, one can show thatG�H is
an exotic seven dimensional sphere, i.e., it is homeomorphic but not diffeomorphic to the standard
sphere. This was historically the first example for a nonnegatively curved exotic sphere [22].

2. The Eschenburg spaces and the Bazaı̆kin spaces
(a) G= SU(3) andH = T 2= {(diag(z,w, zw),diag(1,1, z2w2)), z,w ∈U(1)}.
(b) G = SU(3) and H = S1

p,q,r,s = {(diag(zp, zq, z−(p+q)),diag(zr, zs, z−(r+s))), z ∈ U(1)} with
p,q, r, s ∈ Z.
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(c) G= SU(5) and

H =
{(

diag
(
zp1, . . . , zp5

)
,

(
A

zp1+···+p5

))
, A ∈ Sp(2), z ∈U(1)

}
with pi ∈ Z.

One verifies thatG � H is a biquotient in the following cases: in case (a); in (b) e.g. if the
sets {p,q,−(p + q)} and {r, s,−(r + s)} are relatively prime; in (c) if allpi are odd and
gcd(pσ(1)+pσ(2), pσ(3)+pσ(4))= 2 for all σ ∈ S5. Moreover, it has been shown in [5,15,16] that the
submersion metric haspositive sectional curvaturein the following cases: in case (a); in case (b) if
p,q,−(p+ q) /∈ [m,M] wherem=min{r, s,−(r + s)} andM =max{r, s,−(r + s)}; in case (c) if
all pi > 0. Finally, it has also been shown in these references that infinitely many of these examples
are not homotopy equivalent to any homogeneous space, so that these are examples of positively
curved manifolds which are topologically distinct from the homogeneous ones.

3. Homogeneous vector bundles

LetG/K be a compact homogeneous space, and suppose there is a representationı :K→ Aut(V ) on
some finite dimensional vector spaceV , which by (2) we may assume to be orthogonal asK is compact.
Then we can associate thehomogeneous vector bundle

D :=G×K V,
i.e., the set of equivalence classes under the relation onG× V given by(gh, v)∼ (g, hv) for all g ∈G,
h ∈ K and v ∈ V . Thus, we can regardD as the orbit space ofG × V under the “diagonal action”
h · (g, v) := (gh−1, hv) of K , and since this action is free, it follows that for anyK-invariant metric on
G× V we get a (unique) metric onD for which the submersionG× V →D is Riemannian.

Note that there is a canonical action ofG onD, and the cohomogeneity of the principal orbit of this
action equals the cohomogeneity of the principal orbit of the action ofK onV .

Let us assume thatG and henceK act by cohomogeneity one. SinceK acts orthogonally, it leaves
all spheres centered at the origin invariant, whenceK has cohomogeneity one iff it acts transitively on
the unit sphereSn ⊂ V . In particular, we can write the unit sphereSn =K/H as a homogeneous space
whereH ⊂K is the stabilizer of some unit vector inV .

Note that the norm functionr :V → R, v �→ ‖v‖ is K-invariant and hence induces a function
r :D→R, and forR ∈R, we let

(6)DR := r−1
([0,R])⊂D.

Moreover, the level sets ofr are precisely theG-orbits ofD.
Evidently,D carries aG-invariant metric of nonnegative sectional curvature. Indeed, by Corollary 2.2

and Proposition 2.4 we can choose the submersion metric induced by the Riemannian product of a
biinvariant metric onG and anyK-invariant metric onV with nonnegative curvature.

We fix once and for all a biinvariant inner product〈 , 〉 on g, and choose subspacesm1,m2⊂ g such
that

(7)g= h⊕m1⊕m2, and k= h⊕m1
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are orthogonal decompositions w.r.t.〈 , 〉. Recall the one-to-one correspondence betweenK-invariant
Riemannian metricsgϕ onSn =K/H and symmetric bilinear mapsϕ :m1→m1 described in Section 2.3
and suppose that the metric onV can be written in polar coordinates as

(8)gV = dr2+ gϕ(r),
with the norm functionr :V → R from above and a one-parameter family of symmetric maps
ϕ(r) :m1→m1. Then we have the following lemma.

Lemma 3.1 [12]. LetD→ G/K be a homogeneous disc bundle of cohomogeneity one. Letgλ be the
AdK -invariant metric onG induced byψ :m→ m such thatψ |m1 = λ Idm1 for someλ ∈ R and
ψ |m2 = Idm2, and letgV be aK-invariant metric onV of the form(8). Then the metric on theG-orbit
r−1(t0)⊂D of the corresponding submersion metric is induced by the mapϕ :m1⊕m2→m1⊕m2 with

(9)ϕ|m2 = Idm2, and ϕ|m1 = λϕ(t0)
(
ϕ(t0)+ λ Idm1

)−1
.

Proof. For X ∈ m1, we denote the vector field onSn induced by theK-action byX∗. Consider the
diagonal action ofK on G × Sn(t0). At the point (e, t0e0), the tangent space to the fiberV and its
orthogonal complementH are given as

V = {(A,0) |A ∈ h
}⊕ {(X,−X∗) |X ∈m1

}
, and

H= {(Y,0) | Y ∈m2
}⊕ {(ϕX,λX∗) |X ∈m1

}
.

