A linear algorithm for the Hamiltonian completion number of the line graph of a cactus

Paolo Dettia, Carlo Melonib

aDipartimento di Ingegneria dell’Informazione, Università di Siena, Via Roma, 56, I-53100 Siena, Italy
bDipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via E. Orabona, 4 I-70125 Bari, Italy

Received 25 June 2001; received in revised form 1 November 2002; accepted 19 February 2003

Abstract

Given a graph \(G = (V, E) \), \(HCN(L(G)) \) is the minimum number of edges to be added to its line graph \(L(G) \) to make \(L(G) \) Hamiltonian. This problem is known to be \(NP \)-hard for general graphs, whereas a \(O(|V|) \) algorithm exists when \(G \) is a tree. In this paper a linear algorithm for finding \(HCN(L(G)) \) when \(G \) is a cactus is proposed.

Keywords: Algorithms; Hamiltonian path; Hamiltonian completion number; Cactus; Line graph

1. Introduction

In this paper a graph \(G = (V, E) \) is called Hamiltonian if it has a Hamiltonian path, and the problem of finding the minimum number of edges which need to be added to \(G \) to make it Hamiltonian is considered. This problem is known in literature as the problem of finding the Hamiltonian completion number of a graph and will be denoted as \(HCN(G) \). In particular, we investigate the problem restricted to a particular class of graphs, called line graphs. The line graph \(L(G) \) of \(G = (V, E) \) is a graph having \(|E| \) nodes, each node of \(L(G) \) being associated to an edge of \(G \). There is an edge between two nodes of \(L(G) \) if the corresponding edges of \(G \) are adjacent. Linear-time algorithms exist for recognizing a line graph \(L(G) \) and obtain its root graph \(G \) \cite{15,20}.

Given a graph \(G = (V, E) \), a trail is a sequence \(w := (v_0, e_0, v_1, e_1, v_2, e_2, \ldots, e_{k-1}, v_k) \), where \((v_0, v_1, v_2, \ldots, v_k) \) are nodes of \(G \), \((e_0, e_1, e_2, \ldots, e_{k-1}) \) are distinct edges of \(G \).
and \(v_i \) and \(v_{i+1} \) are the endpoints of \(e_i \) for \(0 \leq i \leq k - 1 \). The trail is a path if its nodes \((v_0, v_1, v_2, \ldots, v_k) \) are distinct. In other words, a trail is a path that can pass more times for the same node. A path or a trail may consist of a single node.

A dominating trail \(D_T \) in \(G \) is a trail such that each edge of \(G \) has at least one endpoint belonging to it (i.e., a dominating trail covers all the edges of \(G \)). Note that a dominating trail may not exist. A dominating trail set \(\Sigma \) is a collection of edge-disjoint trails that altogether cover all the edges of \(G \). A minimum dominating trail set (MDTS) is a dominating trail set of minimum cardinality.

Harary and Nash-Williams [11] link the problem of finding \(HCN(L(G)) \) and MDTS showing that the line graph \(L(G) \) of a graph \(G \) has a Hamiltonian path if and only if \(G \) has a dominating trail. As consequence, if \(HCN(L(G)) = k \) then the cardinality of MDTS of \(G \) is \(k + 1 \).

Particular special conditions on \(G \) have been found that ensure the existence of a Hamiltonian path on \(L(G) \) [24], and therefore \(HCN(L(G)) = 0 \). Agnetis et al. [1] showed the NP-hardness of the problem of finding \(HCN(L(G)) \) even when \(G \) is bipartite, and proposed, for this case, a heuristic approach.

When \(G \) is a tree or a forest the problem may be solved in linear time [9,14,17,21,22], while an approximate algorithm for the weighted version of the problem was proposed by Wu et al. [26].

When \(G \) is an interval graph [18], a circular-arc graph [4], a block graph [23,25,27], a bipartite permutation graph [23] or a cograph [16], it was shown that there exist polynomial time algorithms for finding \(HCN(G) \).

Raychaudhuri [19] presented a \(O(n^2) \) algorithm for finding \(HCN(G) \) when \(G \) is the line graph of a tree, while Agnetis et al. [2] proposed a linear algorithm for this case.

For Cactus graphs \(C = (V,E) \), i.e. graphs such that every edge is part of at most one cycle in \(C \), Hedetniemi et al. [12] proposed a linear algorithm for finding a minimum dominating set (i.e., a minimum cardinality subset \(V^* \subseteq V \) such that every vertex in \(V \setminus V^* \) is adjacent to at least one vertex in \(V^* \)). However, literature does not report any specific algorithm for finding MDTS or HCN\((L(G))\) on cactus graphs.

The study of line graphs is strongly related to important graph invariants, i.e. the interval number, the total interval number and the Wiener index [10,13,19]. Moreover, finding a MDTS or HCN of line graphs is often required in routing, sequencing, graph searching and in updating data structures [1,8]. In particular, the case of cactus graphs has several applications in efficient organization of control and data structures [6,7].

In this paper, a linear algorithm for finding the Hamiltonian completion number of the line graph \(L(C) \) (as well as a MDTS of \(C \)) of a cactus \(C \) is proposed. In Section 2 some notations, definitions and elementary graph transformations are considered. These transformations will play an important role in the theoretical foundation presented in Section 3. In Section 4 an algorithm for finding MDTS is reported.

2. Notations and elementary graph transformations

A cut vertex in a graph \(G \) is a vertex whose removal results in a disconnected graph. A block in a graph \(G \) is a maximal connected subgraph having no cut vertices.
A cactus is a graph in which each block is either an edge or a cycle. Thus, a tree is a cactus in which each block is an edge. An endblock of a cactus is a block containing at most one cut vertex. A cactus may be recognized in linear time [5].

