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Abstract. The studies of population dynamics often involve modeling growth as a 
function of temperature. The rate summation methodology has perhaps proven to be the 
most viable approach to such modeling. The majority of the work in rate summation 
treat the rates as deterministic quantities. There have been some efforts, however, 
to consider the rates as random variables. The mnst remarkable work with this 
posture introduces the concept of "physiological time" as the basis for growth 
modeling, and provides a comprehensive framework built around that concept. This 
paper is similar in spirit, 
time". 

but it concentrates on development in "chronological 
The resulting model is, therefore, simple and straightforward. 

INTRODUCTION 

Models of temperature dependent development are 
frequently used in population dynamics studies. 
There are basically three distinct areas of con- 
cern in integrating such models in the population 
dynamics framework. 

1. To establish the proper functional re- 
lationship between mea" development rate 
and ambient temperature. 

2. To develop a distribution model of dev- 
elopment times under variable temperature 
regimes. 

3. To incorporate temperature induced and 
other mortalities t" augment the model. 

Extensive research has been done in all the three 
areas and at least a few composite models already 
exist [e.g., Curry et al. (1978)l that have re- 
ported good results. 

It is, however, the idea of this paper to high- 
light the second area alone and present a" altern- 
ative modeling scheme for temperature dependent 
development. The scheme builds up"" the rate 
summation approach and includes stochastic varia- 
tions. 

BACKGROUND 

The rate summation (rate integration) approach 
has frequently been demonstrated to be superior in 
modeling temperature-dependent development. 
Among others Watson et al. (1973). Ballard (1974) 
and Stinner et al. (1974) have used this approach 
with deterministic development rates. Their 
methods can be vest summarized as finding the dev- 
elopment time Tw under temperature regime JI such 
that the equality 

TQ 
Z Y(JI(T))AT = 1 
r-o 

is satisfied. The termY(Jl(r)) denotes the mea" 
development rate under temperature $(T) operation- 
al at chronological time T and AT denotes a small 
increment along the time SC&Z. 

Stinner et ai. (1975) also drew upon the rate 
summation approach when they introduced stochastic 
variation in their development model. Their 

method used rate summation to estimate four criti- 
cal points on the distribution of development time 
which they subsequently obtained by fitting a 
parametric curve through those points. 

A somewhat different treatment of stochastic vari- 
ation in development modeling can be found in 
Shape et al. (1977). Their method was based on 
the "physiological time" concept. Physiological 
time x at chronological time t was defined as 

x(t) = : Y(+(T))AT. 
T=O 

It w.?s assumed that there existed a unique dis- 
tribution function F(.) associated with this time 
scale which in turn described T@, the development 
time under temperature regime $I, by the relation 
PiTJ'L ti = F(X(t)). 

The work of Curry et al. (197Ba and 197gb) formal- 
ized this method and expanded its scope. At 
present this method seems to be the most attractive 
in terms of its generality and theoretical sound- 
ness. 

The method described here shares the same spirit as 
that of Shape et al. (1977) but departs from it 
considerably in that it attacks the problem of 
stochastic variations mnre directly. I" its 
essence it attempts to develop a development 
distribution on chronological time rather than 
physiological time. It also does not require the 
"same shape" property critical to the physiological 
time model. It must, however, be recognized that 
this property is intrinsic to many of the modeled 
systems and can be a convenient apparatus in fully 
describing a rate process by its mea" alone. 

MODEL DEVELOPMBNT 

It is assumed that development under temperature 
regime $J may be described by a sequence of rate 
processes operational during the various phases of 
the regime. This assumption generally character- 
izes the rate summation approach. Assuming further 
that a rate process y(+(t)) peculiar to temperature 
Q(t) at chronological time t2is adequately rep- 

;zt:;i;te"n:: :i~~"~sf~ayu~~t?r~t~~~t~~"ti""~ the 

TJI = min( t: i y($(~)) AT > 11 . 
T-O 
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If one chooses AT to be equal to the elemental time 
in terms of which the rates are defined, the above 
equation reduces to 

TW = mid t: : Y($'(T)) 2 11 . 
T-0 

From the above formulation it becomes intuitively 
clear that the distribution function H (') of the 
random variable T@ at t is given by 

H(t) = PIT@ <t} = P{ :. Y($(T)) L lj= l- Gt(l) - 
T=O 

where G (1) is the distribution function of the 
random &riable 

: Y($(T)) 
T=O 

at 1. To determine H(t) one only needs to find 

Gt(l). 

Since 

t 

X(t) = 1 Y($'(T:) > 
T=O 

it is now attempted to identify the distribution 
function of the random variable x(t). This can be 
done relatively easily once the underlying rela- 
tionship among the rate processes v(Jl(t)) at 
t-0,1,2... becomes clear. To seek this clarifica- 
tion one once again resorts to a second assumption 
inherent to the rate summation approach which 
advocates development as being linear over time. 
This assumption of linearity points now to a 
perfect linear association between the consecutive 
random rate processes. In other words, the random 
variables y($(t)) and Y($(t+l)) for all t's may be 
considered to have a perfect positive correlation. 

Any y(+(t)) under these circumstances can be 
written as y($(t)) = u 
N(O,l) random variablel/iS&;: :;$f%"::;:ob:; :o 
all t's. Thus 

t t t 

X(t) =TioY(+(T)) =TtO lJJicT) + kTEoae(T) 

is a random variable which follows the 

‘b(T) 3 

distribution. Therefore 

fr \ 

Gt(l) = Q 

I / 
where 0(*) is the left tail area under a N(0.1) 
probability density function. To summarize. it 
can then be written that t 

l- 1 !J 

H(t) = 1-O T=O $'(T) .( > : 0 
T=O 90) 

get a complete description of H('). The error 
function erf(*) may be used to aid in the evalu- 
ation of @(*). 

DISCUSSIONS 

A limitation to the model proposed here is perhaps 
that of the normality assumption. Though the 

normal distribution conforms to the symmetry ex- 
hibited by most rate processes, other symmetric 
distributiors (e.g., quadratic in Sharpe et al. 

(1977)) have sometimes resulted in better models. 
A second weakness of the normal distribution is 
its unboundedness which stands in stark contrast 
to the boundedness of all development rate 
distribution. 

It is felt, however, that both these shortcomings 
have very limited implications with regard to the 
efficacy of the model. In most cases normal dis- 

tributions provide adequate fit to the rate 
processes and for all practical purposes its un- 
boundedness should not interfere with its usape. 
On the contrary. the normal distribution is well- 
studied and does immensely simplify the analytical 
aspects of the model. 
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The above model at this point can easily be im- 
plemented along with an iterative methodology to 


