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Abstract

Recently we developed a diagonal homotopy method to compute a numerical representation of all
positive dimensional components in the intersection of two irreducible algebraic sets. In this paper,
we rewrite this diagonal homotopy in intrinsic coordinates, which reduces the number of variables,
typically in half. This has the potential to save a significant amount of computation, especially in
the iterative solving portion of the homotopy path tracker. Three numerical experiments all show a
speedup of about a factor two.
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0. Introduction

Our goal is to compute the irreducible decompositioof B ¢ C¥, whereA andB are
irreducible algebraic sets. In particular, suppose that

e Alis an irreducible component of the solution set of a polynomial systgm) = 0
defined onC*, and similarly

e Bis an irreducible component of the solution set of a polynomial system) = 0
defined onCk.

This includes the important special case whfgrand /5 are the same system, bAiandB
are distinct irreducible components.

Casting this problem into the framework of numerical algebraic geometry, we assume
that all components are representeavitaess sets~or an irreducible componert ¢ C*
of dimension dinjA) and degree déd ), a witness set consists of a generie- dim(A)
dimensional linear subspagec C* and the degA) points of intersectior N L. We assume
that at the outset we are given such sets&@ndB, and our goal is to compute witness
sets for the irreducible components4f B. The intersection may break into several such
components, and the components may have various dimensions. Our methods proceed in
two phases: we first find a witness superset guaranteed to contain witness points for all the
components, then we break this setinto its irreducible components. We recently reported on
an algorithm[15], herein called thextrinsic3 homotopy method, for computing a witness
superset fordA N B. This can then be decomposed into irreducible components using the
methods if14] and its references.

Abstracting away the details, which are discussed more fully in Settithre extrinsic
method consists of a cascade of homotopies in unknowresC" and path parameter
t € [0, 1], each of the form

_ £ _
Heen= [I(Px+p)+(1—t)(Qx+6I):| =0 .

wheref : CV — C™ is a system of polynomial equation, Q are(N —m) x N full-rank
matrices, angh, g € CV=™) are column vectors. There is a homotopy of this form for each
dimension whered N B could have one or more solution components. We know solution
values forxatz = 1 and wish to track solution paths) implicitly defined by @) ast — 0

to getx(0).
At any specific value of, this looks like
5 _ fx) _
Hx, 0= |:R(t)x+r(t)i| =0 2)

whereR =tP + (1—1t)Q andr = tp + (1 — t)g. The homotopy is constructed such that
we are assured th&(z) is full rank for allz € [0, 1]. Thus, the linear subspace of solutions
of R(t)x + r(¢t) = 0 can be parameterized bye C™ in the form

x(u, 1) = R+ x, (1), ()

3The terminology extrinsic/intrinsic is in analogy with the homotopiepibf
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wherex,, (1) is any particular solution anl-(¢) is the right nuII space oR(7), that is,R+
is a full-rank N x m matrix with RR+ = 0. We may restric to this linear subspace to
obtain

Hu,1):= H(x(u,1),1) = f(RT(t)u + x,(1)) =0, (4)

where we have dropped the linear equations because by construction, they are identically
zero for allt. We refer to this as thimtrinsic form of the equations.

The problem with 4) is that it requires computmgl andx, at each new value dfas
we follow the homotopy paths. Because of tms(x) offers little, if any, computational
advantage over the extrlnsft(x)

Although not generally possible, for sontg Q, p, ¢, one can convert the extrinsic
homotopy () into an intrinsic homotopy of the form

H(u,1) = f(t(Cu+c)+ (A —1)(Du+d)) =0, (5)

in which the path parameteappears linearly. This means that the linear algebra to compute
C,D e CVN*™ andc, d € CV is done just once at the outset, rather than being repeated at
each value of. This can save a significant amount of computation and is also simpler to
implement.