Indeed,gG×V ((ϕX,λX∗), (X,−X∗)) = λ〈ϕX,X〉 + 〈ϕ(λX),−X〉 = 0. Thus, the horizontal lift of a
tangent vector onG/H is given by


X = (ϕ(ϕ+ λ Id)−1X,λ(ϕ+ λ Id)−1X∗
)

for X ∈m1, and

Y = (Y,0) for Y ∈m2,

whence forX ∈m1 andY ∈m2 we haveg(
Y ,
Y)= 〈Y,Y 〉, g(
X,
Y)= 0, and

g(
X, 
X)= λ〈ϕ(ϕ + λ Id)−1X,ϕ(ϕ+ λ Id)−1X
〉+ 〈ϕ(λ(ϕ + λ Id)−1X),λ(ϕ + λ Id)−1X

〉
= 〈λϕ2(ϕ + λ Id)−2X,X

〉+ 〈λ2ϕ(ϕ + λ Id)−2X,X
〉

= 〈λϕ(ϕ+ λ Id)−1X,X
〉
,

and the claim follows. ✷
This lemma can be used in different ways to constructG-invariant metrics onD with nonnegative

sectional curvature. For example, we can impose the condition that outside of some compact set, the
metrics are product metrics.

Corollary 3.2 [12]. LetD→G/K be a homogeneous disc bundle over the compact homogeneous space
G/K on whichG acts with cohomogeneity one. ThenD carries aG-invariant metric of nonnegative
sectional curvature such that for somet0 > 0, r−1(t0,∞) is isometric to(t0,∞)× (G/H,g1) whereg1

is an arbitraryG-invariant metric on the principal orbitG/H .
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Proof. Choose aK-invariant metric onV of the formgV = dr2+f (r)2g0 whereg0 denotes the standard
metric onSn. By Proposition 2.3 we can do this such thatgV has nonnegative sectional curvature and
f ≡ c0 on (t0,∞) for somet0, c0 > 0. Then the submersion metric onD has also nonnegative curvature,
and by the lemma, the metric onG/H = r−1(t) is fixed for all t > t0. ✷
Corollary 3.3 [12]. LetX be a compact rank one symmetric space and let−X be the same space with
the opposite orientation. Then there exists a Riemannian metric of nonnegative sectional curvature on
M = X#± X. Moreover, this metric can be chosen such that forM = X#−X its isometry group acts
with cohomogeneity one, while forM =X#X, this is true only for the local isometry group.

Proof. Let X = G/K be a compact rank one symmetric space such thatK = Stabp, somep ∈ X.
Then it is known thatK acts transitively on the unit sphereSn ⊂ TpX, and thatD := X\{p} is a
homogeneous vector bundle over some rank one symmetric space of lower dimension. Thus,K acts on
D by cohomogeneity one, and hence there is aK-invariant Riemannian metric of nonnegative sectional
curvature onD which is a product metric onr−1(t0,∞).

Now r−1[0, t0 + 1] is the complement of an open neighborhood ofp ∈ X, and hence we can glue
together two such complements along their boundary to obtain a smooth metric onX#−X. The same is
true if we change the orientation ofX before the glueing process, thus we also obtain a smooth metric
onX#X. Evidently, these metrics have nonnegative sectional curvature. Moreover the action ofK onD
induces a local action ofK onX#±X, and this action has cohomogeneity one. In the caseM =X#−X,
this action is globally defined. ✷

In order to generalize this idea of Cheeger to glue together metrics on two homogeneous disc bundles
D1 andD2 which close to the boundary are isometric to a product of an interval and a fixed homogeneous
metric, one has to overcome the difficulty that in general, even if the principal orbits of theDi are
equivalent as homogeneous spaces, their bundle structures are distinct. That is, the homogeneous metric
close to the collar cannot be chosen arbitrarily in order to do the glueing.

Thus, given a homogeneous disc bundle of cohomogeneity one, it is natural to look for homogeneous
metrics which close to the collar are isometric to the product of an interval and a fixednormal
homogeneousmetric on the principal orbit. We shall call such a metric ametric with normal homogeneous
collar.

To construct such metrics, we fix a biinvariant metricQ and theQ-orthogonal decomposition (7).
For ε > 0, define the mapψε :m→ m by ψε|m1 = (1+ ε) Idm1 andψε|m2 = Idm2 which induces a left
invariant metricgε onG. Moreover, choose aK-invariant metricgV onV which takes the form (8) with
a one-parameter family of symmetric mapsϕ(t) :m1→ m1 such thatϕ(t) = µ2 Idm1 for all t � t0 and
some constantµ> 0. By Proposition 2.3, this can be done such that this metric has nonnegative sectional
curvature. According to (9), the submersion metric induced from the submersion(G×V,gε+ gV )→D

takes the form

g = dt2+ gϕ(t), where

ϕ(t)|m2 = Idm2, and ϕ(t)|m1 =
(1+ ε)µ2

µ2+ (1+ ε) Idm1 for all t � t0.

In particular, ifµ2= (1+ ε)/ε, then this metric has a normal homogeneous collar and, by Corollary 2.2,
it has nonnegative sectional curvature provided the curvature of(G,gε) is nonnegative.
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Unfortunately,gε will in general have some negative curvature for anyε > 0. However, there is a
special case where this approach works.

Theorem 3.4 [24]. Let D → G/K be a homogeneous vector bundle of cohomogeneity one and
of rank � 2. Then there exists aG-invariant metric of nonnegative sectional curvature onD with
normal homogeneous collar, i.e., such that for somet0 > 0, this metric onr−1(t0,∞) is isometric to
(t0,∞)× (G/H,gQ) wheregQ is a normal homogeneous metric on the principal orbitG/H .

