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Abstract

Recently we developed a diagonal homotopy method to compute a numerical representation of all
positive dimensional components in the intersection of two irreducible algebraic sets. In this paper,
we rewrite this diagonal homotopy in intrinsic coordinates, which reduces the number of variables,
typically in half. This has the potential to save a significant amount of computation, especially in
the iterative solving portion of the homotopy path tracker. Three numerical experiments all show a
speedup of about a factor two.
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0. Introduction

Our goal is to compute the irreducible decomposition ofA∩B ⊂ Ck, whereAandBare
irreducible algebraic sets. In particular, suppose that

• A is an irreducible component of the solution set of a polynomial systemfA(u) = 0
defined onCk, and similarly

• B is an irreducible component of the solution set of a polynomial systemfB(u) = 0
defined onCk.

This includes the important special case whenfA andfB are the same system, butA andB
are distinct irreducible components.
Casting this problem into the framework of numerical algebraic geometry, we assume

that all components are represented aswitness sets. For an irreducible componentA ⊂ Ck

of dimension dim(A) and degree deg(A), a witness set consists of a generick − dim(A)
dimensional linear subspaceL ⊂ Ck and thedeg(A)points of intersectionA∩L.Weassume
that at the outset we are given such sets forA andB, and our goal is to compute witness
sets for the irreducible components ofA∩B. The intersection may break into several such
components, and the components may have various dimensions. Our methods proceed in
two phases: we first find a witness superset guaranteed to contain witness points for all the
components, then we break this set into its irreducible components.We recently reported on
an algorithm[15], herein called theextrinsic3 homotopy method, for computing a witness
superset forA ∩ B. This can then be decomposed into irreducible components using the
methods in[14] and its references.
Abstracting away the details, which are discussed more fully in Section1, the extrinsic

method consists of a cascade of homotopies in unknownsx ∈ CN and path parameter
t ∈ [0,1], each of the form

H(x, t) :=
[

f (x)

t (P x + p)+ (1− t)(Qx + q)

]
= 0, (1)

wheref : CN → Cm is a system of polynomial equations,P,Q are(N−m)×N full-rank
matrices, andp, q ∈ C(N−m) are column vectors. There is a homotopy of this form for each
dimension whereA ∩ B could have one or more solution components. We know solution
values forxat t = 1 and wish to track solution pathsx(t) implicitly defined by (1) ast → 0
to getx(0).
At any specific value oft, this looks like

Ĥ (x, t) =
[

f (x)

R(t)x + r(t)

]
= 0, (2)

whereR = tP + (1− t)Q andr = tp + (1− t)q. The homotopy is constructed such that
we are assured thatR(t) is full rank for all t ∈ [0,1]. Thus, the linear subspace of solutions
of R(t)x + r(t) = 0 can be parameterized byu ∈ Cm in the form

x(u, t) = R⊥(t)u+ xp(t), (3)

3The terminology extrinsic/intrinsic is in analogy with the homotopies of[4].
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wherexp(t) is any particular solution andR⊥(t) is the right null space ofR(t), that is,R⊥
is a full-rankN × m matrix withRR⊥ = 0. We may restrict̂H to this linear subspace to
obtain

H̃ (u, t) := Ĥ (x(u, t), t) = f (R⊥(t)u+ xp(t)) = 0, (4)

where we have dropped the linear equations because by construction, they are identically
zero for allt. We refer to this as theintrinsic form of the equations.
The problem with (4) is that it requires computingR⊥ andxp at each new value oft as

we follow the homotopy paths. Because of this,H̃ (x) offers little, if any, computational
advantage over the extrinsiĉH(x).
Although not generally possible, for someP,Q,p, q, one can convert the extrinsic

homotopy (1) into an intrinsic homotopy of the form

H̃ (u, t) = f (t (Cu+ c)+ (1− t)(Du+ d)) = 0, (5)

in which the path parametert appears linearly. Thismeans that the linear algebra to compute
C,D ∈ CN×m andc, d ∈ CN is done just once at the outset, rather than being repeated at
each value oft. This can save a significant amount of computation and is also simpler to
implement.
This paper is organized as follows. In Section1, we review the extrinsic homotopies

formulated in[15] for intersecting algebraic varieties, and in Sections2.1and2.2, we show
how to convert these to the linear intrinsic form. A comparison of the numerical behavior
of the extrinsic homotopies and intrinsic homotopies is presented in Section3.