This paper is organized as follows. In Sectibnwe review the extrinsic homotopies
formulated in[15] for intersecting algebraic varieties, and in Sectidrisand2.2, we show
how to convert these to the linear intrinsic form. A comparison of the numerical behavior
of the extrinsic homotopies and intrinsic homotopies is presented in S&ction

1. Extrinsic diagonal homotopies

Let A c C* andB c C* be as in the opening paragraph, having dimensiasdb
respectively. We have bounds on the dimension of componentsoB as follows. After
renaming if necessary, we may assumeb. The largest possible dimension 4fn B is
thereforeb, which happens if and only B is contained irA. We can check this possibility
using a homotopy membersHip2] test to see if a generic point Bfis in A. If so, we have
A N B = B and no further computation is needed. Otherwise, we know that the largest
possible dimension of N B isb — 1. On the other hand, because the codimensiohoB
is at most the sum of the codimensionsAcdindB, the smallest possible dimension of any
component oA N B is maxa +b—k, 0). For a particular problem, one might have available
some tighter bounds on dim N B), and if so, one can take advantage of that knowledge
in the algorithm to follow. Accordingly, we introduce the symbbtsandhg as follows:

b > h* > dim(AN B), (6)
max(a + b — k, 0) < ho< min(dim(any component oA N B)). @)

Unless we have other knowledge, we use the defaiilts b andhg = max(a + b — k, 0).
Instead of working directly itt, we find the intersectior N B by casting the problem

into (u, v) € CK* and restricting to the diagonal— v = 0. More precisely, the product

X := A x B c C* s an affine variety of dimensiom + b, i.e., an irreducible affine
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algebraic set of dimensian+ b. The intersection oA andB can be identified, e.g2, Ex.
13.15]or [10, p. 122ff] with X N A4 where is the diagonal o£¥** defined by the system
Ui — vp
o(u, v) == =0 (8)
Up — Vg
with (u, v) giving the coordinates of***.
The initial data consists of witness sets farand B. That is, our data foA con-

sists of a generic systerhy(u) = 0 of a linear equations and the det) solutions
{01, . .., Oldega)} € CF of the system

Sau)
=0 9
[LAm) ] ®
and similarly the data foB consists of a generic systehy (v) = 0 of b linear equations
and the deg@B) solutions{fy, ..., fyeqp)} C C" of the system

fe) | _
[ i (U)} —o. (10)

Remark 1.1. We are not assuming thatandB occur with multiplicity one in the solution
sets of their respective systenfis(u) = 0 andfz(v) = 0. If the multiplicity is greater than
one, we must use a singular path tradided].

The extrinsic algorithm can be summarized concisely by introducing a bit of matrix
notation. First, let

wz[ﬂe«ﬂk (11)

and introduce a column vector of “slack” variables C¥. Also, define thé x k projection
matrix
P, =diag(,...,1,0,...,0). (12)
——— —————
h k—h

Left multiplication byP, picks out the firshrows of its multiplicand and right multiplication
picks out the firsh columns of its multiplier. Note also thmﬁ = Py,. Similarly, letP;; be
thek x k matrix

P;i = diag(0,...,0,1,...,1,0,...,0), (13)
—_———— ————— —————
i i—j k—i
which picks out rows (or columng)+ 1, ..., i. Itis useful to note tha®; + P;; = P;.

The formulation of the homotopy requires several random matrices as follows. First, we
choose generic matrices

M e C(k*a)x#(fA)’ N e C(k*b)x#(fB)’ (14)
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where # f,4) is the number of functions in the systefij (x) associated to componeAt
and similarly for # fg). These are used to define

| Mfa(u)
F(w) = [ N (0) } (15)

Note thatA x B is an irreducible component of the solution set of the syst&m) = O.
Next, we choosé\ a generida + b) x k matrix, and let

A=[A —A] et (16)
soAw = A(u — v). Finally, we choose generic matrices
BeClth <k ceC"® dechh (17)
In all these, a matrix with random complex elements will be generic with probability one.
Since the smallest dimensional nonempty componewnt 0fB is of dimension at least
max0, a + b — k}, it follows from [15, Lemma (3.1)}that we can find the irreducible

decomposition ofA N B by finding the irreducible decomposition 8fw = 0 on X =
A x B. For this purpose, we consider a cascade of homotopies of the form

F(w)
En(w,z) = | Aw + BPyz =0, (18)
z — P (Cw +d)
which is well-defined for any integer<0i <k. Denoting the entries of aszy, ..., z,
note that the last row of this matrix equation implies tt@t; 1, . . ., zx) = 0. The method
for generating a witness superset consists of soldjpgw, z) = 0 and then descending
sequentially down the cascade to sofy¢w, z) =0for j =hr* —1,..., ho.