Proof. By our discussion above, it suffices to show that(G,gε) has nonnegative sectional curvature for
someε > 0. Now, using the decomposition (7), we have dimm1 � 1 so that[m1,m1] = 0. Therefore, if
x = x1+ x2 andy = y1+ y2 with xi, yi ∈mi then (5) yields

R(x, y;y, x)= ∥∥[x2, y2]h
∥∥2+ 1

4

∥∥[x2, y2]m2 + (1+ ε)
([x1, y2] + [x2, y1]

)∥∥2

+ 1

4
(1− 3ε)

∥∥[x2, y2]m1

∥∥2

which is nonnegative for sufficiently smallε > 0 (in fact,ε � 1
3 suffices). ✷

The conclusion of this theorem is not true for homogeneous bundles of higher rank. That is, there are
homogeneous disc bundles of cohomogeneity one for which there is no invariant metric of nonnegative
sectional curvature with normal homogeneous collar (cf. Example 3.6).

In order to describe homogeneous metrics on disc bundles, we note that the complement of the zero
section ofD is of the form(0,∞)×G/H whereG/H is the principal orbit and the first factor is induced
by r :D→ (0,∞). On this set, we may assume that the metric takes the form

(10)g = dt2+ gϕ(t),
whereg= h⊕m and the metricgϕ(t) onG/H is induced byϕ(t) :m→m as in (4). Then the connection
and the curvature ofg has been calculated in [25] and [34] as follows.

Proposition 3.5. LetM = I ×G/H andg = dt2+gϕ(t) be as above, and letc ∈R, x, y ∈ TeHG/H ∼=m.
Then

∇xy =∇ϕx y − 〈Stx, ϕy〉∂t , ∇∂t x =∇x∂t = Stx, ∇∂t ∂t = 0,

R(c∂t + x, y;y, c∂t + x)=Rϕ(t)(x, y;y, x)− 1

4

(〈ϕ̇x, x〉〈ϕ̇y, y〉 − 〈ϕ̇x, y〉2)
+ 1

2
c
(
3〈ϕ̇[x, y], y〉 + 4

(〈Sty,π+(x, y)〉 − 〈Stx,π+(y, y)〉))
− 1

4
c2
〈
(2ϕ̈ − ϕ̇ϕ−1ϕ̇)y, y

〉
,

whereSt :m→ m is given asSt := 1
2ϕ
−1ϕ̇ and where∇ϕ andRϕ are the connection and the curvature

of (G/H,gϕ), respectively.
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Example 3.6. 1 LetG= SU(3), and fix the biinvariant inner product

Q(A,B) := −1

2
trAB∗

on g = su(3). Up to multiples, this is the only biinvariant inner product. Moreover, letK = S(U(2) ·
U(1)), whenceG/K = CP

2, and consider the irreducible representation ofK on V = R
3 which is

determined by the fact that the center ofK acts trivially onV . Then the principal orbit ofD :=G×K V
isG/T whereT consists of all diagonal matrices. As aT -module, we have the decomposition

su(3)= t⊕m1⊕m2⊕m3, k= t⊕m1,

where eachmi consists of all matrices with non-zero entries only in two fixed positions off the
diagonal. AsT -modules, themi are irreducible and pairwise inequivalent, hence everyT -equivariant
mapϕ :m→m must have themi as eigenspaces. Whence, off the 0-section ofD, anyG-invariant metric
must be of the form

g = dt2+ gϕ(t), ϕ(t)|mi
= fi(t)2 Idmi

.

Let c ⊂M be the geodesic which is pointwise fixed byT , whenceċ = ∂t . Consider the subalgebras
ki := t⊕mi ⊂ g, and letKi ⊂G be the corresponding subgroups. Then the orbitsMi :=Ki · c⊂M are
totally geodesic by Proposition 3.5, and fori = 2,3 we haveMi

∼=R× S2 whereKi acts transitively on
the second factor. Thus, anyKi -invariant metric onMi must be of the formdt2+fi(t)2g0 whereg0 is the
standard metric onS2, and the nonnegativity of the curvature of this metric implies thatf ′′i � 0, whence
fi is constant.

If we could find a metric of nonnegative sectional curvature with normal homogeneous collar onD,
then we would have thatg is given as above withf 2

i ≡ c0 > 0 for i = 2,3, andf1(t)
2≡ c0 for t � t0.

Now we choose the elementsx1, y1 ∈m1 andx2, y2 ∈m2⊕m3 as follows:

x1 :=
( 0 0 1

0 0 0
−1 0 0

)
, y1 :=

(0 0 i

0 0 0
i 0 0

)
,

x2 :=
(0 i 0
i 0 i

0 i 0

)
, y2 :=

( 0 1 0
−1 0 1
0 −1 0

)
.

One verifies that[x1, y2] + [x2, y1] = 0 and [x1, y1] = −[x2, y2]. Thus, if we letx := x1 + sx2 and
y := y1+ sy2, somes ∈R, then (5) and Proposition 3.5 imply that

R(x, y;y, x)= 8/c0
(
c0f

2
1

(
1− (f ′1)2

)− f 2
1

(
3c0− f 2

1

)
s2+ c2

0s
4),

and, assuming thatf 2
1 � 3c0, this expression is nonnegative for alls ∈R iff

4c3
0f

2
1

(
1− (f ′1)2

)− f 4
1

(
3c2

0− f 2
1

)2 � 0

which is equivalent to saying that

4c3
0(f

′
1)

2 � 4c3
0− f 2

1

(
3c0− f 2

1

)2= (4c0− f 2
1

)(
c0− f 2

1

)2
,

1 This example has been communicated to us by W. Ziller.
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or (
(log |√c0 − f1|)′

)2 � 1

4c3
0

(
4c0− f 2

1

)(√
c0 + f1

)2
.