1. Extrinsic diagonal homotopies

Let A ⊂ Ck andB ⊂ Ck be as in the opening paragraph, having dimensionsa andb
respectively. We have bounds on the dimension of components ofA ∩ B as follows. After
renaming if necessary, we may assumea�b. The largest possible dimension ofA ∩ B is
thereforeb, which happens if and only ifB is contained inA. We can check this possibility
using a homotopy membership[12] test to see if a generic point ofB is inA. If so, we have
A ∩ B = B and no further computation is needed. Otherwise, we know that the largest
possible dimension ofA∩B is b−1. On the other hand, because the codimension ofA∩B
is at most the sum of the codimensions ofA andB, the smallest possible dimension of any
component ofA∩B ismax(a+b−k,0). For a particular problem, onemight have available
some tighter bounds on dim(A ∩ B), and if so, one can take advantage of that knowledge
in the algorithm to follow. Accordingly, we introduce the symbolsh∗ andh0 as follows:

b � h∗ > dim(A ∩ B), (6)

max(a + b − k,0) � h0� min(dim(any component ofA ∩ B)). (7)

Unless we have other knowledge, we use the defaultsh∗ = b andh0 = max(a+ b− k,0).
Instead of working directly inCk, we find the intersectionA∩B by casting the problem

into (u, v) ∈ Ck+k and restricting to the diagonalu − v = 0. More precisely, the product
X := A × B ⊂ Ck+k is an affine variety of dimensiona + b, i.e., an irreducible affine
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algebraic set of dimensiona+ b. The intersection ofA andB can be identified, e.g.,[2, Ex.
13.15]or [10, p. 122ff], withX ∩ � where� is the diagonal ofCk+k defined by the system

�(u, v) :=


u1 − v1
...

uk − vk


 = 0 (8)

with (u, v) giving the coordinates ofCk+k.
The initial data consists of witness sets forA and B. That is, our data forA con-

sists of a generic systemLA(u) = 0 of a linear equations and the deg(A) solutions
{�1, . . . , �deg(A)} ⊂ Ck of the system[

fA(u)

LA(u)

]
= 0 (9)

and similarly the data forB consists of a generic systemLB(v) = 0 of b linear equations
and the deg(B) solutions{�1, . . . ,�deg(B)} ⊂ Cm of the system[

fB(v)

LB(v)

]
= 0. (10)

Remark 1.1. We are not assuming thatA andB occur with multiplicity one in the solution
sets of their respective systemsfA(u) = 0 andfB(v) = 0. If the multiplicity is greater than
one, we must use a singular path tracker[13].

The extrinsic algorithm can be summarized concisely by introducing a bit of matrix
notation. First, let

w =
[
u

v

]
∈ C2k (11)

and introduce a column vector of “slack” variablesz ∈ Ck. Also, define thek×k projection
matrix

Ph = diag(1, . . . ,1︸ ︷︷ ︸
h

,0, . . . ,0︸ ︷︷ ︸
k−h

). (12)

LeftmultiplicationbyPh picksout the firsthrowsof itsmultiplicandand rightmultiplication
picks out the firsth columns of its multiplier. Note also thatP2

h = Ph. Similarly, letPji be
thek × k matrix

Pji = diag(0, . . . ,0︸ ︷︷ ︸
j

,1, . . . ,1︸ ︷︷ ︸
i−j

,0, . . . ,0︸ ︷︷ ︸
k−i

), (13)

which picks out rows (or columns)j + 1, . . . , i. It is useful to note thatPj + Pji = Pi .
The formulation of the homotopy requires several random matrices as follows. First, we

choose generic matrices

M ∈ C(k−a)×#(fA), N ∈ C(k−b)×#(fB), (14)



A.J. Sommese et al. / Journal of Complexity 21 (2005) 593–608 597

where #(fA) is the number of functions in the systemfA(x) associated to componentA,
and similarly for #(fB). These are used to define

F(w) :=
[
MfA(u)
NfB(v)

]
. (15)

Note thatA× B is an irreducible component of the solution set of the systemF(w) = 0.
Next, we chooseA a generic(a + b)× k matrix, and let

A = [
A −A

] ∈ C(a+b)×2k (16)

soAw = A(u− v). Finally, we choose generic matrices

B ∈ C(a+b)×k, C ∈ Ck×2k d ∈ Ck×1. (17)