The rationale behind the cascade is that the linear syBjg@w + d) = 0 is a linear
slice that cuts out witness points for solution components of dimetsi®he vectorzis
a set of slack variables. A solution point &f(w, z) = 0 for whichz = 0 is on the slice
and thus gives a witness point. Solution points wit 0 are not on the slice, and we call
these “nonsolutions.” These become the starting points for the next step of the cascade. (We
state this more formally below, after giving more details of the algorithm.) For each step
down the cascade, one more slack variable is set to zero and a corresponding hyperplane is
removed from the slice. The recycling of nonsolutions as starting points for the next step
of the cascade is valid due to the fact that fok i, £;(w, z) is just&; (w, z) with certain
elements oB, C, andd set to zero. This is justified if15].

The following steps of the algorithm still need to be described:

e how to solveg,«(w, z) = 0,
e how to descend the cascade, and
e how to reap the witness points from the solutions at each level of the cascade.
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The homotopy to solvé,:(w, z) = 0 is

F(w)
La(u)
Aw + BPjz ) =0, (19)
(1-1) [Z P (o +d)} +17| L)

Z

wherey is a random complex number. At= 1, solution paths start at the deg x deq B)
nonsingular solution§(a1, 1), ..., (tdega). ﬁdqu))} c C% obtained by combining the
witness points foAandB. At = 0, the solution paths terminate at the desired start solutions
for &+ (w, z) = 0. In[15] we ended the homotopy & (w, z) = 0, but the argument works
equally well witha* in place ofb.

The homotopy connecting to &£; for j < i is

F(w)
Hij(t,w,z) :=| Aw + BP;z =0, (20)
Z— (Pj + TPj,')(Cw +d)

wheret goes from 1 to 0 along a sufficiently general 1-real-dimensional curve. For example,
for all but finitely manyy € C of absolute value I, = r + yr(1 — r) asr goes from 1 to 0
on the real interval suffices. Another possibility, relevant in what comes below, is

=1/t +y(1—1) (21)

ast goes from 1 to 0 on the real interval.

In the cascade of homotopies frdib] (based orj11]), we start out with the finite set
G; of nonsingular solutions &; with z; # 0. Tracking these start solutions we end up with
a set of solution@fj of £ with z; = 0forh > j.In[15], j =i — 1, but the argument

there works immediately for any < i. The key points about the s@fj is that

1. the set; equals the set of points @f for whichz; # 0;

2. the set of pomtsW C Qg for which z;, = 0 for all 2 < j contains a witness point set
W; for thej- dlmenS|onaI components of the solution set of the intersectidnaoidB.

We also know that the set of pomtsg‘f for whichz, = O for all2 < j equals the set of

points |ng5 for whichz; = 0. We W|sh to set up an intrinsic homotopy such that analogs
of the above key facts hold true.

2. Setting up intrinsic homotopies

The extrinsic homotopies oflf) and @0) use the variablegw, z) € C* x C*. Each
hasa + b + k linear equations which we wish to eliminate by converting to an intrinsic
homotopy. The result will be homotopies in intrinsic variables C%*~~". Note that
2k — (a +b) is the codimension of x B in C%. Itis also the suna + b of the codimension
a = k —a of Ain C* and the codimensiol = k — b of Bin C*. Since this quantity appears
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frequently in the expressions below, we define
m =2k —a—b. (22)
Accordingly, our intrinsic homotopy variables ayes C™.

