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Abstract

We shall discuss Riemannian metrics of fixed diameter and controlled lower curvature bound. As in [34], we
give a general construction of invariant metrics on homogeneous vector bundles of cohomogeneity one, which
implies, in particular, that any cohomogeneity one manifold admits invariant metrics of almost nonnegative
sectional curvature. This provides positive evidence for a conjecture by Grove and Ziller [24] which states that
any cohomogeneity one manifold should have invariant metrics of nonnegative curva20@?2 Elsevier Science
B.V. All rights reserved.
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1. Introduction

One of the classical problems of differential geometry is the investigation of manifolds which admit
(complete) Riemannian metrics with given lower curvature bounds, and the study of relations between
the existence of such metrics and the topology and geometry of the underlying manifold. Despite many
efforts during the past decades, this problem is still far from being understood. While certain topological
obstructions for the existence of metrics with positive, honnegative or almost nonnegative sectional
curvature are known, general methods for the construction of such metrics are rare, leaving an enormou
gap between the known examples and those manifolds for which all known obstructions vanish.
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Quite recently, K. Grove and W. Ziller discovered a large class of new examples of closed
manifolds admitting Riemannian metrics of nonnegative sectional curvature. These manifolds all admit
a cohomogeneity one action, i.e., a smooth action by a compact Lie group whose principal orbit has
codimension one. In [24], Grove and Ziller showed that any such cohomogeneity one manifold admits
an invariant metric of nonnegative sectional curvature if it has two singular orbits of codimension two,
where we call a metric invariant if the Lie group acts by isometries. This class already contains many
interesting new examples. In fact, Grove and Ziller conjectured that any cohomogeneity one manifold
admits an invariant metric with nonnegative sectional curvature.

There is some positive evidence for this conjecture. Apart from the aforementioned special case
considered in [24], Grove and Ziller showed in [25] that any cohomogeneity one manifold admits an
invariant metric oihonnegative Ricci curvatur@nd in fact an invariant metric giositive Ricci curvature
if it is closed and its fundamental group is finite.

Moreover, in [34] W. Tuschmann and this author showed that any cohomogeneity one manifold admits
invariant metrics of almost nonnegative sectional curvature, i.e., for ever9 there is a metrig, on
M such that Se@/, g,) - diam(M, g,)? > —e. This is equivalent to saying that in the Gromov—Hausdorff
topology M can be collapsed to a single point under a lower curvature bound.

While there are examples of simply connected closed manifolds with positive Ricci curvature which
do not admit metrics of almost nonnegative curvature (cf. [23,35]), there are neither obstructions nor
examples known which tell the class of closed simply connected manifoldsaivitbst nonnegative
sectional curvaturdrom the class of such manifolds wittonnegative sectional curvaturn this sense,
the result from [34] is indeed significant support for the above mentioned conjecture.

Following this introduction, we shall recall some standard methods of constructing manifolds
of nonnegative sectional curvature, including compact homogeneous manifolds and biquotients. In
Section 3, we shall discuss metrics on homogeneous vector bundles, generalizing some ideas of Cheege
and discuss when such bundles admit invariant metrics with normal homogeneous collar. In the following
section, we shall apply these results to cohomogeneity one manifolds, describing the aforementionec
results in greater detail. In Section 5, we shall give some applications, describing examples of manifolds
with nonnegative or almost nonnegative sectional curvature. Finally, in Section 6 we give a survey of
known obstructions for the existence of metrics of almost nonnegative curvature in order to put these
results into a broader context.

2. Nonnegative curvature: standard techniques and examples
2.1. General construction methods

The first almost trivial observation is that the Riemannian produét x M,, g1 + g») of two
nonnegatively curved Riemannian manifoldd;, g;) has itself nonnegative sectional curvature.

Another standard fact which is of great importance in this contex®'ideill's formula. For this,
consider a submersian: M — N between two Riemannian manifolds, i.e., a surjective map for which
the differentialdr, is an epimorphism for alp € M. Define the vertical and horizontal distributions on
M asV = ker(dn) andH := V*, and call sections o andH vertical and horizontal vector fields,
respectively. Then we say that: M — N is aRiemannian submersioifi the restrictiondr,: H, —
T, N is an isometry w.r.t. the Riemannian metrics on each space. Then we have the following
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Proposition 2.1. Letw : (M, g1) — (N, g2) be a Riemannian submersion. ek M andx, y € T, N.
Letx, y € H, be the unique tangent vectors witlr (x) = x anddn (y) = y. Then

3
R(x,yiy.x) = Ru(%.5: 5.5 + Z[AG D[, (1)

whereA: A?H — V is the tensor given by\(x, y) = [X, Y]y, whereX, Y are horizontal vector fields
with X, =x andY, =y.

Here we use the conventioR(x, y; z, w) := g(R(x, ¥)z, w), SO thatR(x, y; y, x) = Sedx, y)|lx A
y||§. As an immediate consequence, we obtain

Corollary 2.2. If w:(M, g1) — (N, g») is a Riemannian submersion ard/, g;) has nonnegative
sectional curvature, then so doés, g»).

As a further important standard formula we state the curvature for a warped product metric.

Proposition 2.3. Let (M, g) be a Riemannian manifold, and I&N:: I x M wherel C R is an interval.
For some smooth functiofi: I — R*, we define the metrig on M by the formula

g=dr*+ f(1)%,
usingt as the parameter fof. Then the curvature tensdt of g satisfies

R(cd, +x.y1y.cd, +x) == f" flIyls + FA(RGx, y: y. x) — fPlx Ayl2),

wbereR denotes the curvature tensor gfand for x,y € TM. Thus, ifCy := inf(SedM, g)), then
(M, &) has nonnegativépositive, respective)ysectional curvature ifff” <0and f2 < Co (f” < 0and
f? < Co, respectively.