In all these, a matrix with random complex elements will be generic with probability one.
Since the smallest dimensional nonempty component ofA ∩ B is of dimension at least

max{0, a + b − k}, it follows from [15, Lemma (3.1)]that we can find the irreducible
decomposition ofA ∩ B by finding the irreducible decomposition ofAw = 0 onX =
A× B. For this purpose, we consider a cascade of homotopies of the form

Eh(w, z) =

 F(w)
Aw + BPhz
z− Ph(Cw + d)


 = 0, (18)

which is well-defined for any integer 0�h�k. Denoting the entries ofz as z1, . . . , zk,
note that the last row of this matrix equation implies that(zh+1, . . . , zk) = 0. The method
for generating a witness superset consists of solvingEh∗(w, z) = 0 and then descending
sequentially down the cascade to solveEj (w, z) = 0 for j = h∗ − 1, . . . , h0.
The rationale behind the cascade is that the linear systemPh(Cw + d) = 0 is a linear

slice that cuts out witness points for solution components of dimensionh. The vectorz is
a set of slack variables. A solution point ofEh(w, z) = 0 for whichz = 0 is on the slice
and thus gives a witness point. Solution points withz �= 0 are not on the slice, and we call
these “nonsolutions.” These become the starting points for the next step of the cascade. (We
state this more formally below, after giving more details of the algorithm.) For each step
down the cascade, one more slack variable is set to zero and a corresponding hyperplane is
removed from the slice. The recycling of nonsolutions as starting points for the next step
of the cascade is valid due to the fact that forj < i, Ej (w, z) is justEi (w, z) with certain
elements ofB, C, andd set to zero. This is justified in[15].
The following steps of the algorithm still need to be described:

• how to solveEh∗(w, z) = 0,
• how to descend the cascade, and
• how to reap the witness points from the solutions at each level of the cascade.
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The homotopy to solveEh∗(w, z) = 0 is


F(w)

(1− t)

[
Aw + BPh∗z
z− Ph∗(Cw + d)

]
+ t�


LA(u)LB(v)

z





 = 0, (19)

where� is a random complex number. Att = 1, solution paths start at the deg(A)×deg(B)
nonsingular solutions{(�1,�1), . . . , (�deg(A),�deg(B))} ⊂ C2k obtained by combining the
witness points forAandB.At t = 0, the solution paths terminate at the desired start solutions
for Eh∗(w, z) = 0. In [15] we ended the homotopy atEb(w, z) = 0, but the argument works
equally well withh∗ in place ofb.
The homotopy connectingEi to Ej for j < i is

Hi,j (�, w, z) :=

 F(w)
Aw + BPiz
z− (Pj + �Pji)(Cw + d)


 = 0, (20)

where� goes from1 to 0 along a sufficiently general 1-real-dimensional curve. For example,
for all but finitely many� ∈ C of absolute value 1,� = r + �r(1− r) asr goes from 1 to 0
on the real interval suffices. Another possibility, relevant in what comes below, is

� = t/(t + �(1− t)) (21)

ast goes from 1 to 0 on the real interval.
In the cascade of homotopies from[15] (based on[11]), we start out with the finite set

Gi of nonsingular solutions ofEi with zi �= 0. Tracking these start solutions we end up with
a set of solutionsGE

i,j of Ej with zh = 0 for h > j . In [15], j = i − 1, but the argument

there works immediately for anyj < i. The key points about the setGE
i,j is that

1. the setGj equals the set of points inGE
i,j for which zj �= 0;

2. the set of pointŝWj ⊂ GE
i,j for which zh = 0 for all h�j contains a witness point set

Wj for the j-dimensional components of the solution set of the intersection ofA andB.

We also know that the set of points inGE
i,j for which zh = 0 for all h ≤ j equals the set of

points inGE
i,j for whichzj = 0. We wish to set up an intrinsic homotopy such that analogs

of the above key facts hold true.

2. Setting up intrinsic homotopies

The extrinsic homotopies of (19) and (20) use the variables(w, z) ∈ C2k × Ck. Each
hasa + b + k linear equations which we wish to eliminate by converting to an intrinsic
homotopy. The result will be homotopies in intrinsic variablesy ∈ C2k−a−b. Note that
2k− (a+b) is the codimension ofA×B in C2k. It is also the sum̄a+ b̄ of the codimension
ā = k−a ofA in Ck and the codimension̄b = k−b of B in Ck. Since this quantity appears
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frequently in the expressions below, we define

m = 2k − a − b. (22)

Accordingly, our intrinsic homotopy variables arey ∈ Cm.