2.1. Intrinsic start homotopy

In this section, we replace the extrinsic start homotopy1®) vith one having the
intrinsic form of 6). Fixing a particular solution

w=[] e
of

[Law) ]

| Lo ] —0, (24)

choose a basi#; € CZ*™ of the null spaceVy of

_LA(U)_LA(O):|_O
| Lp(v) = Lp(0) |

The solutiong;, f8;) of (24) arising from @) and (L0) correspond tow1 + N1) N (A x B).
Fixing a particular solutiom, of

(25)

Aw + BPj«(Cw +d) = 0, (26)
choose a basi#, € C**™ of the null spaceV, of

Aw + BP;«Cw = 0. (27)
We have the intrinsic homotopy with variabtes C"

F(tlwi + Wiyl + (1 — Dlwz2 + Way]) = 0. (28)

An irreducible analytic setl; c C? is said to beransverseo an irreducible analytic
setAp ¢ C& if

1. theintersectiotd; N A2 is contained in the set of smooth points of bgthand.A,; and
2. atany poink € A1 N A,

dim(TAl,x NT4x) = dim Tyh x+ dim Tp,x — 2k.

Note that this implies thaid; N A2 is a manifold whose connected components have
dimension dimA; +dim A, — 2k. Sincew; + N7 is transverse ta x B, the(2k —a — b)-
dimensional affine subspace given by

{t1lw1 + Wiyl + to[w2 + Way] | y € C™} (29)
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is transverse ta x B for all but a finite set oft1, t2] € PL. In particular for all but a finite
number ofy € C of absolute value one, with the relation betweeandt as in 1), the
m-dimensional affine subspace given by

{t[wy + Wiyl + (1 — D)[w2 + Wayl | y € C"} (30)

is transverse tal x B for all # € (0, 1]. By genericity in the choices &, B, C, d, this
is true forr = 0 also. Thus using the homotop#8§] to track the paths starting with the
(w4, ;) atr = 1, we get the start solutions of the cascade=at0.

In practice it will be convenient to go directly from solutiots, f8;) of (24) arising
from (9) and (10) to &,+_1 or any&; with j < h*. Doing this we want to know that the
limits of the paths of the intrinsic homotopy startmg with the solutions ;) contain the

subseiG; for whichz; # 0 and a set of poth which contains a set of withess points
W;. This is true for both the intrinsic and the earlier extrinsic homotogt 5f. The reason
why this is so is that the solutiorg U W; are contained in the set of isolated solutions of
&; restricted tad x B. Therefore by[15, LemmaA.1]there is a Zariski open set o C
such that except for a finite choice pbf absolute value one ir2Q), G; U W are limits of
isolated solutions of the homotop28) restricted toA x B. Since the solut|ons at=1
of the homotopy Z8) on A x B are the transversal intersection with tmedimensional
affine subspace given by EQQ), it follows that for thet near 1 this is still true. Thus the
isolated solutions of the homotopg8) for a Zariski open set of theare continuations
from solutions(z;, ﬁj) of (24) arising from @) and (L0), and in consequencgg; U Wj are
contained in limits of isolated solutions of the homoto@g)(restricted toA x B starting
at these points.

The current default is to go directly from solutions;, ;) of (24) arising from 0)
and (L0) to &+ 1.

2.2. Intrinsic cascade homotopies

In this section, we convert the extrinsic cascade homotopieDpfi{to intrinsic homo-
topies of the form of%). This must be done a bit more delicately than what was done for
the start homotopy, because we must preserve the containn®nt afiside the parameter
space off; so that we retain the properties stated at the end of Settidfe do this by
deriving an intrinsic homotopy whose path is exactly the same as a generic real path from
t=1totr=0in (20).

We start by eliminating by substitution from the last block row 02@) into the middle
row. We use the facts that for> j, P;P; = P; andP;P;; = P;; to obtain

— | Fw) _
Hij 4, w) o= [Aw +B(P; + P;)(Cuw + d)} =0 (D

which, abusing notation, we still ca#t; ;. By similar abuse of notation, we ugg(w) in
place of&;, (w, z) after eliminatingz from (18).