2.2. Compact Lie groups

Let G be a compact Lie group and choose any right invariant Riemannian metég iog., such that
all right translationsk, : G — G, g — gh are isometries. Moreover, 1&t be a finite dimensional vector
space on whicli acts, i.e., such that there is a Lie group homomorphisid — Aut(V). As usual, we
abbreviatep(g)x by gx for g € G andx € V. Let(, ) be any inner product ol. Then the inner product
onV given by

(x,y):= /(gx, gy)dg 2
G

is G-invariant; indeed, sinceR;';_ldg = dg due to the right invariance, we hayéx, hy) = fG(ghx,
ghy)dg = fG(gx, gy)R;_1dg = (x,y). Therefore, we obtain a morphismt G — O(V, (, )), whence
its differential yields a linear mago : g — so(V, (, )), so thatdp(x) is skew-symmetric w.r.t;, ) for
all x e g.

In particular, sinceG acts on its Lie algebra via the adjoint representation, we conclude that
there is an Ag-invariant inner product org. The corresponding left invariant metric an is then
evidently biinvariant, i.e., both the left and the right translation€ @ire isometries. Since the differential
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ad:=d(Ad) . g — End(g) is given by the Lie bracket, its skew symmetry reads

([X,y],z>+(y,[x,z]>=0 forallx,y,z €g. (3)

From (3) it is now immediate to verify that the connection@ryiven by

1 . . .
V,y:= E[x’ y] for all left invariant vector fields, y € g

is the Levi-Civita connection of any biinvariant metric, and whence the sectional curvature satisfies

1 . .
Sedx, y) = Z<[x’ yl,[x,y]) >0, wherex, y € g is an orthonormal pair

so that we have the following

Proposition 2.4. Let G be a compact Lie group. Then the sectional curvature of any biinvariant metric
on G is nonnegative.

2.3. Compact homogeneous spaces

Let M be a closed manifold, and suppose that the compact Lie gtbapts transitively onV/. If
we fix p € M and letH := Stah, C G be the stabilizer ofp, then H is also compact, and we can
naturally identify M with the set of left coset§;/H. In particular, there is a natural submersion map
7:G— M= G/H. We fix a biinvariant metri¢ , ) on g and thus have the orthogonal decomposition

g=hdm.

Then any other inner product gnis of the form

8o (x,y) == (x, @y), (4)

whereg : g — g is a linear map which is symmetric and positive definite w(r,t).

It is now easy to see that there is a unique Riemannian metrid auch that the natural projection
7:(G, g) — M becomes a Riemannian submersiongith, m) = 0 and the restrictiorg|, is Ady-
invariant. Conversely, ang-invariant metric onVf is obtained by this procedure, so that there is a one-to-
one correspondence betwe@rnvariant Riemannian metrics g and Ady -invariant inner products on
m C g. In particular, if we choosg = (, ) then the induced metric af is called anormal homogeneous
metric and from Corollary 2.2 and Proposition 2.4 we obtain

Proposition 2.5. Let M = G/H be a compact homogeneous space. Then every normal homogeneous
metric onM is G-invariant and has nonnegative sectional curvature.

In general, ifp : m — m is an Ad H)-equivariant linear map which is symmetric and positive definite

w.r.t. (, ), then we can extend it ipby settingp|, = Idy, and defing,, on G by (4). By abuse of notation,
we denote the induced submersion metricddr= G/H also byg,. Now, if we let

1
75, y) = 5 (I eyl £ Iy, exl),
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then the Levi-Civita connectio¥ and the curvature tens@? of g, have been calculated in [33] to
satisfy

1
ny = __[an’]m +‘p_l77+(x» )’),

2
B 3
R?(x, y;y,x) = (" (x, y), [x, y]) — Z(w[x, Yo %, Y]m)
() e G, y) = (r T ), e T T (3, ) (5)

An interesting question is to determine the invariant metricpasitive sectional curvatureThese
spaces are well known due to the work of Berger [7], Aloff and Wallach [1,37] and Berard-Bergery [6].
We shall not give the classification here, but we would like to point out that other than the compact rank
one symmetric spaces which obviously have positive sectional curvature, such homogeneous spaces exi
only in dimensions at most 24. Indeed, in dimensions larger than 24 the compact rank one symmetric
spaces are the only known closed manifolds with positive sectional curvature.

2.4. Biquotients

Let G be a compact Lie group as before, andAetC G x G be a closed subgroup which hence acts
onG via

(h1, ho) - g :=highy™.

An easy calculation shows that this action is free iff foreat (hq, h,) € H, h1 andh, are not conjugate
in G. If this is the case, then the quotient spagg/ H is a manifold and is called biquotient space
Evidently, there is a projection map: G — G // H. Moreover, any biinvariant Riemannian metric 6n
induces a (unique) submersion metric@ry H whence by Corollary 2.2 and Proposition 2.4, we get

Proposition 2.6. Let M = G // H be a biquotient. TheM carries a Riemannian metric of nonnegative
sectional curvature.

The biquotients are also of interest as a source of new examples of nonnegatively curved manifolds
with “interesting” topology, as well as for manifolds of positive sectional curvature, as the following
examples illustrate.

Examples.

1. G =Sp2) andH = {(diag(g, ¢), diag(g, 1)), ¢ € Sp(L)}.
Clearly, if ¢ # 1, these two matrices are not conjugate, wheficg¢ H is a biquotient and hence
admits a Riemannian metric of nonnegative sectional curvature. In fact, one can sh@w/tttatis
an exotic seven dimensional sphere., it is homeomorphic but not diffeomorphic to the standard
sphere. This was historically the first example for a nonnegatively curved exotic sphere [22].

2. The Eschenburg spaces and the Baaaspaces
(@) G =SUB) andH = T? = {(diag(z, w, zw), diag 1, 1, z°w?)), z, w € U (1)}.
(b) G =SU®) and H = S} . = {(diagz?, 2%, z~"*9), diag(z", z*, 2~ "*)), z € U(1)} with

p.q,r,s €.
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(c) G =SU(5) and

A
H= {(diag(z”l, 2, (h)) AesSp?), zeU®)
T

One verifies thatG / H is a biquotient in the following cases: in case (a); in (b) e.g. if the
sets{p,q,—(p + ¢)} and {r,s,—(r + s)} are relatively prime; in (c) if allp; are odd and
9cd(po (1) + Po @) Po3) + Poy) = 2 for allo € Ss. Moreover, it has been shown in [5,15,16] that the
submersion metric hgsositive sectional curvaturim the following cases: in case (a); in case (b) if
p.q,—(p+q) ¢[m, M] wherem = min{r, s, —(r + s)} andM = maxr, s, —(r + s)}; in case (c) if

all p; > 0. Finally, it has also been shown in these references that infinitely many of these examples
are not homotopy equivalent to any homogeneous space, so that these are examples of positivel
curved manifolds which are topologically distinct from the homogeneous ones.