2.1. Intrinsic start homotopy

In this section, we replace the extrinsic start homotopy of (19) with one having the
intrinsic form of (5). Fixing a particular solution

w1 =
[
up
vp

]
(23)

of [
LA(u)

LB(v)

]
= 0, (24)

choose a basisW1 ∈ C2k×m of the null spaceN1 of[
LA(u)− LA(0)
LB(v)− LB(0)

]
= 0. (25)

The solutions(�i ,�j ) of (24) arising from (9) and (10) correspond to(w1+N1)∩ (A×B).
Fixing a particular solutionw2 of

Aw + BPh∗(Cw + d) = 0, (26)

choose a basisW2 ∈ C2k×m of the null spaceN2 of

Aw + BPh∗Cw = 0. (27)

We have the intrinsic homotopy with variabley ∈ Cm

F(�[w1 +W1y] + (1− �)[w2 +W2y]) = 0. (28)

An irreducible analytic setA1 ⊂ C2k is said to betransverseto an irreducible analytic
setA2 ⊂ C2k if

1. the intersectionA1∩A2 is contained in the set of smooth points of bothA1 andA2; and
2. at any pointx ∈ A1 ∩ A2,

dim(TA1,x ∩ TA2,x) = dimTA1,x + dimTA2,x − 2k.

Note that this implies thatA1 ∩ A2 is a manifold whose connected components have
dimension dimA1+dimA2−2k. Sincew1+N1 is transverse toA×B, the(2k− a− b)-
dimensional affine subspace given by

{�1[w1 +W1y] + �2[w2 +W2y] | y ∈ Cm} (29)



600 A.J. Sommese et al. / Journal of Complexity 21 (2005) 593–608

is transverse toA×B for all but a finite set of[�1, �2] ∈ P1. In particular for all but a finite
number of� ∈ C of absolute value one, with the relation between� andt as in (21), the
m-dimensional affine subspace given by

{�[w1 +W1y] + (1− �)[w2 +W2y] | y ∈ Cm} (30)

is transverse toA × B for all t ∈ (0,1]. By genericity in the choices ofA,B,C,d, this
is true for t = 0 also. Thus using the homotopy (28) to track the paths starting with the
(�i ,�j ) at t = 1, we get the start solutions of the cascade att = 0.
In practice it will be convenient to go directly from solutions(�i ,�j ) of (24) arising

from (9) and (10) to Eh∗−1 or anyEj with j < h∗. Doing this we want to know that the
limits of the paths of the intrinsic homotopy starting with the solutions(�i ,�j ) contain the

subsetGj for which zj �= 0 and a set of pointŝWj which contains a set of witness points
Wj . This is true for both the intrinsic and the earlier extrinsic homotopy of[15]. The reason
why this is so is that the solutionsGj ∪ Ŵj are contained in the set of isolated solutions of
Ej restricted toA× B. Therefore by[15, LemmaA.1], there is a Zariski open set oft ∈ C

such that except for a finite choice of� of absolute value one in (21), Gj ∪ Ŵj are limits of
isolated solutions of the homotopy (28) restricted toA × B. Since the solutions att = 1
of the homotopy (28) on A × B are the transversal intersection with them-dimensional
affine subspace given by Eq. (30), it follows that for thet near 1 this is still true. Thus the
isolated solutions of the homotopy (28) for a Zariski open set of thet are continuations
from solutions(�i ,�j ) of (24) arising from (9) and (10), and in consequenceGj ∪ Ŵj are
contained in limits of isolated solutions of the homotopy (28) restricted toA × B starting
at these points.
The current default is to go directly from solutions(�i ,�j ) of (24) arising from (9)

and (10) to Eh∗−1.

2.2. Intrinsic cascade homotopies

In this section, we convert the extrinsic cascade homotopies of (20) into intrinsic homo-
topies of the form of (5). This must be done a bit more delicately than what was done for
the start homotopy, because wemust preserve the containment ofHi,j inside the parameter
space ofEi so that we retain the properties stated at the end of Section1. We do this by
deriving an intrinsic homotopy whose path is exactly the same as a generic real path from
� = 1 to � = 0 in (20).
We start by eliminatingzby substitution from the last block row of (20) into the middle

row. We use the facts that fori > j , PiPj = Pj andPiPji = Pji to obtain

Hi,j (t, w) :=
[ F(w)
Aw + B(Pj + �Pji)(Cw + d)

]
= 0, (31)

which, abusing notation, we still callHi,j . By similar abuse of notation, we useEh(w) in
place ofEh(w, z) after eliminatingz from (18).
Our first observation concerns the existence of a constant particular solution throughout

the cascade.
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Lemma 2.1. The inhomogeneous linear system

[
Ik −Ik
C

]
w =

[
0

−d

]
(32)

has a unique nonzero solution�.