Our first observation concerns the existence of a constant particular solution throughout
the cascade.
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Lemma 2.1. The inhomogeneous linear system

[t Tu=[ 9] 2

has a unique nonzero solutien

Proof. The genericity ofC implies the invertibility of[ I C_Ik } O
Notice that this implies that botAe = 0 andCe + d = 0, and thereforev = ¢ is a
solution of

Aw +B(P; 4+ tP;;)(Cw +d) =0 (33)

for anyi, j, t.
Let Y, be the homogeneous linear system

Y, := (A +BP,C)w = 0. (34)

The following lemma concerning the null space¥f is crucial for the conversion to an
intrinsic form.

Lemma 2.2. For any j and i such thatip<j < i<h*, there exist matrices; ; €
CH>n=ith) and F; ;, G, j € C**=J) such that

1. [Ei,j F,',j] = Null Y,

2. [Ei,j Gi,j] = Null Yj
0

3. PjiCFi,j = PjiCGi,j = I,'_j )
0

where the(i — j) x (i — j) identity matrix;_; appears inrowsi + 1, ...,i.

Proof. We must first establish that; andY ; are full row ranka + b so thatn = 2k —a —b
is the correct dimension of their null spaces. SiAcgepends on generié (see (6)) and
B andC are generic, it suffices to show that there is at least one choife Bf C such
thatYy, is full rank forhg < h <h*. Fora + b < k, it suffices to choosB = 0,C = 0 and
chooseA to makeY,, = [I,45 0 — I,45 Olw. Fora+b > k, chooseA = [I; 0]7, choose
B with 1,45 in the lower left andC with 1,4, in the upper left. Sincé >a + b — k,
this suffices to mak¥ ;, full rank, as one may check by direct substitution.

Next, we establish that; andY ; share a null subspace of dimensien- i + j. Note
that

Yi=A+ B(Pj + Pj,-)C)w = (Yj + Ble-C)w. (35)
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The matrixBP;; C is independent dBP; C because the projection matrices pick out differ-
ent rows and columns of generic matrid@sndC. Accordingly, the subspace NX|; N
NullY; = Null'Y; N Null (BP;;C). These have dimensian and codimensiori — j),
respectively, and they meet transversely, so the intersection has dimensiant ;. Let
E; ; be any basis for this subspace.

Now, supposef“i,j completes a basis; ; ﬁi,j] for Null Y;. It must be independent of
Null (BP;;C), and sinceB is generic, this implies tha??jiCF,-J must be full rank. Since

P;; zeros out all but rowg + 1, ..., i, this implies that
A 0
PjiCFij =| O (36)
0
must have a full-ranki — j) x (i — j) matrixQinrowsj+1,...,i. Then,F; ; = ﬁi,j o1

completes the basis &f; while also satisfying Condition 3 of the lemma. Similar reasoning
shows the existence @f; ;. [

Choosing a random € C, we form the linear system
Wijt,y) =e+[Ei; tF;+yA-1Gi;ly, (37)
wherey € C" ande is as in Lemma&.1 From this, we form the intrinsic homotopy
H;j(t,y) =FW; it y)=0 (38)

and tracky ast goes from 1 to 0 on the real interval.

The crucial fact behind the equivalence of the intrinsic and extrinsic homotopies is that the
space intrinsically parameterized 87 is the same for appropriate choices of parameters
as the space that we extrinsically cut out with linear equations before.

Lemma 2.3. For all but a finite number of € C of absolute value oné follows that for
anyt € [0, 1], the kernel of the linear system

Aw~|—B(Pj +eri)(Cw+d) =0. (39)

onC%* witht = t/(t + (1 —1)) is parameterized by; ;(z, y) wherey € C".

Proof. This follows immediately for = 0 and 1 with no restriction opof absolute value
1 by takingt equal to 0 and 1 respectively.

