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Abstract The problem of matrix eigenvalues is encountered in various fields of engineering
endeavor. In this paper, a new approach based on the Adomian decomposition method and the
Faddeev-Leverrier’s algorithm is presented for finding real eigenvalues of any desired real matrices.
The method features accuracy and simplicity. In contrast to many previous techniques which merely
afford one specific eigenvalue of a matrix, the method has the potential to provide all real
eigenvalues. Also, the method does not require any initial guesses in its starting point unlike most

of iterative techniques. For the sake of illustration, several numerical examples are included.
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1. Introduction

It goes without saying that many engineering disciplines are
much indebted to matrix theory. Among most of matrix compu-
tations, computation of eigenvalues and eigenvectors is of
predominant importance. Of aged algorithms to seek eigen-
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values of symmetric matrices, mention can be made of an
algorithm attributed to Jacobi which was long later revived by
von Neumann in 1946. Givens was the one to employ the meth-
od of bisections for attaining eigenvalues of real symmetric
matrices [1]. Later on, a rather simple alternative for obtaining
eigenvalues of a matrix was provided by the Power Method; for
background information see [2]. However, the approach suffers
from the demerit of not providing all eigenvalues (i.e. it can only
achieve those with algebraic multiplicity of one). The interested
reader can find a lot on the topic in the fundamental book by
Wilkinson [3]. Quite recently, Aishima et al. has come up with
a new Wilkinson-like multishift QR algorithm to reassure that
the quest for the eigenvalue problem is not over yet [4].

The Adomian decomposition method (ADM) is a powerful
semi-analytical scheme to treat a wide span of functional
equations including algebraic, differential, integral, and inte-
gro-differential both linear and nonlinear. Since its postulation
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by George Adomian in mid-80s [5], the ADM has been the
center of attention owing to its remarkable efficiency. It is free
of linearization, discretization or perturbation and converges
to the exact analytical solutions in most cases rapidly. The
literature abounds with real-world applications of the ADM
[6-13]. We include a brief introduction on this method later.
It is the objective of this paper to apply the ADM in con-
junction with the Faddeev-Leverrier’s algorithm to afford real
eigenvalues of a square matrix of an arbitrary size. The accu-
racy and rapid convergence of the proposed approach is well
demonstrated in the given illustrative examples.

2. Statement of the problem

The quantity A is said to be an eigenvalue of a n X n square ma-
trix A if it satisfies the matrix equation below:
Ax = Ix (1)
where x is a nonzero column vector of dimension #.

Eq. (1) can be written in the form:
(A=2)x=0 (2)
where [ is the identity matrix of order .

For the Eq. (2) to hold true, the matrix (A — AI) has to be
singular, that is:
det(A — A1) =0 (3)
The determinant on the left-hand side of Eq. (3) can be ex-
panded to give:
al +a ) e a1t a, =0 (4)
The previous equation is often referred to as the characteristic
equation/polynomial of the matrix A in matrix algebra.

Among many rivals, Faddeev-Leverrier’s scheme has main-
tained a good reputation in providing the characteristic poly-
nomial of matrices [14,15]. Assuming that A is n-by-n, the
method consists of the following step:

Ai+1 :A(/l,-i-a,l), 1 <ign
where,
ay = 1
{ai _ _ tra(‘(;(A,); 1 g l< n (6)

In this regard, recursively all the n + 1 coefficients of the Eq.
(4), or in other words the characteristic polynomial, are found
conveniently by Egs. (5), (6).

At a very first glance, the Eq. (4) may seem uncomplicated,
however, upon a further scrutiny the opposite is revealed as the
work by Abel and Galois suggests that no general formula for
achieving zeroes of most polynomials with degree greater than
four exists [16]. Moreover, a robust and efficient numerical
algorithm to determine all the roots of a large-degree polyno-
mial equation is hard to find [2].

In what follows, we make an effort to find A values from
Eq. (4) by means of the Adomian decomposition method.

3. How the ADM works

For the convenience of the reader, we present here a short re-
view on the necessary background of the Adomian decompo-
sition method.