Proof. The genericity ofC implies the invertibility of

[
Ik −Ik
C

]
. �

Notice that this implies that bothA� = 0 andC� + d = 0, and thereforew = � is a
solution of

Aw + B(Pj + �Pji)(Cw + d) = 0 (33)

for anyi, j, �.
LetYh be the homogeneous linear system

Yh := (A + BPhC)w = 0. (34)

The following lemma concerning the null space ofYh is crucial for the conversion to an
intrinsic form.

Lemma 2.2. For any j and i such thath0�j < i�h∗, there exist matricesEi,j ∈
C2k×(m−i+j) andFi,j ,Gi,j ∈ C2k×(i−j) such that

1. [Ei,j Fi,j ] = Null Yi
2. [Ei,j Gi,j ] = Null Yj

3. PjiCFi,j = PjiCGi,j =

 0
Ii−j
0


,

where the(i − j)× (i − j) identity matrixIi−j appears in rowsj + 1, . . . , i.

Proof. Wemust first establish thatYi andYj are full row ranka+b so thatm = 2k−a−b
is the correct dimension of their null spaces. SinceA depends on genericA (see (16)) and
B andC are generic, it suffices to show that there is at least one choice ofA, B, C such
thatYh is full rank forh0 ≤ h�h∗. Fora + b < k, it suffices to chooseB = 0,C = 0 and
chooseA to makeYh = [Ia+b 0 − Ia+b 0]w. Fora+ b > k, chooseA = [Ik 0]T , choose
B with Ia+b−k in the lower left andC with Ia+b−k in the upper left. Sinceh�a + b − k,
this suffices to makeYh full rank, as one may check by direct substitution.
Next, we establish thatYi andYj share a null subspace of dimensionm − i + j . Note

that

Yi = (A + B(Pj + Pji)C)w = (Yj + BPjiC)w. (35)
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The matrixBPjiC is independent ofBPjC because the projection matrices pick out differ-
ent rows and columns of generic matricesB andC. Accordingly, the subspace NullYi ∩
Null Yj = Null Yj ∩ Null (BPjiC). These have dimensionm and codimension(i − j),
respectively, and they meet transversely, so the intersection has dimensionm− i + j . Let
Ei,j be any basis for this subspace.
Now, supposeF̂i,j completes a basis[Ei,j F̂i,j ] for Null Yi . It must be independent of

Null (BPjiC), and sinceB is generic, this implies thatPjiCF̂i,j must be full rank. Since
Pji zeros out all but rowsj + 1, . . . , i, this implies that

PjiCF̂i,j =

 0
Q

0


 (36)

must have a full-rank(i−j)× (i−j)matrixQ in rowsj+1, . . . , i. Then,Fi,j = F̂i,jQ
−1

completes the basis ofYi while also satisfying Condition 3 of the lemma. Similar reasoning
shows the existence ofGi,j . �

Choosing a random� ∈ C, we form the linear system

Wi,j (t, y) = � + [Ei,j tFi,j + �(1− t)Gi,j ]y, (37)

wherey ∈ Cm and� is as in Lemma2.1. From this, we form the intrinsic homotopy

Hi,j (t, y) = F(Wi,j (t, y)) = 0 (38)

and tracky ast goes from 1 to 0 on the real interval.
The crucial fact behind the equivalence of the intrinsic and extrinsic homotopies is that the

space intrinsically parameterized in (37) is the same for appropriate choices of parameters
as the space that we extrinsically cut out with linear equations before.

Lemma 2.3. For all but a finite number of� ∈ C of absolute value one, it follows that for
anyt ∈ [0,1], the kernel of the linear system

Aw + B(Pj + �Pji)(Cw + d) = 0. (39)

onC2k with � = t/(t + �(1− t)) is parameterized byWi,j (t, y) wherey ∈ Cm.