3. Homogeneous vector bundles

Let G/K be a compact homogeneous space, and suppose there is a represenkatisrAut(V) on
some finite dimensional vector spagewhich by (2) we may assume to be orthogonakKais compact.
Then we can associate themogeneous vector bundle

D =G xgV,

i.e., the set of equivalence classes under the relatiod enV given by(gh, v) ~ (g, hv) for all g € G,
h € K andv € V. Thus, we can regar® as the orbit space off x V under the “diagonal action”
h-(g,v):=(gh~%, hv) of K, and since this action is free, it follows that for akyinvariant metric on
G x V we get a (unique) metric oP for which the submersiot¥ x V — D is Riemannian.

Note that there is a canonical action@fon D, and the cohomogeneity of the principal orbit of this
action equals the cohomogeneity of the principal orbit of the actiaki oh V.

Let us assume tha¥ and hencek act by cohomogeneity one. Sinée acts orthogonally, it leaves
all spheres centered at the origin invariant, whekchas cohomogeneity one iff it acts transitively on
the unit sphere&™ C V. In particular, we can write the unit sphes& = K/H as a homogeneous space
whereH C K is the stabilizer of some unit vector in.

Note that the norm functiom:V — R, v — |v|| is K-invariant and hence induces a function
r:D — R, and forR € R, we let

Dg:=r7*([0, R]) C D. (6)

Moreover, the level sets afare precisely th&-orbits of D.

Evidently, D carries aG-invariant metric of nonnegative sectional curvature. Indeed, by Corollary 2.2
and Proposition 2.4 we can choose the submersion metric induced by the Riemannian product of &
biinvariant metric onG and anyKk -invariant metric onV with nonnegative curvature.

We fix once and for all a biinvariant inner product ) on g, and choose subspaceg, m, C g such
that

g=hdm dm,, and £=hHhdm; Ko
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are orthogonal decompositions w.Kt, ). Recall the one-to-one correspondence betwianvariant
Riemannian metricg, on " = K /H and symmetric bilinear mags: m; — m; described in Section 2.3
and suppose that the metric &hcan be written in polar coordinates as

gy =dr?+g,(r), (8

with the norm functionr:V — R from above and a one-parameter family of symmetric maps
¢(r) :m1 — my. Then we have the following lemma.

Lemma 3.1 [12]. Let D - G/K be a homogeneous disc bundle of cohomogeneity one, et the
Adg-invariant metric onG induced byy :m — m such thaty|,, = Ald,, for somei € R and
Vlm, = ldy,, and letgy be aK-invariant metric onV of the form(8). Then the metric on th&-orbit
r~Y(ty) C D of the corresponding submersion metric is induced by the gnayp, & m, — m; ® m, with

(p|m2 = Idmz: and (P|m1 = )LQO(IO)((P(ZO) + A Idml)_l' (9)

Proof. For X € m;, we denote the vector field of" induced by theK-action by X,. Consider the
diagonal action ofK on G x S§"(fp). At the point (e, froeo), the tangent space to the fib¥rand its
orthogonal complemerit are given as

V={(A,0]Aeb}®{(X.-X)|Xem}, and

H={(.0 Y emy} & {(pX,1X,) | X e my}.

Indeed, ggxv (0 X, A X,), (X, —X,)) = MeX, X) + {(¢(LX), —X) = 0. Thus, the horizontal lift of a
tangent vector o6/ H is given by

X = (p(¢+A1d)1X, A(p +11d)1X,) for X emy, and
Y =(Y,0) for Y € my,

whence forX € m; andY € m, we haveg(Y,Y) = (Y,Y), g(X,Y)=0, and

(X, X) =M+ Ald) X, oo+ 11d) 1 X) + (e (¢ + A 1d) X)), A(p + 2 1d) X))
= (ApP(p + A 1d) 72X, X) + (W20 (¢ + 2 1d) 72X, X)
= (hp(p + 1 1) X, X),

and the claim follows. O

This lemma can be used in different ways to consti@envariant metrics onD with nonnegative
sectional curvature. For example, we can impose the condition that outside of some compact set, the
metrics are product metrics.

Corollary 3.2[12]. Let D — G /K be a homogeneous disc bundle over the compact homogeneous space
G/K on whichG acts with cohomogeneity one. Théncarries a G-invariant metric of nonnegative
sectional curvature such that for some> 0, (1, 0o) is isometric to(tp, o0) x (G/H, g1) Whereg,

is an arbitrary G-invariant metric on the principal orbiG/H .
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Proof. Choose & -invariant metric ori of the formgy, = dr?+ f(r)?go Wherego denotes the standard
metric onS". By Proposition 2.3 we can do this such tlzat has nonnegative sectional curvature and
f = co on (tp, 00) for somery, co > 0. Then the submersion metric @has also nonnegative curvature,
and by the lemma, the metric @/ H =r~1(¢) is fixed for allt > 1. O

Corollary 3.3[12]. Let X be a compact rank one symmetric space and-&tbe the same space with

the opposite orientation. Then there exists a Riemannian metric of nonnegative sectional curvature on
M = X#+ X. Moreover, this metric can be chosen such that¥e X# — X its isometry group acts

with cohomogeneity one, while faf = X#X, this is true only for the local isometry group.

Proof. Let X = G/K be a compact rank one symmetric space such khat Stah,, somep € X.
Then it is known thatk acts transitively on the unit sphe® C 7,,X, and thatD := X\{p} is a
homogeneous vector bundle over some rank one symmetric space of lower dimensiork Hotson

D by cohomogeneity one, and hence there i§-mvariant Riemannian metric of nonnegative sectional
curvature onD which is a product metric on(z, 00).