Sincef (t)2 < c0 for small t and the right hand side of this inequality is uniformly bounded forf 2
1 � c0,

it follows thatf1(t)
2 < c0 for all t ∈R, contradicting our assumption.

Of course, this example can be generalized to allG whose Lie algebra contains a subalgebra
isomorphic tosu(3) by choosingm1 to lie in that Lie algebra and the principal orbit to beG/T with
T ⊂G a maximal torus.

Since this example shows that we can in general not expect invariant metrics on homogeneous disc
bundles of cohomogeneity one with normal homogeneous collar to have nonnegative sectional curvature,
the question remains what can be said about lower curvature bounds of such metrics.

Let us again consider submersion metrics(G× V,gQ + gV )→D wheregQ denotes any biinvariant
metric onG, andgV is aK-invariant metric onV , which we write in polar coordinates as

gV = dr2+ gϕ(r),
wheregϕ(r) is aK-invariant metric on the sphere of radiusr , Sn(r) ⊂ V . The first difficulty we have
to overcome is that in general, the normal homogeneous metric onSn = K/H does not coincide with
the standard metric; rather, these metrics are someBerger metrics, linked to the shrinking of certain
fibers of the Hopf fibrations. By the smoothness,1

r2gϕ(r) must converge to the standard metric asr→ 0,
while by (9) and the fact that we want a metric with normal homogeneous collar,gϕ(r) must be normal
homogeneous for sufficiently larger . Thus, we need some transition from the round metric to the normal
homogeneous metric while maintaining the lower curvature bound. This has been achieved in [34] by the
following theorem whose proof is omitted here.

Theorem 3.7. LetK ⊂ O(n + 1) be a Lie subgroup which acts transitively onSn ⊂ R
n+1, and letgQ

be a normal homogeneous metric onSn induced by someAdK -invariant inner productQ on k. Let
r(x) := ‖x‖ be the radius function onRn+1.

Then there exists aK-invariant metric g on the unit ballB1(0) ⊂ R
n+1 with positive sectional

curvature, and anε > 0, such that onr−1(1− ε,1) we haveg = dr2+f (r)2gQ wheref : (1− ε,1)→R

satisfiesf > 0, f ′ > 0.

By Proposition 2.3, it follows thatf ′′ < 0 andf ′2 < inf Sec(Sn, gQ) on (1− ε,1) whence we can
extend this metric to a nonnegatively curved metricgV on all onV = R

n+1 which outside ofB1(0) has
the form

gV = dt2+ c2
0t

2gQ for somec0 > 0.

By Corollary 2.2, the corresponding sumbersion metric onD has nonnegative sectional curvature, and
by (9), it can be written onD\D1 (cf. (6)) in the form

(11)g = dt2+ gϕ(t), whereϕ(t)|m2 = Idm2 and ϕ(t)|m1 =
c2

0t
2

1+ c2
0t

2
Idm1 .
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Since
c2

0t
2

1+c2
0t

2 < 1, it follows that this metric will not have a normal homogeneous collar, which was to

be expected in view of Example 3.6. But we shall show now that we can change this metric to one with
normal homogeneous collar with arbitrarily little negative sectional curvature.

Proposition 3.8 [34]. LetH ⊂K ⊂G be compact Lie groups, letQ be a biinvariant inner product on
g andg= h⊕m1⊕m2 be the decomposition from(7). Suppose that(K/H,gQ) has positive sectional
curvature, and letC > 0 be the pinching constant, i.e.,

C := inf Sec(K/H,gQ)

supSec(K/H,gQ)
.

For someR0 ∈R andε > 0, let f : [R0,R0+ ε)→R be a smooth function with

(12)0< f < 1, f ′ > 0 and f ′′ <−9f (f ′)2

4− 3f 2
.

Moreover, suppose that

(13)δ := 4(f ′)2(R0)

Cf 2(R0)
< sup Sec(K/H,gQ).

Then there is a smooth extensionf : [R0,R)→R such thatf ≡ 1 nearR, where

(14)R −R0 � 4√
Cδ

1− f (R0)
2

f (R0)2
+ 1,

and such that the metricg = dt2+ gϕ(t) on [R0,R)×G/H with ϕ(t) :m→m given by

ϕ(t)|m2 = Idm2 and ϕ(t)|m1 = f (t)2 Idm1

satisfies

Ric(g)� 0, Sec(g)�−δ.
Moreover, ifdimK/H > 0 andz(g)∩m2= 0 then there exist points where the Ricci curvature is positive.