Proof. This follows immediately fort = 0 and 1 with no restriction on� of absolute value
1 by taking� equal to 0 and 1 respectively.
Combining this with the dimension of the kernel of (39) being at leastm, we conclude

that the dimension of the kernel of (39) is exactlym except for finitely many 0�= � ∈ C.
In particular, for all but a finite number� of absolute value 1, the dimension of the kernel
of (39) for � = t/(t + �(1− t)) with t ∈ (0,1) is of dimensionm. Since� satisfies both
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A� = 0 andC� + d = 0, it is therefore enough to show that for all(t, y)

(A + B(Pj + �Pji)C)[Ei,j tFi,j + �(1− t)Gi,j ]y = 0. (40)

Since the columns ofEi,j are in NullYj ∩ Null (BPjiC), it is annihilated. Sincey is
arbitrary, we must have

(A + B(Pj + �Pji)C)[tFi,j + �(1− t)Gi,j ] = 0. (41)

SinceFi,j is in NullYi andGi,j is in NullYj , this is the same as

B((� − 1)tPjiCFi,j + ��(1− t)PjiCGi,j ) = 0. (42)

By Condition 3 of Lemma2.2, this becomes

((� − 1)t + ��(1− t))B


 0
Ii−j
0


 , (43)

which equals zero since� = t/(t + �(1− t)). �

We rephrase Lemma2.3.

Lemma 2.4. For all but a finite number of� ∈ C of absolute value one, it follows that for
anyt ∈ [0,1], the system

F(Wi,j (t, y)) = 0 (44)

onCm is the intrinsic system associated to the system
 F(w)
Aw + BPiz
z− (Pj + �Pji)(Cw + d)


 = 0 (45)

with � = t/(t + �(1− t)).

We defineGi as the set of nonsingular solutions ofHi,j (1,�) on whichPi (Cw + d) is
nonzero and which correspond to points ofA×B; Gj as the set of nonsingular solutions of
Hi,j (0,�) on whichPj (Cw+d) is nonzero and which correspond to points ofA×B; and
Gi,j as the set of limits obtained by trackingGi from t = 1 to t = 0 using the homotopy
Hi,j (t,�).

Theorem 2.5. The subset̂Wj ⊂ Gi,j on whichPj (Cw + d) is zero contains a set of
witness points for the j-dimensional components ofA ∩ B. These witness points include
deg(Z) distinct points for each irreducible j-dimensional component Z ofA∩B.Moreover
Gj ⊂ Gi,j .

Proof. The setsGi ,Gj considered as sets of solutions of the extrinsic systemsEi , Ej on
C2k are the same as the sets occurring in the homotopy of[15]. The extrinsic homotopy
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from [15] that we discussed in Section1 is simply a differentiable pathP parameterized
by t ∈ [0,1] on a complex line. in the parameter space of the systemsEi (w, z) joining a
general pointEi to a general pointEj of the linear subspace of systems of the fromEj (w, z).
The only fact about the pathPused in[15] is that it depends on a choice of� ∈ C of absolute
value 1, which can be chosen, except for a finite number of complex numbers of absolute
value 1, so thatP avoids a certain finite subsetB of .. In Lemma2.4 we show that the
intrinsic homotopy leads to systems on thesamecomplex line.. What changed is that the
pathP ′ on. is not linearly related to the original pathP. But since the pathP ′ depends on
a choice of� ∈ C of absolute value 1, which can still be chosen, except for a finite number
of complex numbers of absolute value 1, so thatP ′ avoids the finite subsetB of ., the same
conclusions of[15] still hold. �

2.3. Algorithm summary

The homotopy algorithm to intersect two positive dimensional varieties in intrinsic co-
ordinates is described below. After the initialization, there are three stages. First is the
homotopy to start the cascade, followed by the homotopy to find a witness set for the top
dimensional part ofA∩B. Thirdly, all lower dimensional parts ofA∩B are computed in a
loop fromb− 2 down toh0. The second and third stage are separate because we can avoid
a coordinate transformation. Also, in many cases—such as the important application of the
intersection with a hypersurface—the loop will never be executed.
Some subroutines used in the algorithm below are just implementations of one formula in

the paper, e.g.Combine implements (15). Next we describe briefly the other subroutines.
The linear algebra operations to deal with solutions in intrinsic coordinates are provided

in the subroutinesStart_Plane,Project, Initialize ,Basis, andTransform . Given the equa-
tions forLA andLB , Start_Planefirst computes a basis for the null space ofL−1