Now 1[0, o + 1] is the complement of an open neighborhoodpoé X, and hence we can glue
together two such complements along their boundary to obtain a smooth meki¢-erX. The same is
true if we change the orientation af before the glueing process, thus we also obtain a smooth metric
on X#X. Evidently, these metrics have nonnegative sectional curvature. Moreover the ackioonad
induces a local action af on X#+ X, and this action has cohomogeneity one. In the ddise X#— X,
this action is globally defined. O

In order to generalize this idea of Cheeger to glue together metrics on two homogeneous disc bundle:
D1 and D, which close to the boundary are isometric to a product of an interval and a fixed homogeneous
metric, one has to overcome the difficulty that in general, even if the principal orbits abtlare
equivalent as homogeneous spaces, their bundle structures are distinct. That is, the homogeneous met
close to the collar cannot be chosen arbitrarily in order to do the glueing.

Thus, given a homogeneous disc bundle of cohomogeneity one, it is natural to look for homogeneous
metrics which close to the collar are isometric to the product of an interval and a ficedal
homogeneousietric on the principal orbit. We shall call such a metrioetric with normal homogeneous
collar.

To construct such metrics, we fix a biinvariant met@icand the 0-orthogonal decomposition (7).

Fore > 0, define the mag, :m — m by ¥, |, = (14 ¢) ldy, andy, |, = Idy,, which induces a left
invariant metricg, on G. Moreover, choose & -invariant metricgy on V which takes the form (8) with
a one-parameter family of symmetric mapg) : m; — my such thatp(r) = u? Idy,, forallz > and
some constant > 0. By Proposition 2.3, this can be done such that this metric has nonnegative sectional
curvature. According to (9), the submersion metric induced from the submeésianv, g. + gv) — D
takes the form

g=dt*+ g, Where

2
@(O)lmy =dm,, and @)|m; = % Idy, forallz>t.

In particular, ifu? = (1+ ¢) /e, then this metric has a normal homogeneous collar and, by Corollary 2.2,
it has nonnegative sectional curvature provided the curvatuf€ gf,) is nonnegative.
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Unfortunately, g, will in general have some negative curvature for any 0. However, there is a
special case where this approach works.

Theorem 3.4 [24]. Let D - G/K be a homogeneous vector bundle of cohomogeneity one and
of rank < 2. Then there exists &-invariant metric of nonnegative sectional curvature dnwith
normal homogeneous collar, i.e., such that for sage 0, this metric onr—1(z, co) is isometric to

(to, 00) x (G/H, go) Whereg, is a normal homogeneous metric on the principal oBjtH .

Proof. By our discussion above, it suffices to show th@t g.) has nonnegative sectional curvature for
somee > 0. Now, using the decomposition (7), we have din< 1 so that{mj, m;] = 0. Therefore, if
X =x1+ x2 andy = y; + yp with x;, y; € m; then (5) yields

1
R(x,y; v, x) = |[[x2, yalo | + 7132, 2y + (4 ) (Lxn, vl + 2. 1)) |7

1
+ 70302, ol |
which is nonnegative for sufficiently small> 0 (in fact,e < % suffices). O

The conclusion of this theorem is not true for homogeneous bundles of higher rank. That is, there are
homogeneous disc bundles of cohomogeneity one for which there is no invariant metric of nonnegative
sectional curvature with normal homogeneous collar (cf. Example 3.6).

In order to describe homogeneous metrics on disc bundles, we note that the complement of the zert
section ofD is of the form(0, oo) x G/H whereG/H is the principal orbit and the first factor is induced
by r: D — (0, 0c0). On this set, we may assume that the metric takes the form

g :d12+g(p(,), (10)

whereg = h @ m and the metrig,,) on G/H is induced byy(r) :m — m as in (4). Then the connection
and the curvature qf has been calculated in [25] and [34] as follows.

Proposition 3.5. LetM = I x G/H andg = dt*+ g, be as above, and lete R, x, y € T, G/H = m.
Then

V,y=Viy — (Six, py)o;, Vi x = V.0, = S;x, V0, =0,
1, . ) )
R(cd +x,y;y,¢d +x) = RD(x,y; y, x) — 7 (@, x) (g, y) = (x, )?)
+ %C(?’@[x, ¥ y) +4((Sy. wH(x, ) — (Six, (0, 0)))
1
4

(24 — oo~ )y, y),

wheres; :m — m is given asS, := %(p‘lt/) and whereV? and R? are the connection and the curvature
of (G/H, g,), respectively.
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Example 3.6. * Let G = SU(3), and fix the biinvariant inner product

1
Q(A. B) = ST AB*

on g = su(3). Up to multiples, this is the only biinvariant inner product. Moreover,Het= S(U (2) -
U (1)), whenceG/K = CP?, and consider the irreducible representationkofon V = RR3 which is
determined by the fact that the centerfofacts trivially onV. Then the principal orbit oD := G xg V
is G/ T whereT consists of all diagonal matrices. Ad'amodule, we have the decomposition

su(3) =t@my @ my P ma, E=tdmy,

where eachm; consists of all matrices with non-zero entries only in two fixed positions off the
diagonal. AsT-modules, then; are irreducible and pairwise inequivalent, hence ev@mgquivariant
mapg : m — m must have then; as eigenspaces. Whence, off the 0-sectioP ghiny G -invariant metric
must be of the form

g=di’ + gy, 9Olm = fi())?1dn, .

Let ¢ € M be the geodesic which is pointwise fixed By whence¢ = 9,. Consider the subalgebras
t,:=tdm; C g, and letk; C G be the corresponding subgroups. Then the ofifits= K, - c C M are
totally geodesic by Proposition 3.5, and fox 2, 3 we haveM; =R x S? whereK; acts transitively on
the second factor. Thus, ai-invariant metric onM; must be of the fornar? + f; (t)?go Wheregg is the
standard metric o2, and the nonnegativity of the curvature of this metric implies tffa& 0, whence
f; is constant.

If we could find a metric of nonnegative sectional curvature with normal homogeneous collar on
then we would have that is given as above wittfi2 =co > 0fori =2,3, andfi(t)? = co for t > 1.