Proof. We relatef to a functionµ by the equations

(15)µ := f√
4− 3f 2

, whencef = 2µ√
1+ 3µ2

,

and notice that (12) is equivalent to the conditions 0<µ< 1, µ̇ > 0 andµ̈ < 0. Thus, we can extendµ to
a smooth functionµ : [R0,R)→R in such a way thaẗµ� 0 andµ≡ 1 nearR, and definef : [R0,R)→
R according to (15). Evidently, this can be done on an interval of lengthR −R0 � 1−µ(R0)

µ̇(R0)
+ 1, and it is

straightforward to verify (14) from (13) and (15).
Given x = x1 + x2 andy = y1 + y2 with xi, yi ∈ mi , we letBii := [xi, yi] andB12 := 1

2([x1, y2] +
[x2, y1]) ∈ m2. By hypothesis, we can find constantsC1 � C2 > 0 such that 1/C2 � Sec(K/H,gQ) �
1/C1 andC =C2/C1. NowRgQ(x1, y1;y1, x1)= 〈B11

h
,B11

h
〉 + 1

4〈B11
m1
,B11

m1
〉 by (5), whence

C2

(〈
B11

h ,B
11
h

〉+ 1

4

〈
B11

m1
,B11

m1

〉)
� ‖x1∧ y1‖2 � C1

(〈
B11

h ,B
11
h

〉+ 1

4

〈
B11

m1
,B11

m1

〉)
,
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and from there,

(16)
1

4
C2
〈
B11,B11〉� ‖x1∧ y1‖2 �C1

〈
B11,B11〉.

Now Proposition 3.5 implies

R(c∂t + x, y;y, c∂t + x)
(17)=Rgϕ(t) (x, y;y, x)− f 2(f ′)2‖x1∧ y1‖2− 3cff ′

〈
B22, y1

〉− c2ff ′′〈y1, y1〉.
We decomposeB22= v +w+B22

2 with B22
2 ∈m2, v,w ∈ k such that〈v, y1〉 = 0 andw is a multiple

of y1; if y1= 0 then we setw = 0. Moreover, we letB22
k
:= v +w. Since〈B11, y1〉 = 〈[x1, y1], y1〉 = 0,

it follows that

(18)
〈
B11,B22

k

〉= 〈B11, v
〉
,

〈
B22, y1

〉= 〈w,y1〉 and
〈
B22

k ,B
22
k

〉= 〈v, v〉 + 〈w,w〉.
Then (5) and (18) yields

Rgϕ(t)(x, y;y, x)= 3

4
f 2
∥∥[x, y]h∥∥2+ 1

4

∥∥B22
2 + 2f 2B12

∥∥2

+ 1

4
f 2
〈
B11,B11

〉+ 1

2
f 2
(
3− 2f 2

)〈
B11,B22

k

〉+(1− 3

4
f 2

)〈
B22

k ,B
22
k

〉
� 1

4
f 2〈B11,B11〉+ 1

2
f 2(3− 2f 2)〈B11, v

〉+(1− 3

4
f 2

)
〈v, v〉

+
(

1− 3

4
f 2

)
〈w,w〉.

Substituting this and (16) into (17) yields

R(c∂t + x, y;y, c∂t + x)
� 1

4
f 2
(
1− 4C1(f

′)2
)〈
B11,B11

〉+ 1

2
f 2
(
3− 2f 2

)〈
B11, v

〉+(1− 3

4
f 2

)
〈v, v〉

(19)+
(

1− 3

4
f 2

)
〈w,w〉 − 3cff ′〈w,y1〉 − c2ff ′′〈y1, y1〉.

From (13) and (15) we deduce thatf ′′ � 0,f � 1 and 4C1(f
′)2 < 1. Thus, from (19) a straightforward

calculation now yields that this metric has nonnegative Ricci curvature. Moreover, iff ′′ < 0, then the
Ricci curvature is positive, unlessm1 = 0 (in which case Ric(∂t )= 0) or z(g) ∩m2 �= 0 (in which case
Ric(x)= 0 for anyx ∈ z(g)∩m2). Since there are points wheref ′′ < 0, the assertion about points with
positive Ricci curvature follows.

Next, observe thatf 4‖x1 ∧ y1‖2= ‖x1 ∧ y1‖2g � ‖(c∂t + x) ∧ y‖2g , whence in order to guarantee that
Sec(g)�−δ, it suffices to show that

(20)R(c∂t + x, y;y, c∂t + x)+ δf 4‖x1∧ y1‖2 � 0.

But by (16) and (19), we have the following estimate:

R(c∂t + x, y;y, c∂t + x)+ δf 4‖x1∧ y1‖2
� 1

4
C1f

2(Cδf 2− 4(f ′)2
)〈
B11,B11〉+ 1

4
f 2〈B11,B11〉+ 1

2
f 2(3− 2f 2)〈B11, v

〉
(21)+

(
1− 3

4
f 2

)
〈v, v〉 +

(
1− 3

4
f 2

)
〈w,w〉 + 3cff ′〈w,y1〉 − c2ff ′′〈y1, y1〉.
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Note thatCδf 2− 4(f ′)2 � 0; indeed, by (13) this holds atR0, and moreover,(f ′/f )′ � 0 asf ′′ � 0.
Thus, the first row on the right of (21) is nonnegative.

The second and third row on the right of (21) are nonnegative if the quadratic polynomials

p1(x)= 1

4
f 2x2+ 1

2
f 2
(
3− 2f 2

)
x +

(
1− 3

4
f 2

)
,

p2(x)=−ff ′′x2+ 3ff ′1x +
(

1− 3

4
f 2

)
are nonnegative for allx ∈R. The discriminantsdi of pi are given by

d1= 1

4
f 2

(
1− 3

4
f 2

)
− 1

16
f 4
(
3− 2f 2

)2= 1

4
f 2
(
1− f 2

)3 � 0,

d2=−ff ′′
(

1− 3

4
f 2

)
− 9

4
f 2(f ′1)2=− 4µµ̈

(1+ 3µ2)3
� 0,

and sincepi(0)= 1− 3
4f

2 > 0,pi(x)� 0 for all x ∈R follows. ✷
As a consequence, we now obtain the following

Theorem 3.9 [25,34]. Let D→ G/K be a homogeneous vector bundle with cohomogeneity one. For
every δ > 0, there exists an invariant metricgδ on DR (cf. (6)) for someR = R(δ) with normal
homogeneous collar such that

Sec(DR,gδ)�−δ, diam(DR,gδ)=O
(
δ−1/6), Ric(DR,gδ)� 0.