A (0) and
L−1
B (0) before doubling the coordinates into a corresponding basis inC2k. After orthonor-

malization of the basis,Project computes the intrinsic coordinates for the product of the
given witness sets ofAandB. The subroutineInitialize first generates the randommatrices
A,B,C, andd before computing the� of Lemma2.1. In addition,Initialize returns the op-
eratorY, which returns for anyh the correspondingYh of (34). Lemma2.2is implemented
by Basis, whileTransform converts the coordinates for the solutions from one basis into
another.
The path tracking is done by the procedureTrack . On input are the homotopy and

start solutions. Except from the set up of the homotopy in intrinsic coordinates, one can
implementTrack along the lines of general path following methods, see[1,6,7], or [9].
The subroutineFilter takes on input the witness setsW for higher dimensional compo-

nents and the listZ. On return isW, augmented with a witness set for the solution set at
the current dimension, and a filtered listZ of nonsolutions. The listZ given toFilter may
contain points on higher dimensional solution sets. To remove such points, a homotopy
membership test as proposed in[12] can be applied. Recently, an interesting alternative was
proposed by Li and Zeng in[8]. The nonsolutions serve as start solutions in the cascade to
find witness sets for the lower dimensional solution sets. IfZ becomes empty afterFilter ,
the algorithm terminates.
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Algorithm 2.6. Intersecting two positive dimensional varietiesA andB.
Input:k, a, b (a�b); dim(A) = a, dim(B) = b, A,B ⊂ Ck

fA(u) = 0, fB(v) = 0; polynomial systems inu, v ∈ Ck

LA(u) = 0, LB(v) = 0; dim(L−1
A (0)) = k−a, dim(L−1

B (0)) = k−b
WA,WB . solutions in witness sets for A and B

Output:F(x) = 0; system combined fromfA, fB in x ∈ Ck

L = [Lh0, . . . , Lb−1]; list of linear spaces,dim(L−1
i (0)) = i

W = [Wh0, . . . ,Wb−1]. solutionsWi in i-dim witness sets
F := Combine(fA, fB); combine systemsfA andfB as in(15)
S := Start_Plane(LA,LB); basis for plane definingWA × WB

Z := Project(WA × WB, S); solutions to start the cascade
[Y, �] := Initialize (k, a, b); linear spaceAw + BPhC(w + d) = 0
[E,F,G] := Basis(Yb,Yb−1); basis forNull Yb andNull Yb−1
W(t, y) := [tS + (1− t)[� + [E F ]]; deform start plane S into[E F ]

with t using formula(21)
Z := Track (F(W(t, y)),Z); homotopy to start the cascade
Z := Track (F, [E,F,G],Z); find top dimensional component
[Wb−1,Z] := Filter (W,Z); keep witness sets and nonsolutions
h0 := max(a + b − k,0); minimaldim(A ∩ B)
for j from b − 2 down toh0 do compute witness set at dimension j

[E,F,G] := Basis(Yj+1,Yj ); W(t, y) = � + [E tF + �(1− t)G]y
Z := Transform (Z, [E,F ]); coordinates into new basis[E F ]
Z := Track (F, [E,F,G],Z); homotopyF(Wj+1,j (t, y)) = 0
[Wj ,Z] := Filter (W,Z); keep witness sets and nonsolutions

end for.

Wewill present the details of the algorithm on the first example in the next section below.

3. Numerical experiments

The algorithms in this paper have been implemented and tested with PHC-pack[16], for
public release in version 2.3. To compare with our implementation in extrinsic coordinates,
we use the same examples as in[15]. All computations were done on a 2.4GHz Linux
machine.
(1)An example from calculus: In this example, we intersect a cylinderAwith a sphereB.

More precisely,A = {(x, y, z) | x2 + y2 − 1 = 0} andB = {(x, y, z) | (x + 0.5)2 + y2 +
z2 − 1 = 0}. The intersectionA ∩ B is a curve of degree four. Sincek = 3, a = 2, and
b = 2: h0 = 1, so there are only two homotopies, each defining four solution paths.
We now illustrate the details of the algorithm in this example.
F := Combine(fA, fB): Since we have the right number of equations forAandB, i.e.
fA(x, y, z) = x2 + y2 − 1 = 0 andfB(x, y, z) = (x + 0.5)2 + y2 + z2 − 1 = 0,
the matricesM andN are not really needed, andF(w) consists offA(u) = 0 and
fB(v) = 0, withw = [u v]T .
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Table 1
Dimension and degrees of the two irreducible setsA andB for the three examples, followed by #variablesm =
2k − dim(A) − dim(B),M = 3k − a (which is the #variables in the extrinsic homotopy), and number of paths
deg(A)× deg(B) at the start of the cascade