Now we choose the elements, y; € m; andx,, y, € my @ ms as follows:

0 0 1 0 0 i
xl::(O 0 o), yl::(O 0 0),
-1 00 i 00

0 ¢ O 0O 1 0
x2:=<i 0 i), y2i=<—1 0 1)
0 i O 0O -1 0
One verifies thafxy, yo] + [x2, y1] = 0 and [x1, y1] = —[x2, y2]. Thus, if we letx := x; + sx, and
vy :=y1+ sy2, somes € R, then (5) and Proposition 3.5 imply that
R(x, y; y, %) =8/co(co ff (1= (fD?) = f{(3co — f7)s? + c5s*),
and, assuming that? < 3co, this expression is nonnegative for ak R iff
, 2
Ao fE (1= (D) = £ (35— f£) 20
which is equivalent to saying that

Ac3(f)? < 4cd — f2(3co— [2)° = (4co— f2)(co— f2)%,

1 This example has been communicated to us by W. Ziller.
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or

((logly/co — fil))* < 5 (4co — £2) (Vo + f1)°.

Since f(t)? < ¢o for smallr and the right hand side of this inequality is uniformly bounded /oK co,
it follows that f1()? < ¢ for all t € R, contradicting our assumption.

Of course, this example can be generalized toGlwhose Lie algebra contains a subalgebra
isomorphic tosu(3) by choosingm; to lie in that Lie algebra and the principal orbit to b& T with
T ¢ G amaximal torus.

Since this example shows that we can in general not expect invariant metrics on homogeneous dist
bundles of conomogeneity one with normal homogeneous collar to have nonnegative sectional curvature
the question remains what can be said about lower curvature bounds of such metrics.

Let us again consider submersion metiicsx V, gp + gv) — D whereg, denotes any biinvariant
metric onG, andgy is aK -invariant metric onV, which we write in polar coordinates as

gv =dr’ + g,

where g, is a K-invariant metric on the sphere of radiusS"(r) C V. The first difficulty we have

to overcome is that in general, the normal homogeneous metri en K /H does not coincide with

the standard metric; rather, these metrics are sBerger metrics linked to the shrinking of certain

fibers of the Hopf fibrations. By the smoothnerégw) must converge to the standard metricras 0,

while by (9) and the fact that we want a metric with normal homogeneous cgliarmust be normal
homogeneous for sufficiently large Thus, we need some transition from the round metric to the normal
homogeneous metric while maintaining the lower curvature bound. This has been achieved in [34] by the
following theorem whose proof is omitted here.

Theorem 3.7. Let K C O(n + 1) be a Lie subgroup which acts transitively 6f c R, and letg,
be a normal homogeneous metric 6 induced by soméd-invariant inner productQ on ¢. Let
r(x) := ||x|| be the radius function oR"*+1.

Then there exists & -invariant metric g on the unit ball B;(0) ¢ R"*! with positive sectional
curvature, and ar > 0, such thaton—1(1— ¢, 1) we haveg = dr? + f(r)?gp Wheref : (1—¢,1) > R
satisfiesf > 0, f/ > 0.

By Proposition 2.3, it follows thayf” < 0 and f"? < infSeds”", go) on (1 — ¢, 1) whence we can
extend this metric to a nonnegatively curved megricon all onV = R**! which outside ofB1(0) has
the form

gy =dt? 4 cit’gy for somecy > 0.
By Corollary 2.2, the corresponding sumbersion metricZbhas nonnegative sectional curvature, and
by (9), it can be written oD\ D, (cf. (6)) in the form
cat?

———dy, - 11
1+C8t2 1 ( )

g=dt* + g,0), Wherep(t)|m, =1dyn, and @(t)|m, =
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2,2

- Cot

Since ngz <L . . .

be expected in view of Example 3.6. But we shall show now that we can change this metric to one with
normal homogeneous collar with arbitrarily little negative sectional curvature.

< 1, it follows that this metric will not have a normal homogeneous collar, which was to

Proposition 3.8 [34]. Let H ¢ K C G be compact Lie groups, lg? be a biinvariant inner product on
g andg =h & m; @ m, be the decomposition froT). Suppose thatK /H, g,) has positive sectional
curvature, and leC > 0 be the pinching constant, i.e.,

__InfSedK/H, go)
" supSe¢K/H,gp)’
For someRy € R ande > 0, let f:[Ro, Ro + €) — R be a smooth function with

2
O0<f<1 f'>0 and f’/<—i’}:(’£;2. (12)
Moreover, suppose that
A(f)*(Ro)
§:=————— <supSec¢K/H, gp). 13
C72(Ro) p /H, 80 (13)
Then there is a smooth extensign[Ry, R) — R such thatf = 1 near R, where
4 1— f(Ro)?
R—Ro < +1, 14
0N VCs f(Ro)? 14)

and such that the metrig = dt? + g,,, ON[Ro, R) x G/H with ¢(t) :m — m given by

POmy =10, aNd @)y, = f(#)? 10,
satisfies

Ric(g) >0, Sedg) > —4.

Moreover, ifdim K /H > 0 and3(g) Nm, = 0 then there exist points where the Ricci curvature is positive.

Proof. We relatef to a functionu by the equations
f 2u

W= a—ap J1t32

and notice that (12) is equivalent to the conditions < 1, it > 0 andji < 0. Thus, we can extend to
a smooth function : [Rg, R) — R in such a way thati < 0 andu =1 nearR, and definef : [Rg, R) —
R according to (15). Evidently, this can be done on an interval of leRgthRg < % +1,anditis
straightforward to verify (14) from (13) and (15).