Combining this with the dimension of the kernel 89 being at leastn, we conclude
that the dimension of the kernel B9) is exactlym except for finitely many G# y € C.
In particular, for all but a finite numberof absolute value 1, the dimension of the kernel
of (39 fort = ¢/(t + y(1 — 1)) with 7 € (0, 1) is of dimensiorm. Sincee satisfies both
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Ae =0andCe +d = 0, itis therefore enough to show that for &ll y)
(A + B(Pj + ‘CPji)C)[ El"j tF,',j + 71— I)G,',j ly=0. (40)

Since the columns of; ; are in NullY ; N Null (BP;;C), it is annihilated. Since is
arbitrary, we must have

(A +B(P; +tP;)O)[tFij +7(1—1G; j1=0. (41)
SinceF; ; isin NullY; andG; ; is in Null'Y ;, this is the same as

B((t — 1tP;;CFi j + (1 — 1)P;;CG; ;) = 0. (42)
By Condition 3 of Lemm&.2, this becomes

0
(t—Dr+19A—1)B | Lij |, (43)
0

which equals zero since=1t/(t +y(1—1)). O
We rephrase Lemma3,

Lemma 2.4. For all but a finite number of € C of absolute value oné follows that for
anyt € [0, 1], the system

F(W; t,y) =0 (44)
onC™ is the intrinsic system associated to the system

F(w)
Aw + BP;z =0 (45)
Z— (PJ + ‘CPJ‘,')(CU) + d)

witht =1¢/(t + y(1 —1)).

We defineg; as the set of nonsingular solutions 8f ; (1, w) on whichP; (Cw + d) is
nonzero and which correspond to pointstok B; G; as the set of nonsingular solutions of
H; ; (0, w) on whichP; (Cw + d) is nonzero and which correspond to pointsiok B; and
i j as the set of limits obtained by trackigg fromr = 1 tor = 0 using the homotopy
Hi,j (t, w).

Theorem 2.5. The subseIVT/j C Gi,j on whichP;(Cw + d) is zero contains a set of
witness points for the-glimensional components df N B. These witnhess points include
deg Z) distinct points for each irreducibledimensional component Z afn B. Moreover
Gg; CGij.

Proof. The setsj;, G; considered as sets of solutions of the extrinsic syst&ms; on
C?% are the same as the sets occurring in the homotof¥5if The extrinsic homotopy
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from [15] that we discussed in Sectidnis simply a differentiable patP parameterized
byt € [0, 1] on a complex lin¢ in the parameter space of the systein@v, z) joining a
general point; to a general poing; of the linear subspace of systems of the fi&w, z).

The only fact about the pathused in15] is that it depends on a choice)o& C of absolute
value 1, which can be chosen, except for a finite number of complex numbers of absolute
value 1, so thaP avoids a certain finite subsBtof ¢. In Lemma2.4 we show that the
intrinsic homotopy leads to systems on gamecomplex line¢. What changed is that the
path P’ on¢ is not linearly related to the original pakh But since the pati?®’ depends on

a choice ofy € C of absolute value 1, which can still be chosen, except for a finite number
of complex numbers of absolute value 1, so thaavoids the finite subs@&of ¢, the same
conclusions of15] still hold. [

2.3. Algorithm summary

The homotopy algorithm to intersect two positive dimensional varieties in intrinsic co-
ordinates is described below. After the initialization, there are three stages. First is the
homotopy to start the cascade, followed by the homotopy to find a witness set for the top
dimensional part oA N B. Thirdly, all lower dimensional parts of N B are computed in a
loop fromb — 2 down tohg. The second and third stage are separate because we can avoid
a coordinate transformation. Also, in many cases—such as the important application of the
intersection with a hypersurface—the loop will never be executed.

Some subroutines used in the algorithm below are justimplementations of one formulain
the paper, e.gCcombine implements {5). Next we describe briefly the other subroutines.

The linear algebra operations to deal with solutions in intrinsic coordinates are provided
in the subroutineStart_Planeg, Project, Initialize , Basis andTransform. Given the equa-
tions for L, and L 5, Start_Planefirst computes a basis for the null space[qfl(O) and

Lgl(O) before doubling the coordinates into a corresponding bagiginAfter orthonor-
malization of the basigroject computes the intrinsic coordinates for the product of the
given witness sets @& andB. The subroutinénitialize first generates the random matrices
A, B, C, andd before computing theof Lemma2.1 In addition,Initialize returns the op-
eratorY, which returns for any the correspondiny, of (34). Lemma2.2is implemented

by Basis while Transform converts the coordinates for the solutions from one basis into
another.