Moreover, if the rank ofD is at least two and ifπ1(G/K) is finite then there exist points of positive Ricci
curvature.

Here, O(δp) denotes any function ofδ such that lim supδ→0 |δ−pO(δp)|<∞.

Proof. First of all, we note that any normal homogeneous metric on the sphereK/H has positive
sectional curvature [7], and we assume thatδ < sup Sec(K/H,gQ). By (11), we can for anyR0 > 1
and ε > 0 construct an invariant metric onDR0+ε with nonnegative sectional curvature such that it is

given in the form needed in Proposition 3.8 withf (t)= c0t/

√
1+ c2

0t
2 . One verifies that (12) holds, and

we defineR0=R0(δ) by the equation

δ = 4(f ′)2(R0)

Cf 2(R0)
= 4

CR2
0(1+ c2

0R
2
0)

2
,

so thatR0 = O(δ−1/6) and (13) is satisfied. Thus, by Proposition 3.8 there is an invariant metric on
(R0,R)×G/H ∼=DR\DR0 which can be glued together with the metric onDR0+ε to obtain an invariant
metric onDR with normal homogeneous collar and the asserted curvature bounds.

Furthermore, (14) implies thatR −R0 � 4√
Cδc2

0R
2
0
+ 1=O(δ−1/6), so thatR =O(δ−1/6) as well.

Since onDR\D1 this metric is of the formg = dt2 + gϕ(t), it follows that the curvest �→ (t, p)

are unit speed geodesics, and since the metric onD1 is independent ofδ, we have diam(DR,gδ) �
diam(D1, gδ)+ 2(R(δ)− 1)=O(δ−1/6) as claimed.

Finally, note that the conditionz(g)∩m2= 0 is equivalent to the condition thatπ1(G/K) is finite. ✷
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4. Cohomogeneity one manifolds

A connected manifoldM is said to havecohomogeneity oneif it supports a smooth action by a compact
Lie groupG such that the orbit space is one dimensional. The topological structure of cohomogeneity
one manifolds is well understood in principle. Namely, there are exactly the following four cases.

1. M/G = R. In this caseM = R×M0 whereM0 = G/H is a compact homogeneous space, andG

acts trivially on the first factor,
2. M/G = R+ = [0,∞). In this caseM is a homogeneous disc bundle of cohomogeneity one over

some compact homogeneous space, i.e.,M =G×K R
n whereK ⊂O(n) acts transitively on the unit

sphere,
3. M/G= S1=R/Z. ThenM = (R×G/H)/Z whereZ acts onR by translation and on the compact

homogeneous spaceG/H by an element in the normalizer ofH in G. Since the action of such an
element has finite order, it follows thatM is finitely covered byS1 × G/H and hence is locally
homogeneous,

4. M/G= [a, b]. In this case,M is obtained by glueing together two homogeneous disc bundles along
their common boundary, i.e.,M = (G×K−D−)∪ (G×K+D+)whereD± is the unit disc in the vector
space on whichK± acts orthogonally and with cohomogeneity one.

The most interesting kind of cohomogeneity one manifolds from the topological point of view is
the last one. Moreover, from our discussion of homogeneous vector bundles of cohomogeneity one in
the preceding section, we can constructG-invariant Riemannian metrics on these spaces by glueing
together metrics with normal homogeneous collar along their common boundary, just like in the proof of
Corollary 3.3. Thus, we immediately obtain the following results.

Corollary 4.1. Let (M,G) be a cohomogeneity one manifold with two singular orbits, i.e., such that
M/G= [a, b].

1. [24] If both singular orbits have codimension at most two, thenM admits aG-invariant Riemannian
metric of nonnegative sectional curvature.

2. [25]M admits aG-invariant metric of nonnegative Ricci curvature. Moreover, ifπ1(M) is finite then
M admits aG-invariant metric of positive Ricci curvature.

3. [34] M admitsG-invariant metrics ofalmost nonnegative curvature, i.e., for everyε > 0 there is a
G-invariant metricgε onM such thatSec(M,gε) · diam(M,gε)

2 >−ε.

Proof. All of these follow immediately from the above description of cohomogeneity one manifolds and
Theorems 3.4 and 3.9, except for the second part of the second statement.

Namely, for this one shows that if there are no points of positive Ricci curvature onM then eitherM
has infinite fundamental group, orM is a Seifert type bundle whose orbit space base and generic fiber
both admit metrics with positive Ricci curvature, whence it admits aG-invariant metric of positive Ricci
curvature by [31].

On the other hand, if theG-invariant metric of nonnegative Ricci curvaturehas points of positive
Ricci curvature, then the existence of an invariant metric of positive Ricci curvature follows from the
deformation results in [3,14,38]. We refer to [25] for details.✷
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It has been conjectured in [24] thatany cohomogeneity one manifold should support an invariant
metric of nonnegative sectional curvature. Since this follows from the standard constructions discussed
in Section 2.1 in the cases whereM/G is the line, the half line or the circle, we may restrict our attention
to the case where there are two singular orbits. Thus, the above results can be viewed as steps into the
direction of proving this conjecture.