Let us consider a general functional equation of type:

u—N(u)=f (7)

where N is a nonlinear operator which maps a Hilbert space H
into itself, f'is a given function and u is an unknown function.
The ADM decomposes u as an infinite series u = »_,~u; and N
as N(u) = 5 7 A;, where 4; s are called the Adomian polyno-
mials alternatively obtained by the traditional formula [17]:

1 d o
A; = Ai(ug, uy, . .. u;) = i WN(ZUM")
: v k=0

By letting ug = f, the ADM constructs the following recur-
rence to generate other components of the solution, i.e. u; s.

i>0 )

(®)

A=0

U = A

The convergence and reliability of this method have been
ascertained by prior works (e.g. [8]).

Elsewhere [18], Fatoorehchi and Abolghasemi have devised
a completely different algorithm to generate the Adomian
polynomials of any desired nonlinear operators. It is mainly
based on string functions and symbolic programming. By set-
ting the symbolic variable NON = uy + uy + u, + --- + u,
and a large enough integer #n, the following function in MAT-
LAB can return the Adomian polynomial components of a
nonlinear operator acting on NON.

Program 1. An alternative code for determination of the
Adomian polynomials

function sol=AdomPoly(expression,nth)
Ch =char(expand(expression));
s=strread(Ch, *%s’, delimiter’, *+);
for i=1:length(s)
t=strread(char(s(i)), ’%s’, ’delimiter’, *()expUlogsinh’);
t=strrep(t,’A’,’*’);

if length(t) ~ =2
p =str2num(char(t));
sumindex = sum(p)-p(1);

else
sumindex = str2num(char(t));

end
list(i) = sumindex;
end
A="
for j= l:length(list)

if nth= =list(j)
A =strcat(A,s(),” +°);

end
end
N =length(char(A))-1;
F =strcat (%’,num2str(N),’c%n’);
sol =sscanf(char(A),F);

4. The proposed method

In order to have the ADM give the sought-after eigenvalues, it
is indispensable to write Eq. (4) in a fixed-point form, viz.
A = g (2). Provided that @, ; # 0, the following equation can
be expressed promptly as:

G B g WM e G250 n (10)

ap—1 ap—1 ap—1 ap—1

In keeping with the ADM, 4 = >4, 4 = —a,/a,—1 and the
nonlinearities ", 2", ..., 2> shall be substituted by their cor-
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responding Adomian polynomials, namely, 4, ..., B, C,.

Consequently we get:

)~1+|=*a0 A;— ud Bi*"'*MCi; i=z0 (11)
ay—| ay—1 a1

Obviously, & = 1= >"7 4 is an eigenvalue to the matrix A.
It is worthwhile to mention that, in some cases, it may hap-
pen that the sequence produced by Eq. (11) diverges. To alle-
viate such a defect, one can add an auxiliary diagonal matrix
ol to A to create a new matrix &® = A + «l. Once o is suit-
ably chosen, the ADM efficiently provides an eigenvalue for
the matrix @. At this point with the help of the lemma de-
scribed ahead, a correspondent eigenvalue for the matrix A
can be immediately achieved. Such a situation is well illus-
trated within example 2.

Lemma 1. Let Aand B be n X n matrices, I represent identity
matrix in n dimensions, o denote a real number, and eig( ) stand
for an operator returning an eigenvalue of its matrix argument.
If A = B + oland eig(A) = 2, then it holds that eig(B) = A — o.

Proof. From eig(4) = / it follows that

det(4 — A1) =0

Replacing matrix A4 with its equivalent gives
det(B+ ol — A1) =0

or obviously

det(B— (A—a)l) =0

This asserts that the quantity A — o is an eigenvlaue for the ma-
trix B or in other words eig(B) = A —oa. O

Once a first eigennvalue, say £, of a matrix is determined,
we can proceed to find the others by this routine:

1. Extract out the root just been found out of Eq. (4) to yield a
new equation:
ao;»n + aﬂﬁil + GQJVIFZ +---+ ay[—l}v + a,
A=¢
2. Accordingly, build up a new fixed-point form equation,
(new nonlinearities emerge, rational types to be specific).

=0 (12)

bo+by(h—E) 4+ b= &V 4 A by (A= E) T+ (A= &)
A=

=0(13)

n—2 1

Fh by (A= &) b (A= &) T (A=E) T =0 (14)

by
r=&

1 b b, by o 1 i
b2)~*51+z+bz it Jrb2 (2=&1) +b2(/1 )T =0 (15)

. b1 b
T TG T h

bnf " = \n— 1 v \Nn—
N e U A Y
2

3. Follow back the ADM to yield a solution, a new eigen-
value, to this new equation. By invoking the mentioned
procedure repeatedly, one can attain all real eigenvalues
of a matrix; see example 4.