The path tracking is done by the proceddirack. On input are the homotopy and
start solutions. Except from the set up of the homotopy in intrinsic coordinates, one can
implementTrack along the lines of general path following methods, [4&,7], or [9].

The subrouting-ilter takes on input the witness sétg for higher dimensional compo-
nents and the lisg. On return isV, augmented with a witness set for the solution set at
the current dimension, and a filtered l5tof nonsolutions. The lisg given toFilter may
contain points on higher dimensional solution sets. To remove such points, a homotopy
membership test as proposedia] can be applied. Recently, an interesting alternative was
proposed by Li and Zeng i{8]. The nonsolutions serve as start solutions in the cascade to
find witness sets for the lower dimensional solution set&. fecomes empty aftétilter,
the algorithm terminates.
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Algorithm 2.6. Intersecting two positive dimensional varietiesndB.

Input: k, a, b (a = b); dim(A) = a, dim(B) = b, A, B ¢ CF
faw) =0, fg(v) =0; polynomial systems im, v € CF
La(u)=0,Lg(v) =0; dim(L;*0) =k—a,dim(Lz*(0) =k—b
Wa, Wp. solutions in witness sets for A and B

Output: F(x) = 0; system combined fronfy, f5 in x € CF

L=I[Lp.....Ly1l; list of linear spacesdim(L; (0)) = i
W = W, - .., Wp—1l. solutionsW; in i-dim witness sets

F := Combine(fa, fB); combine systemg, and fp as in(15)

S := Start_Plane(L4, Lp); basis for plane definingV4 x Wpg

Z := ProjectWy x Wp, S); solutions to start the cascade

Y, ¢] := Initialize (k, a, b); linear spaceAw + BP,C(w +d) =0

[E, F,G]:=BasigYy, Y,_1); basis forNull Y, andNull Y;,_1

W(t,y) =[S+ A—-0)e+[E F]I; deform start plane S intpt F]

with t using formula(21)

Z = Track (F(W(t, y)), 2); homotopy to start the cascade

Z :=Track(F, [E, F, G], 2); find top dimensional component

Wp_1, Z] := Filter W, 2); keep witness sets and nonsolutions

ho :=max(a + b — k, 0); minimaldim(A N B)

for j from b — 2 down tohg do compute witness set at dimension j

[E, F, G] := BasiqY 11, Y;); W, y)=¢+[E tF+yQ—-1)Gly

Z :=Transform (Z, [E, F)); coordinates into new bas|& F]

Z :=Track (F,[E, F, G], 2); homotopyF (W41, ;(t,y)) =0

(W}, Z] := Filter (W, 2); keep witness sets and nonsolutions
end for.

We will present the details of the algorithm on the first example in the next section below.

3. Numerical experiments

The algorithms in this paper have been implemented and tested with PHG1gqdor
public release in version 2.3. To compare with our implementation in extrinsic coordinates,
we use the same examples aq18]. All computations were done on a 2.4 GHz Linux
machine.

(1) An example from calculugn this example, we intersect a cylindewith a spheres.
More preciselyA = {(x, y,z) | x>+ y2—1=0}andB = {(x, y, 2) | (x + 0.5)2 + y? +
7> — 1 = 0}. The intersectiom N B is a curve of degree four. Sinde= 3,4 = 2, and
b = 2: hg = 1, so there are only two homotopies, each defining four solution paths.

We now illustrate the details of the algorithm in this example.