Dimensions and degrees ofA andB
Example k dim(A) deg(A) dim(B) deg(B) m M deg(A)× deg(B)

(1) 3 2 2 2 2 2 7 4
(2) 4 2 1 2 1 4 10 1
(3) 8 7 2 1 28 8 17 56

S := Start_Plane(LA,LB): The randomhyperplanesLA(u) = 0 andLB(v) = 0 each
define a random line in 3-space. IfLA(u) = 0 is represented byu(y) = �A + 	Ay,
and ifLB(v) = 0 is represented byv(y) = �B + 	By, thenS is generated by

w =
[
u

w

]
=

[
�A
�B

]
+

[
	A
0

]
y1 +

[
0
	B

]
y2. (46)

Z := Project(WA × WB, S): The solutions to start the cascade are obtained from ap-
pending the coordinates of the two points inWB to every point in the witness set
WA. As #WA = 2, there are four start solutions in the cascade. The second argument
Sof Project is used to project the(x, y, z)-coordinates of the witness sets into the
(y1, y2)-coordinates in the representation ofS in (46).

[Y, �] := Initialize (3,2,2): At this stage, randommatricesA,B,C, anddaregenerated
as in (16) and in (17), a solution� of Aw + BPhC(w + d) = 0 is computed, and the
operatorY is returned.

[E,F,G] := Basis(Y2,Y1): After the execution ofBasis, we have[E F ] = Null Y2
and[E G] = Null Y1, as in Lemma2.2.

Z := Track (F(W(t, y)),Z): With this homotopy defined byW(t, y) we track four
paths to start the cascade.

Z := Track (F, [E,F,G],Z): The four paths trackedhereendat the four pointswhich
form a witness set for the curve of intersectionA ∩ B of degree four.

Asb−2 = 0,h0 = 1, the range forj is empty, and the loop in the algorithm is not executed.
(2)An illustration of the cascade: In this example we need to execute the cascade to find

the point of intersection. We consider the componentsA = {x = 0, y = 0} andB = {z =
0, w = 0} as solution sets of the same systemf (x, y, z, w) = [xz, xw, yz, yw]T = 0. We
havek = 4, a = 2, andb = 2.

(3) Adding an extra leg to a moving platform: In this example we cut a hypersurface
A in C8 with a curveB, i.e. a = 7 andb = 1. The application concerns a Griffis–Duffy
platform[3] (analyzedbyHusty andKarger in[5] and subsequently in[14]) whereA∩B can
be interpreted as adding a seventh leg to the platform so it no longer moves.As deg(A) = 2
and deg(B) = 28 (ignoring the mechanically irrelevant components), there are 56 paths to
trace, by two homotopies.
In the Table1 below we list all important dimensions of the three example applications.

A summary of the execution times is reported in Table2.
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Table 2
Timings in CPU user seconds on 2.4GHz Linux machine

Homotopies Total CPU Time
0 1 2 Intrinsic Extrinsic

(1) 0.03 0.01 — 0.04 0.07
(2) 0.01 0.02 0.01 0.04 0.11
(3) 9.90 5.94 — 15.84 34.70

The second column concerns the homotopy to start the cascade, in the third column are the timings for the top
dimensional components, followed by the eventual next homotopy in the cascade.

In these numerical experiments, we save about half of the computational time when
working in intrinsic coordinates.Comparing the number of variables of the original extrinsic
method,M = 3k − a for the examples tested, with the number for the intrinsic method,
m = 2k − dim(A) − dim(B), we have in these experiments 3k − a = 7,10,17 variables
reduced to 2,4,8, or more than half. Since the cost of linear solving isO(n3), this implies
about a eight-fold reduction in the cost of linear solving. Linear solving can be a significant
portion of the total cost, as it is used in Newton’s method for tracking the homotopy paths.
The experimental results suggest that this was accounting for about half of the total cost in
the extrinsic method, but accounts for a much less significant fraction of the computational
cost of the intrinsicmethod. The other 50%or so of the cost remains, which is attributable to
function evaluation, data transfer, and other overhead. The cost of function evaluation can
vary dramatically from one polynomial system to another, so we cannot definitively expect
the same percentage savings for all systems, but we can say that the intrinsic formulation
seems to give a substantial reduction in computational time.
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