Givenx = x; + x2 andy = y; + y» with x;, y; € m;, we let B := [x;, y;] and B'? := %([xl, vol +
[x2, y1]) € mp. By hypothesis, we can find constarits > C, > 0 such that 1C, > SedK/H, g¢p) >
1/C1 andC = Cy/Cy1. Now R# (xy, y1; y1, x1) = (B, Bi') + 3 (B, Bit) by (5), whence

my’

whencef = (15)

1 1
o (347 B3+ 383, BE)) < ha noui? < (B35 531 + 5858, B2 ).
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and from there,

%CZ(B“, BY) < |lx1 A y1ll” < Co(BH, BH). (16)

Now Proposition 3.5 implies
R(co; +x,y;y,c0; +x)
= R%O(x, y; y,x) — f2(f)?llxe A yall> = Bef f/(B?, y1) = P £ (1. y1)- (17)

We decompos@?2 = v + w + B32 with B3%2 € m,, v, w € € such that(v, y;) = 0 andw is a multiple
of yq; if y1 =0 then we setv = 0. Moreover, we let3?? := v + w. Since(B*, y1) = ([x1, y1], y1) =0,
it follows that

(B™, B = (B, v), (B# yi)=(w,y) and (B B = (v,v)+ (w,w). (18)
Then (5) and (18) yields

3 1
RE0(x, y; y, %) = 2 £ 1, ¥y |°+ 2187+ 2/°8%|°

n %fZ(B“, B ¢ %f2(3_ 2f2)(B, B?) + (1— §f2>(3222’ B’)
1

> 2B B+ 2723 2778 ) + (1 - ng> (v, v)

3 2
+ (1— Zf )(w, w).
Substituting this and (16) into (17) yields
R(co; +x,y;y,c0; + x)
> 212140y )B B 2 13— 2B ) + (1 - 2#) (v, v)

3
+ (1— zf2><w, w) = 3ef ' (w, yr) — FF (v, y1)- (19)

From (13) and (15) we deduce that < 0, f < 1and £1(f")? < 1. Thus, from (19) a straightforward
calculation now yields that this metric has nonnegative Ricci curvature. Moreovgf,<f 0, then the
Ricci curvature is positive, unless; = 0 (in which case Ri@®,) = 0) or 3(g) N my # 0 (in which case
Ric(x) = 0 for anyx € 3(g) N my). Since there are points whey& < 0, the assertion about points with
positive Ricci curvature follows.

Next, observe thaf*||xy A y1]|® = [lx1 A 1|12 < [[(cd; + x) A y||3, whence in order to guarantee that
Sedg) > —4, it suffices to show that

R(cd; +x,y;y, ¢d + %) +8f*x1 Ayl > 0. (20)

But by (16) and (19), we have the following estimate:
R(cd +x,y; ¥, cd 4 x) + 8f*|lx1 A ya1?
1 , 1 1
2 ZleZ(CSfZ _ 4(f )2)<B11, Bll> + Zf2<Blla B11> + Efz(s _ 2f2)<B11, U>

3 3
+ (1— zf2><v, v) + <1_ 2/ 2)<w, w) +3cf £/ (w, y1) = 2 ff {yr, y)- (21)
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Note thatCsf2 — 4(f')? > 0; indeed, by (13) this holds &, and moreover(f'/f) <0 asf” < 0.
Thus, the first row on the right of (21) is nonnegative.
The second and third row on the right of (21) are nonnegative if the quadratic polynomials

1 1 3
p1(x) = zlfzx2 + Efz(s —2f%)x + (1 - Zf2>’

p2(x) = —ff"x* +3ffx + (1 3y 2)

4
are nonnegative for al € R. The discriminantgl; of p; are given by
1., 3 1 .4 22_ 1, 2\3
== —= S — — == — >
dy 4f(l 4f> /B2 =3 -ry"=0
3 9 2 Aufi
- _ mq- = 2\ T 2( s S

and sincep; (0) =1 — %fz >0, pi(x) > 0forallx e R follows. O
As a consequence, we now obtain the following

Theorem 3.9 [25,34]. Let D — G/K be a homogeneous vector bundle with cohomogeneity one. For
every § > 0, there exists an invariant metrig; on Dy (cf. (6)) for someR = R(§) with normal
homogeneous collar such that

SeqDg, gs) > —8,  diam(Dg,g5) =0(8""°%),  Ric(Dg, gs) >0.

Moreover, if the rank oD is at least two and ifry(G/K) is finite then there exist points of positive Ricci
curvature.

Here, Q47) denotes any function df such that limsup, , [6770(57)| < oo.

Proof. First of all, we note that any normal homogeneous metric on the spkigré has positive
sectional curvature [7], and we assume that sup Se¢K/H, gp). By (11), we can for anyRy > 1
ande > 0 construct an invariant metric abg,.. with nonnegative sectional curvature such that it is

given in the form needed in Proposition 3.8 wijtk¢) = cot/,/1 + c3r2. One verifies that (12) holds, and
we defineRg = Ry(8) by the equation
_ AU (Ro) _ A
Cf?(Ro)  CR3(1+c5R3)?
so thatRy = O(8~/%) and (13) is satisfied. Thus, by Proposition 3.8 there is an invariant metric on
(Ro, R) x G/H = Dg\ Dg, Which can be glued together with the metric bR, . to obtain an invariant

metric onDy with normal homogeneous collar and the asserted curvature bounds.
Furthermore, (14) implies tha& — Ry < ﬁ +1=0(5"1%), so thatR = O(§~1/%) as well.
‘oo

Since onDg\D; this metric is of the formg = dt? + g, ), it follows that the curves — (z, p)
are unit speed geodesics, and since the metridgns independent o8, we have diamiDg, g5) <
diam(Dy, gs) + 2(R(8) — 1) = O(8~Y®) as claimed.

Finally, note that the conditiof(g) N m, = 0 is equivalent to the condition thai(G/K) is finite. O
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4. Cohomogeneity one manifolds

A connected manifold/ is said to haveohomogeneity orit supports a smooth action by a compact
Lie group G such that the orbit space is one dimensional. The topological structure of cohomogeneity
one manifolds is well understood in principle. Namely, there are exactly the following four cases.

1. M/G =R. In this caseM = R x My whereMy = G/H is a compact homogeneous space, &nd
acts trivially on the first factor,

2. M/G =R, =10, 00). In this caseM is a homogeneous disc bundle of cohomogeneity one over
some compact homogeneous space,Me= G x ¢ R" whereK C O(n) acts transitively on the unit
sphere,

3. M/G=S'=R/Z. ThenM = (R x G/H)/Z whereZ acts onR by translation and on the compact
homogeneous space/H by an element in the normalizer &f in G. Since the action of such an
element has finite order, it follows that is finitely covered byS! x G/H and hence is locally
homogeneous,

4. M/G = [a, b]. In this caseM is obtained by glueing together two homogeneous disc bundles along
their common boundary, i.eM = (G xx_ D_)U(G xk, Dy) whereD. is the unit disc in the vector
space on whiclK .. acts orthogonally and with cohomogeneity one.