5. Numerical examples

To illustrate the proposed method and show its applicability,
we present a number of numerical examples in this section.

Certainly, one can adopt the procedure to treat any desired
matrix.

Example 1. Assume that
4 20
A=13 2 1 (17)
279
Following the described Faddeev-Leverrier algorithm, the
characteristic equation to A reads
—6—4924+ 1522 -1 =0 (18)
According to what discussed, we set
o= _5
o Sa_1p (19)
j’i+1:@Ai_4—()Bi; 1 20

with A4; and B; being the Adomian polynomials replacing 4°
and 13, orderly.
Thus, some first decomposition components are listed as

Ao = —0.1224489796

/1 = 0.4627393036e x 1072
Jy = —0.3511578086 x 10~
73 = 0.3336368140 x 107*
24 = —0.3553111861 x 107

(20)
Js = 0.4056048425 x 10~°
Jo = —0.4852021856 x 1077
J7 = 0.6003189951 x 10~*
Js = —0.7618918370 x 1077
Jo = 0.9863833101 x 107"
Approximately we have A=Y20k = Z?:O)»[ =

—0.1181425714.
The accurate value of this eigenvalue obtained by the built-
in eig() command in MATLAB equals to -0.118142571382007.

Example 2. Suppose that

01 2
A=|3 9 5 (21)
6 1 —2

By virtue of the Faddeev-Leverrier’s algorithm, the character-
istic equation promptly is yielded as

—664382+722 -1 =0 (22)
Therefore, we will have
/10 == g—g
23
{iiJrl_—%Ai‘FﬁBi; iz0 &)

where A; and B; are the same polynomials as in example 1.
With little computational effort, one can found that the
sequence generated by Eq. (23) is nonconvergent. Conse-
quently, we build the matrix ® as @ = A — [ (note we choose
o = —1). So, the recurrence giving an eigenvalue of @ reads
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s | . (24)
diyt = — g di+ 5B 20

Similar to the procedure followed in example 1, an approxi-
mate eigenvalue of matrix @ equals to A= Z?:O/l,- =
0.4352005837. From the above-mentioned Lemma and its pre-
ceding discussion, we conclude that 1.4352005837 is an eigen-
value of the matrix A which is very close to what returned by
the eig() function in MATLAB, that is 1.43520058370682.

Example 3. Define

rt —-10 6 3 0 17
5 4 -3 1 1
0 3 5 1 61
A= (25)
5 1 3 2 17
-1 =3 4 7 8 2
L1 0 6 0 3 3
Similar to example 1, we obtain
Jo = 0.5604312305
21 = 0.6648917053 x 107!
Jo = 0.1476736549 x 10!
23 = 0.3982022153 x 1072
24 = 0.1183408891 x 1072
2s = 0.3730426712 x 1073 (26)
Je = 0.1223551136 x 1073
J7 = 0.4129699415 x 1074
Jg = 0.1424360086 x 10~*
Jo = 0.4996808284 x 10~°
Jio = 0.1777066706 x 107>
J11 = 0.6391513655 x 107°
Therefore, we reach to an eigenvalue A= Z;:lo/l,- =

0.6474115490 which is very close to the value 0.6474119158 ob-
tained by eig() command in MATLAB.

Example 4. Suppose that we are after finding all eigenvalues of
the following matrix

0 1
A= 27
5 @)
It is conspicuous that A has two real eigenvalues:

—0.541381265149110 and 5.54138126514911.