F = Combine(f4, fp): Since we have the right number of equationsf@ndB, i.e.
fax.y,2) =x?4+y2—1=0andfp(x,y,2) = (x + 052 +y* + 2 - 1=0,
the matricesM andN are not really needed, arfEi(w) consists off4(«) = 0 and
fe(v) =0, withw = [ v]”.
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Table 1

Dimension and degrees of the two irreducible gendB for the three examples, followed by #variables=
2k — dim(A) — dim(B), M = 3k — a (which is the #variables in the extrinsic homotopy), and number of paths
deg A) x deg B) at the start of the cascade

Dimensions and degrees AfandB

Example k dim(A) degA) dim(B) deg B) m M deg A) x deg B)
(2) 3 2 2 2 2 2 7 4
2) 4 2 1 2 1 4 10 1
3) 8 7 2 1 28 8 17 56

S := Start_Plane(L4, Lp): Therandom hyperplands, (1) = 0andLz(v) = 0 each
define a random line in 3-space.llfy (1) = 0 is represented by(y) = ¢4 + p4y,
and if Lg(v) = O is represented by(y) = eg + ppy, thenSis generated by

o[- Lo )

Z := ProjectOW4 x Wpg, S): The solutions to start the cascade are obtained from ap-
pending the coordinates of the two points)iviz to every point in the witness set
Wa.As #W, = 2, there are four start solutions in the cascade. The second argument
Sof Project is used to project théx, y, z)-coordinates of the witness sets into the
(y1, y2)-coordinates in the representationSih (46).

[Y, ¢] := Initialize (3, 2, 2): Atthis stage, random matricésB, C, andd are generated
asin (6) and in (L7), a solutione of Aw + BP,C(w + d) = 0 is computed, and the
operatorY is returned.

[E, F, G] := BasiqY2, Y1): After the execution oBasis we have[E F] = Null Y3
and[E G] = Null Y1, asin Lemma&.2

Z = Track (F(W(z, y)), £): With this homotopy defined by (¢, y) we track four
paths to start the cascade.

Z :=Track (F, [E, F, G], Z): Thefour pathstracked here end atthe four points which
form a witness set for the curve of intersectidm B of degree four.

Asb—2 = 0,ho = 1, the range foris empty, and the loop in the algorithm is not executed.

(2) An illustration of the cascadén this example we need to execute the cascade to find
the point of intersection. We consider the components {x =0,y = 0} andB = {z =
0, w = 0} as solution sets of the same systéin, y, z, w) = [xz, xw, yz, yw]’ = 0. We
havek = 4,a = 2, andb = 2.

(3) Adding an extra leg to a moving platforrn this example we cut a hypersurface
Ain C® with a curveB, i.e.a = 7 andb = 1. The application concerns a Griffis—Duffy
platform[3] (analyzed by Husty and Karger[f] and subsequently [i14]) whereAN B can
be interpreted as adding a seventh leg to the platform so it no longer moves.@#s de@
and de@B) = 28 (ignoring the mechanically irrelevant components), there are 56 paths to
trace, by two homotopies.

In the Tablel below we list all important dimensions of the three example applications.
A summary of the execution times is reported in Table
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Table 2
Timings in CPU user seconds on 2.4 GHz Linux machine

Homotopies Total CPU Time

0 1 2 Intrinsic Extrinsic
(1) 0.03 0.01 — 0.04 0.07
2) 0.01 0.02 0.01 0.04 0.11
3) 9.90 5.94 — 15.84 34.70

The second column concerns the homotopy to start the cascade, in the third column are the timings for the top
dimensional components, followed by the eventual next homotopy in the cascade.

In these numerical experiments, we save about half of the computational time when
working inintrinsic coordinates. Comparing the number of variables of the original extrinsic
method,M = 3k — a for the examples tested, with the number for the intrinsic method,

m = 2k — dim(A) — dim(B), we have in these experiments 3 ¢ = 7, 10, 17 variables
reduced to 24, 8, or more than half. Since the cost of linear solving{g?), this implies

about a eight-fold reduction in the cost of linear solving. Linear solving can be a significant
portion of the total cost, as it is used in Newton’s method for tracking the homotopy paths.
The experimental results suggest that this was accounting for about half of the total cost in
the extrinsic method, but accounts for a much less significant fraction of the computational
cost of the intrinsic method. The other 50% or so of the cost remains, which is attributable to
function evaluation, data transfer, and other overhead. The cost of function evaluation can
vary dramatically from one polynomial system to another, so we cannot definitively expect
the same percentage savings for all systems, but we can say that the intrinsic formulation
seems to give a substantial reduction in computational time.
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