However, if this conjecture is correct, it cannot be proven in a way analogous to Corollary 4.1
by glueing together normal homogeneous metrics on homogeneous disc bundles. For example, if we
consider the adjoint action ofSU(3) on the unit sphereS7 ⊂ su(3), then one verifies easily that this
action has cohomogeneity one and has two singular orbits. Moreover, the normal bundles of the singular
orbits are precisely the bundles considered in Example 3.6 and thus do not admit invariant metrics
of nonnegative sectional curvature with normal homogeneous collar. On the other hand,S7 carries an
invariant metric of constant positive sectional curvature, whence this example illustrates the limits of the
“glueing method” used to show Corollary 4.1.

5. Applications

5.1. Principal bundles, vector bundles and sphere bundles

Definition 5.1. LetM be a manifold with a (smooth) action by a compact Lie groupG, and letP →M

be a principalH -bundle whereH is a compact Lie group. We say that the action ofG onM lifts to P if
there is an action of̃G×H onP whereG̃→G is a (finite) cover extending the action ofH onP and
such that the induced action of̃G onP/H =M coincides with the given one.

Observe that the induced action of̃G×H on P has the same cohomogeneity as the action ofG on
M , and the number and codimensions of the singular orbits is the same for both actions.

Not every group action admits a lift to any principal bundle. However, ifH is abelian then such a lift
almost always exists. More precisely, the following is known.

Proposition 5.2 [26]. LetM be a closed smooth manifold on which a compact connected Lie groupG

acts smoothly, and letπ :P →M be a principalT k bundle overM whereT k is thek-dimensional torus.
If H 1(M,Z) is trivial or if G is semisimple, then the action ofG lifts to P .

Of course, this proposition implies, in particular, that any principal torus bundle over any simply
connected cohomogeneity one manifold is again of cohomogeneity one, whence the statements of
Corollary 4.1 hold.

Another interesting class of principal bundles which admit a cohomogeneity one action has been
considered in [24]. Namely, we have the following

Proposition 5.3 [24]. Any principalH -bundleP → S4 withH = SO(3),SO(4),Sp(1) or Sp(1)×Sp(1)
admits a cohomogeneity one action with two singular orbits of codimension two, and whence an invariant
metric of nonnegative sectional curvature.

For this, one considers the action ofSO(3) on S4 ⊂ R
5 induced by the (unique) five-dimensional

irreducible representation ofSO(3), and notes that this action has cohomogeneity one and two singular
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orbits of codimension two. Then one proves that this action lifts to any principal bundle with one of these
structure groups by a direct investigation, using the topological classification of these principal bundles.

Corollary 5.4 [24]. Every vector bundle and every sphere bundle overS4 admits a complete metric of
nonnegative sectional curvature whose isometry group acts with cohomogeneity one. In particular, all
Milnor spheres(i.e.,10of the14unoriented seven dimensional exotic spheres which areS3-bundles over
S4) admit metrics of nonnegative sectional curvature.

The proof uses the fact that every vector bundle overS4 of rank> 4 is the direct sum of a rank four
vector bundle and a trivial one. Moreover, every vector bundle of rank� 2 is trivial, whence the structure
group of any nontrivial vector bundle overS4 can be reduced toSO(3) or SO(4). Whence, the associated
principal bundleP → S4 carries an invariant metric of nonnegative sectional curvature. The total space
E of any vector bundle or sphere bundle can thus be written as

E = P ×H R
n+1, or E = P ×H Sn

whereH = SO(3) and n = 2, or n � 3 andH = SO(4) acts trivially on the second summand of
R
n+1 = R

4 ⊕ R
n−3. Whence the submersion metric onE induced by the product metric onP × R

n+1

(P × Sn, respectively) has nonnegative sectional curvature by Corollary 2.2.
Similar arguments also lead to the following statements.

Corollary 5.5 [24]. Every vector bundle and every sphere bundle overS5 admits a complete metric of
nonnegative sectional curvature.

Every rank three vector bundle and88 of the 144 rank four vector bundles overS7 and the
corresponding sphere bundles admit complete metrics of nonnegative sectional curvature.

For general cohomogeneity one manifolds, the statement of the existence of almost nonnegatively
curved metrics on associated vector bundles follows from the following result.

Theorem 5.6 [17]. LetM→ B be a fiber bundle for which the fiberF , the structure groupG and the
baseB are compact. IfB carries metrics of almost nonnegative sectional curvature andF carries a
G-invariant metric of nonnegative sectional curvature thenM carries metrics of almost nonnegative
sectional curvature.

Thus, all compact homogeneous fiber bundles—in particular, all principal bundles and all sphere
bundles—over a cohomogeneity one manifold carry metrics of almost nonnegative sectional curvature.

5.2. Brieskorn manifolds and the Kervaire spheres

Particularly interesting examples of closed cohomogeneity one manifolds are given by the odd-
dimensional Brieskorn manifolds (see [8,10,27,30]). Given an integerd � 1, the Brieskorn manifolds
W 2n−1(d) are the 2n− 1 dimensional real algebraic submanifolds ofC

n+1 defined by the equations

zd0 + z2
1+ · · · + z2

n = 0 and |z0|2+ |z1|2+ · · · + |zn|2= 1.