[1.5968 0.4067 1.6821 1.4823 0.6130 1.1581 1.5300 1.1833 0.2666
0.8807 0.3468 0.2109 0.5649 1.5044 1.2754 1.6692 1.6797 0.5653
0.6203 1.4092 1.2080 0.3199 1.9308 0.7978 0.0071 1.2795 1.3947
0.0938 1.1709 1.3741 1.3825 1.0859 0.1856 1.2819 0.1112 0.3984
0.9762 1.6188 0.7041 0.4304 0.2122 1.2874 1.0752 0.2664 0.6232
0.3047 1.6140 1.3658 1.6641 0.7625 0.2963 1.4066 0.3558 0.2621
1.8240 1.6339 1.8158 0.4552 0.6035 1.8558 1.6444 1.8738 1.0063
0.8179 0.1329 1.2771 0.1165 1.3292 0.9613 0.8639 0.5311 0.5369
0.2433 0.3539 0.0535 0.3553 1.6574 1.4749 0.8957 0.4362 1.2782
0.7743 0.9288 1.7279 1.6630 1.6252 1.3282 0.8261 1.6116 0.3586
1.1773 1.6594 0.0833 1.2124 0.3794 0.3002 1.1942 0.3272 1.0876

L0.6501 1.6867 0.6138 0.5528 0.3832 1.4644 0.7726 0.8012 0.0982

1.0769 1.4653 1.48037
1.6124 1.4401 1.8586
1.6545 0.1160 0.0624
0.4782 0.1618 0.8526
1.5480 1.6760 1.6336
0.8672 1.5098 0.4322
1.0032 1.1697 0.8651 |
0.8005 1.4301 1.4941
0.7119 0.4300 1.0833
0.5905 1.3632 1.1777
0.6965 1.4851 1.8546
1.7683 0.3814 1.6697 |

Clearly, the characteristic equation of A is:

—3-5,4+1=0 (28)
Thus,
o= —3
o (29)
Jipt =LA 20

Following the same proposed routine, we get the first eigen-
value as & = 3°1% 4 = —0.5413813106.
For the other eigenvalue, we treat the following equation

)2 —5,-3

7105413813106 (30)

Equally,

(A+ 0.5413813106)2 — 5(4+0.5413813106) — 1.0827626212/ — 0.5861871704
A+ 0.5413813106
-0 (31)

or

10827626212/, + 05861871704
) — 44586186894 2
586186894 + 7+ 0.5413813106 (32)

According to the ADM principles we have

{ Jo = 4.4586186894
A =Cy; 120

(33)

where C; is the i-th component of the Adomian polynomial cor-
respondent to the rational nonlinearity in Eq. (32). The scheme
converges quickly to the other eigenvalue of A as listed below

Jo = 4.458618689

2 = 1.082762566

Jo = 0.1197682426 x 1077
J3 = —0.2593611261 x 107%
Js = 0.5616529794 x 10~°
Js = —0.1216273456 x 107°
J6 = 0.2633870198 x 1071°
J7 = —0.5703710650 x 107!
Js = 0.1235152497 x 107"
Jo = —0.2674752818 x 1072

As a result, & = 377 4, = 5.541381265.

(34)

Example 5. Given

(35)
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The characteristic equation pertaining to the matrix A can
be determined by virtue of Eq. (3) as,

12— 12241601 4+ 536062 — 17.52562° + 8.8741)8
—98.598617 + 94.84604° — 142.1029/° + 183.8437,*

— 11.3085/% — 213.8051% + 383.24182 4 55.6948=0  (36)
Converting Eq. (35) into a fixed-point form gives
/= —0.1453254918 + 0.5578855770.*

+0.0295074446,° — 0.4797067092*
+0.3707917655,° — 0.2474833309/°
+0.25727506694" — 0.0231554630/°
+0.0457299193/° — 0.0139875269."°
+0.0319422343," — 0.0026093185." (37)

Following the principles of the ADM, one can construct a
solution to Eq. (36) as

Ap = —0.1453254918

Aip1 = 0.5578855770J; 4+ 0.0295074446L; — 0.4797067092M;
+0.3707917655N; — 0.24748333090; + 0.2572750669 P;
—0.02315546300; + 0.0457299193R; — 0.0139875269S;

+0.0319422343T; — 0.0026093185U;; i =0
(38)
where J, L, ..., U are the Adomian polynomials decomposing
the nonlinearities 42, A3, ..., 2'%, respectively.

Therefore, by Eq. (37), one easily obtains
Ao = —0.1453254919 J3 = 0.3313773364 x 1073

J6 = —0.3544496172 x 107

/1 =0.1145101001 x 107" A, = 0.6918827032 x 107*

Jp = —0.1757165434 x 1072 /5 = 0.1534869885 x 107™*

(39)
and can approximate an eigenvalue of A as 1= Z?:())w =

—0.1353576540 which is so close to the result returned by the
eig() command in MATLAB, —0.1353569759.