The most interesting kind of cohomogeneity one manifolds from the topological point of view is
the last one. Moreover, from our discussion of homogeneous vector bundles of cohomogeneity one in
the preceding section, we can constrattnvariant Riemannian metrics on these spaces by glueing
together metrics with normal homogeneous collar along their common boundary, just like in the proof of
Corollary 3.3. Thus, we immediately obtain the following results.

Corollary 4.1. Let (M, G) be a cohomogeneity one manifold with two singular orbits, i.e., such that
M/G =1a,b).

1. [24]If both singular orbits have codimension at most two, theadmits aG-invariant Riemannian
metric of nonnegative sectional curvature.

2. [25] M admits aG-invariant metric of nonnegative Ricci curvature. Moreoverit M) is finite then
M admits aG-invariant metric of positive Ricci curvature.

3. [34] M admitsG-invariant metrics ofalmost nonnegative curvatyree., for everye > O there is a
G-invariant metricg, on M such thatSedM, g,) - diam(M, g,)?> > —e¢.

Proof. All of these follow immediately from the above description of conomogeneity one manifolds and
Theorems 3.4 and 3.9, except for the second part of the second statement.

Namely, for this one shows that if there are no points of positive Ricci curvatuné tmen eitherM
has infinite fundamental group, & is a Seifert type bundle whose orbit space base and generic fiber
both admit metrics with positive Ricci curvature, whence it admitsiavariant metric of positive Ricci
curvature by [31].

On the other hand, if th&-invariant metric of nonnegative Ricci curvatuin@s points of positive
Ricci curvature, then the existence of an invariant metric of positive Ricci curvature follows from the
deformation results in [3,14,38]. We refer to [25] for detailsa
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It has been conjectured in [24] thahy cohomogeneity one manifold should support an invariant
metric of nonnegative sectional curvature. Since this follows from the standard constructions discussec
in Section 2.1 in the cases whevg/ G is the line, the half line or the circle, we may restrict our attention
to the case where there are two singular orbits. Thus, the above results can be viewed as steps into tt
direction of proving this conjecture.

However, if this conjecture is correct, it cannot be proven in a way analogous to Corollary 4.1
by glueing together normal homogeneous metrics on homogeneous disc bundles. For example, if we
consider the adjoint action U(3) on the unit spheres’ C su(3), then one verifies easily that this
action has cohomogeneity one and has two singular orbits. Moreover, the normal bundles of the singula
orbits are precisely the bundles considered in Example 3.6 and thus do not admit invariant metrics
of nonnegative sectional curvature with normal homogeneous collar. On the otherSHarairies an
invariant metric of constant positive sectional curvature, whence this example illustrates the limits of the
“glueing method” used to show Corollary 4.1.

5. Applications
5.1. Principal bundles, vector bundles and sphere bundles

Definition 5.1. Let M be a manifold with a (smooth) action by a compact Lie gréumand letP — M
be a principalH -bundle whereH is a compact Lie group. We say that the actiorGodn M lifts to P if
there is an action o x H on P whereG — G is a (finite) cover extending the action &f on P and
such that the induced action 6fon P/H = M coincides with the given one.

Observe that the induced action Gfx H on P has the same cohomogeneity as the actioy @n
M, and the number and codimensions of the singular orbits is the same for both actions.

Not every group action admits a lift to any principal bundle. HoweveH ifs abelian then such a lift
almost always exists. More precisely, the following is known.

Proposition 5.2 [26]. Let M be a closed smooth manifold on which a compact connected Lie group
acts smoothly, and let : P — M be a principalT* bundle overM whereT* is thek-dimensional torus.
If HY(M, Z) is trivial or if G is semisimple, then the action 6flifts to P.

Of course, this proposition implies, in particular, that any principal torus bundle over any simply
connected cohomogeneity one manifold is again of cohomogeneity one, whence the statements o
Corollary 4.1 hold.

Another interesting class of principal bundles which admit a cohomogeneity one action has been
considered in [24]. Namely, we have the following

Proposition 5.3 [24]. Any principal H-bundleP — $* with H = SQ(3), SO4), Sp(1) or Sp(1) x Sp(1)
admits a cohomogeneity one action with two singular orbits of codimension two, and whence an invariant
metric of nonnegative sectional curvature.

For this, one considers the action 80(3) on $* ¢ R°® induced by the (unique) five-dimensional
irreducible representation &QO(3), and notes that this action has cohomogeneity one and two singular
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orbits of codimension two. Then one proves that this action lifts to any principal bundle with one of these
structure groups by a direct investigation, using the topological classification of these principal bundles.

Corollary 5.4 [24]. Every vector bundle and every sphere bundle &feadmits a complete metric of
nonnegative sectional curvature whose isometry group acts with conomogeneity one. In particular, all
Milnor sphereqi.e., 10 of the14 unoriented seven dimensional exotic spheres whicts2iaundles over

$4) admit metrics of nonnegative sectional curvature.

The proof uses the fact that every vector bundle &/eof rank > 4 is the direct sum of a rank four
vector bundle and a trivial one. Moreover, every vector bundle of ragks trivial, whence the structure
group of any nontrivial vector bundle ovéf can be reduced t8Q(3) or SO(4). Whence, the associated
principal bundleP — S* carries an invariant metric of nonnegative sectional curvature. The total space
E of any vector bundle or sphere bundle can thus be written as

E=PxyR*, or E=Pxy$"

where H = SQ3) andn =2, orn > 3 and H = SQ(4) acts trivially on the second summand of
R™1 = R* @ R"~3. Whence the submersion metric éghinduced by the product metric o x R"+1
(P x 8", respectively) has nonnegative sectional curvature by Corollary 2.2.

Similar arguments also lead to the following statements.

Corollary 5.5 [24]. Every vector bundle and every sphere bundle &8*admits a complete metric of
nonnegative sectional curvature.

Every rank three vector bundle an@8 of the 144 rank four vector bundles oves’ and the
corresponding sphere bundles admit complete metrics of nonnegative sectional curvature.