The manifoldsW 2n−1(d) are invariant under the standard linear action ofO(n) on the(z1, . . . , zn)

coordinates, and the action ofS1 via the diagonal matrices of the form diag(e2iθ , ediθ , . . . , ediθ ). The
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resulting action of the product groupS1×O(n) has cohomogeneity one [28], whence by Corollary 4.1,
all Brieskorn manifoldsW 2n−1(d), 2� d ∈ Z, admitS1×O(n)-invariant metrics of almost nonnegative
sectional curvature and invariant metrics of positive Ricci curvature.

The topology of the Brieskorn manifolds is fairly well understood. In particular, it is known [27] that
for n, d � 3 odd,W 2n−1(d) is homeomorphic to a sphere which bounds a parallelizable manifold. Indeed,
if d ≡±1 mod 8 then the manifoldsW 2n−1(d) are diffeomorphic to the standard 2n−1 sphere, while for
d ≡±3 mod 8,W 2n−1(d) is diffeomorphic to theKervaire sphereK2n−1, which is a topological sphere
obtained as the boundary manifold of the plumbing of two copies of the tangent disc bundle ofSn [10].2

Moreover, the Kervaire sphereK2n−1 is an exotic sphere, i.e., homeomorphic but not diffeomorphic
to the standard sphere, ifn+ 1 is not a power of 2 [9].3

Recall that the orbit space of a free action of a nontrivial finite cyclic group on a homotopy sphere is
called ahomotopy real projective spaceif this group has order two, and ahomotopy lens spaceotherwise.
Notice that homotopy real projective spaces are always homotopy equivalent to standard real projective
spaces [36], whereas a corresponding statement for homotopy lens spaces does in general not hold.

Suppose again thatn � 3 and d � 1 are odd. Form � 2 define an action ofZm on C
n+1 by

α(z0, z1, . . . , zn) := (α2z0, α
dz1, . . . α

dzn), whereα is a primitivemth root of unity generatingZm ⊂ S1.
One verifies that ifm andd are relatively prime, then this action induces a free action onW 2n−1(d). Since
W 2n−1(d) is a homotopy sphere, the quotientQ2n−1

m (d) :=W 2n−1(d)/Zm is a homotopy real projective
space form= 2 and a homotopy lens space form� 3. Moreover, the action ofS1×SO(n) onW 2n−1(d)

descends to the quotient which is therefore again a cohomogeneity one manifold.
The orbit spaces of these free cyclic group actions of on the Brieskorn spheresW 2n−1(d) have been

extensively studied (see [2,11,19–21,27,29,32]). Combining these results with Corollary 4.1, we obtain
the following.

Corollary 5.7 [34]. The following closed manifolds admit metrics of almost nonnegative sectional
curvature and of positive Ricci curvature with an isometry group of cohomogeneity one:

1. all Kervaire spheres(cf. also[4]),
2. quotients of the Kervaire spheres by a free action ofZm for any integerm � 3; these quotients

are homotopy lens spaces which are differentiably distinct from the standard ones in those odd
dimensions in which the Kervaire sphere is exotic,

3. quotients of the Kervaire spheres by a freeZ2-action; indeed, for any integerk � 1 this results in at
least4k oriented diffeomorphism types of homotopyRP

4k+1.

Since there are exactly four oriented diffeomorphism types ofRP
5, the last statement fork = 1 implies

that all of them are obtained as quotients of the Kervaire sphereK5 =W 5(d). In this case, the singular
orbits have codimension two, so that Corollary 4.1 implies

Corollary 5.8 [24]. All four oriented diffeomorphism types of homotopyRP
5 admit metrics of

nonnegative sectional curvature with an isometry group of cohomogeneity one.

2 Indeed, the Kervaire spheres are generators of the group of homotopy spheres which bound a parallelizable manifold.
3 Whether or notK2n−1 is diffeomorphic to the standard sphere is unknown ifn+ 1= 2k andk � 6.
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6. Obstructions for almost nonnegative curvature

We end this report by stating some of the obstructions which are known for a closed manifold to have
almost nonnegative sectional curvature. It would lead to far to give a comprehensive list, but we shall list
the most important ones which are easy to formulate.

Let M be a closed smoothn-dimensional manifold. IfM admits metrics of almost nonnegative
sectional curvature, then:

1. [23] For any field of coefficients the total Betti number ofM must be bounded above by a constant
depending only onn.

2. [39] A finite cover ofM must fibre over ab1(M)-dimensional torus, and ifb1(M)= n, thenM must
be diffeomorphic to a torus. (The latter statement also holds whenM supports metrics of almost
nonnegative Ricci curvature [13].)

3. [17] If M has infinite fundamental group, then the Euler characteristic ofM must vanish.
4. [17] If the fundamental group ofM is finite, for some universal constantC which depends only

on n the diameters ofM and its universal Riemannian covering̃M must satisfy the inequality
diam(M̃) < C · diam(M).

5. [17] The fundamental group ofM must be almost nilpotent, i.e., it must contain a nilpotent subgroup
Λ of finite index. Moreover,Λ is generated by at mostn elements and the degree of nilpotency ofΛ

is not greater thann.
6. [18] If M is spin, theÂ-genus ofM must be bounded by|Â(M)|� 2

n−1
2 .

(This condition already holds ifM has almost nonnegative Ricci curvature.)

Note that for simply connectedM , all of these obstructions with the exception of the first and the last
are automatically satisfied.
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