6. Conclusion

Based on the Adomian decomposition method combined with
the Faddeev-Leverrier’s algorithm, a novel method is proposed
to handle the eigenvalue problem of real matrices. The scheme
is simple and computationally robust. Unlike many previous
methods which offer only one eigenvalue of a matrix, the
current method is shown to be capable of providing all real
eigenvalues. The illustrative examples given in the paper, ascer-
tained the accuracy and efficiency of the method.

Acknowledgment

We, H.F. and H.A., are grateful to the reviewers and the editor
for their helpful comments and suggestions which indeed
improved the quality of this paper.

References

[1] C.F. Gerald, P.O. Wheatley, Applied Numerical Analysis,
Addison Wesley Publishing Company, New York, 1998.

[2] G.A. Allaire, S.M. Kaber, Numerical Linear Algebra, Springer,
New York, 2002.

[3] JJH. Wilkinson, Algebraic Eigenvalue Problem, Oxford
University Press, Oxford, 1988.

[4] K. Aishima, T. Matsuo, K. Murota, M. Sugihara, A Wilkinson-
like multishift QR algorithm for symmetric eigenvalue problems
and its global convergence, J. Comput. Appl. Math. 236 (2012)
3556-3560.

[5] G. Adomian, A new approach to nonlinear partial differential
equations, J. Math. Anal. Appl. 102 (1984) 402-434.

[6] B. Kundu, S. Wongwises, A decomposition analysis on
convecting-radiating rectangular plate fins for variable thermal
conductivity and heat transfer coefficient, J. Franklin Inst. 349
(2011) 966-984.

[7] E.A.A. Ziada, Adomian solution of a nonlinear quadratic
integral equation, J. Egypt. Math. Soc. 21 (2013) 52-56.

[8] E. Babolian, J. Biazar, On the order of convergence of Adomian
method, Appl. Math. Comput. 130 (2002) 383-387.

[9] J. Biazar, M. Tango, E. Babolian, R. Islam, Solution of the kinetic
modeling of lactic acid fermentation using Adomian
decomposition method, Appl. Math. Comput. 144 (2003)
433-439.

[10] AM. Wazwaz, A. Gorguis, An analytic study of Fisher’s
equation by using Adomian decomposition method, Appl.
Math. Comput. 154 (2004) 609-620.

[11] H. Fatoorehchi, H. Abolghsemi, Adomian decomposition
method to study mass transfer from a horizontal flat plate
subject to laminar fluid flow, Adv. Nat. Appl. Sci. 5 (2011) 26—
33.

[12] H. Fatoorehchi, H. Abolghasemi, A more realistic approach
toward the differential equation governing the glass transition
phenomenon, Intermetallics 32 (2012) 35-38.

[13] H. Fatoorehchi, H. Abolghasemi, Improving the differential
transform method: a novel technique to obtain the differential
transforms of nonlinearities by the Adomian polynomials, Appl.
Math. Model. 37 (2013) 6008—6017.

[14] A.S. Householder, The Theory of Matrices in Numerical
Analysis, Blaisdell, New York, 1964.

[15] G. Helmberg, P. Wagner, On Faddeev-Leverrier’s method for
the computation of the characteristic polynomial of a matrix
and of eigenvectors, Lin. Algebra Appl. 185 (1993) 219-233.

[16] J.B. Fraleigh, First Course in Abstract Algebra, Addison-
Wesley, New York, 2002.

[17] R. Rach, A convenient computational form for the Adomian
polynomials, J. Math. Anal. Appl. 102 (1984) 415-419.

[18] H. Fatoorehchi, H. Abolghasemi, On calculation of Adomian
polynomials by MATLAB, J. Appl. Comput. Sci. Math. 5
(2011) 85-88.


http://refhub.elsevier.com/S1110-256X(13)00078-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0005
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0010
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0015
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0020
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0025
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0030
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0035
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0040
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0045
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0050
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0055
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0060
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0065
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0070
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0075
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0080
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0085
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0090
http://refhub.elsevier.com/S1110-256X(13)00078-3/h0090

	On computation of real eigenvalues of matrices  via the Adomian decomposition
	1 Introduction
	2 Statement of the problem
	3 How the ADM works
	4 The proposed method
	5 Numerical examples
	6 Conclusion
	Acknowledgment
	References