For general cohomogeneity one manifolds, the statement of the existence of almost nonnegatively
curved metrics on associated vector bundles follows from the following result.

Theorem 5.6 [17]. Let M — B be a fiber bundle for which the fibet, the structure grougs and the
base B are compact. IfB carries metrics of almost nonnegative sectional curvature &ndarries a
G-invariant metric of nonnegative sectional curvature th&hcarries metrics of almost nonnegative
sectional curvature.

Thus, all compact homogeneous fiber bundles—in particular, all principal bundles and all sphere
bundles—over a cohomogeneity one manifold carry metrics of almost nonnegative sectional curvature.

5.2. Brieskorn manifolds and the Kervaire spheres

Particularly interesting examples of closed cohomogeneity one manifolds are given by the odd-
dimensional Brieskorn manifolds (see [8,10,27,30]). Given an intégerl, the Brieskorn manifolds
W?=1(d) are the 2 — 1 dimensional real algebraic submanifolds@f! defined by the equations

H+z5+-+22=0 and |z’ + |zl 4 FlzlP =1,

The manifoldsW2~1(d) are invariant under the standard linear actionogf:) on the(zy, ..., z,)
coordinates, and the action 6t via the diagonal matrices of the form di@d?, ¢??, ..., ¢?%). The
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resulting action of the product grouf} x O(n) has cohomogeneity one [28], whence by Corollary 4.1,
all Brieskorn manifoldsv?—1(d), 2 < d e Z, admitS* x O (n)-invariant metrics of almost nonnegative
sectional curvature and invariant metrics of positive Ricci curvature.

The topology of the Brieskorn manifolds is fairly well understood. In particular, it is known [27] that
forn, d > 3 odd, W?~1(d) is homeomorphic to a sphere which bounds a parallelizable manifold. Indeed,
if 4 = +1 mod 8 then the manifold&?'~(d) are diffeomorphic to the standard 2 1 sphere, while for
d = +3 mod 8,W?*~1(d) is diffeomorphic to thekervaire spherek?'~1, which is a topological sphere
obtained as the boundary manifold of the plumbing of two copies of the tangent disc buistl§L6].

Moreover, the Kervaire sphe®?'~! is an exotic sphere, i.e., homeomorphic but not diffeomorphic
to the standard sphere sif+ 1 is not a power of 2 [9}.

Recall that the orbit space of a free action of a nontrivial finite cyclic group on a homotopy sphere is
called ahomotopy real projective spadehis group has order two, andremotopy lens spaagherwise.
Notice that homotopy real projective spaces are always homotopy equivalent to standard real projective
spaces [36], whereas a corresponding statement for homotopy lens spaces does in general not hold.

Suppose again that > 3 andd > 1 are odd. Fom > 2 define an action ofZ,, on C"*! by
(20, 21, - - - » 2n) 1= (®z0, 21, . . .a%z,), Wherea is a primitivemth root of unity generating.,, C S*.

One verifies that if» andd are relatively prime, then this action induces a free actioWdtr(d). Since
W2-1(d) is a homotopy sphere, the quotieB"'~1(d) := W?'~1(d)/Z,, is a homotopy real projective
space forn = 2 and a homotopy lens space far> 3. Moreover, the action o* x SQ(n) on W2 ~1(d)
descends to the quotient which is therefore again a conomogeneity one manifold.

The orbit spaces of these free cyclic group actions of on the Brieskorn spiiiéte$(d) have been
extensively studied (see [2,11,19-21,27,29,32]). Combining these results with Corollary 4.1, we obtain
the following.

Corollary 5.7 [34]. The following closed manifolds admit metrics of almost nonnegative sectional
curvature and of positive Ricci curvature with an isometry group of conomogeneity one

1. all Kervaire spheregcf. also[4]),

2. quotients of the Kervaire spheres by a free actioriZgf for any integerm > 3; these quotients
are homotopy lens spaces which are differentiably distinct from the standard ones in those odd
dimensions in which the Kervaire sphere is exotic,

3. quotients of the Kervaire spheres by a fi@gaction indeed, for any integet > 1 this results in at
least4* oriented diffeomorphism types of homotdpiy* .

Since there are exactly four oriented diffeomorphism typeRI®Y, the last statement far= 1 implies
that all of them are obtained as quotients of the Kervaire spki€re W°(d). In this case, the singular
orbits have codimension two, so that Corollary 4.1 implies

Corollary 5.8 [24]. All four oriented diffeomorphism types of homotoR¥® admit metrics of
nonnegative sectional curvature with an isometry group of cohomogeneity one.

2 Indeed, the Kervaire spheres are generators of the group of homotopy spheres which bound a parallelizable manifold.
3 Whether or notk 21 is diffeomorphic to the standard sphere is unknown-f 1 = 2¥ andk > 6.
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6. Obstructionsfor almost nonnegative curvature

We end this report by stating some of the obstructions which are known for a closed manifold to have
almost nonnegative sectional curvature. It would lead to far to give a comprehensive list, but we shall list
the most important ones which are easy to formulate.

Let M be a closed smooth-dimensional manifold. IfM admits metrics of almost nonnegative
sectional curvature, then:

1. [23] For any field of coefficients the total Betti numberMfmust be bounded above by a constant
depending only om.
2. [39] A finite cover ofM must fibre over &, (M)-dimensional torus, and #,(M) = n, thenM must
be diffeomorphic to a torus. (The latter statement also holds wiesupports metrics of almost
nonnegative Ricci curvature [13].)
[17] If M has infinite fundamental group, then the Euler characteristi ofiust vanish.
[17] If the fundamental group o/ is finite, for some universal constaat which depends only
on n the diameters of¥/ and its universal Riemannian coverid must satisfy the inequality
diam(M) < C - diam(M).
5. [17] The fundamental group @f must be almost nilpotent, i.e., it must contain a nilpotent subgroup
A of finite index. MoreoverA is generated by at mostelements and the degree of nilpotency/of
is not greater than.
6. [18] If M is spin, theA-genus of¥ must be bounded by (M)| < 2°7.
(This condition already holds i# has almost nonnegative Ricci curvature.)

> w

Note that for simply connected!, all of these obstructions with the exception of the first and the last
are automatically satisfied.
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