Throughout the paper we use the following notation. Given a node \(i\) of the graph \(G\), we call \(\text{ad}(i)\) the set of nodes adjacent to \(i\) in \(G\), and \(\delta(i)\) the cardinality of \(\text{ad}(i)\) (i.e., the degree of \(i\)). Clearly, when \(i\) is a leaf, \(\text{ad}(i)\) contains a single node \(j\). In this case we write \(\text{ad}(i) = j\) (instead of \(\text{ad}(i) = \{j\}\)). Given an endblock \(B = (V_B, E_B)\) of \(G\), we indicate as \(cv(B)\) the unique cut vertex of \(B\). If \(Q\) is a block of \(G\), let \(cv(Q)\) be the set of the cut vertices of \(Q\).

Starting from a cactus graph \(C = (V, E)\), our approach repeatedly applies some elementary operations which reduce the size of the graph, until an empty graph is reached. To describe these transformations, we refer to the notation proposed by Agnetis et al. [2], in which two marking functions \(\mu : V \rightarrow \{0, 1\}\) and \(\nu : E \rightarrow \{0, 1\}\) have been introduced. A node \(i\) (an edge \(e\)) such that \(\mu(i) = 1\) (\(\nu(e) = 1\)) is called marked. Marking an edge means that we want to find a trail set which does not need to dominate that edge of the current graph. Marking a node means that at least one element of the trail set must pass through that node of the current graph. In the following, the problem of finding a minimum constrained dominating trail set (MCDTS) is defined.

Definition 1. Given a triple \((C, \mu, \nu)\), a constrained dominating trail set \(\Sigma_c\) is a collection of disjoint trails \(\{t_1, t_2, \ldots, t_r\}\) such that: (i) \(\Sigma_c\) dominates all the edges of \(C\) which are not marked; (ii) for each marked node \(i\), a trail \(t \in \Sigma_c\) containing \(i\) exists. A minimum constrained dominating trail set (MCDTS) is a constrained dominating trail set of minimum cardinality. Such a cardinality will be denoted as \(S(C, \mu, \nu)\).

Finding \(HCN(L(C))\) can therefore be reformulated as the problem of finding \(S(C, \mu, \nu)\), where \(C = (V, E)\) is the original cactus, \(\mu(i) = 0, \forall i \in V\) and \(\nu(e) = 0, \forall e \in E\).

In the following some elementary transformations, employed in the proposed algorithm, are presented.

Definition 2. Given a triple \((C, \mu, \nu)\), let the edge \(B = (i, j)\) be an endblock of \(C\), i.e. node \(i\) is a leaf, and \(j\) is the cut vertex of \(B\). By an edge-shrink of the endblock \(B\) we mean the transformation from \((C, \mu, \nu)\) to the triple \((C', \mu', \nu')\) defined as follows:

\[
C' = (V', E') = (V \setminus i, E \setminus (i, j));
\mu'(q) = \mu(q), \quad \forall q \in (V' \setminus j);
\mu'(j) = 1;
\nu'(e) = \nu(e), \quad \forall e \in E'.
\]

In other words, given an edge endblock \(B = (i, j)\), the edge-shrink transformation removes the leaf \(i\) and the edge \((i, j)\) from the graph and marks the node \(j\). A similar operation may be defined for cycle endblocks.
Definition 3. Given a triple \((C, \mu, v)\), let \(B = (V_B, E_B)\) be a cycle endblock of \(C\), and \(cv(B)\) be the unique cut vertex of \(B\). By a cycle-shrink of the endblock \(B\) we mean the transformation from \((C, \mu, v)\) to the triple \((C', \mu', v')\) defined as follows:

\[
C' = (V', E') = (V \setminus (V_B \setminus cv(B)), E \setminus E_B);
\]

\[
\mu'(q) = \mu(q), \quad \forall q \in (V' \setminus cv(B));
\]

\[
\mu'(cv(B)) = 1;
\]

\[
v'(e) = v(e), \quad \forall e \in E'.
\]

This operation removes a cycle endblock \(B = (V_B, E_B)\), deleting from \(C\) all edges in \(E_B\), and the nodes in \(V_B \setminus cv(B)\) and marks \(cv(B)\). In other words, a cycle-shrink operation collapses the cycle endblock in a single marked node. Note that, a path \(p = (i_1, \ldots, i_k)\) on a triple \((C', \mu', v')\) resulting from the application of some cycle-shrink operations corresponds to a trail on the original triple \((C, \mu, v)\).

Another elementary operation is described by the following definition.

Definition 4. Given a triple \((C, \mu, v), C = (V, E)\), let \((i, j) \in E\). The transformation that collapses the edge \((i, j)\) in a single marked node, is called an edge-collapse of the edge \((i, j)\).

In the first phase of the algorithm, the transformations edge-shrink and edge-collapse are employed in the following function.

function preprocessing \((C, \mu, v)\)

begin

while (a leaf \(i\) such that \(\mu(i) = 0\) exists in \(C\))

edge-shrink \((i, ad(i))\);

while (an edge \((i, j) \in E'\) exists such that \((\delta(i) \leq 2)\) and \((\delta(j) \leq 2)\))

edge-collapse \((i, j)\);

end

Function preprocessing consists of an iterative procedure, in which first all leaves \(i\) not marked are removed from \(C\), and \(\mu(ad(i))\) is set to 1. In fact, given a leaf \(i\) not marked, marking the node \(ad(i)\) means that a trail \(t\) must pass in \(ad(i)\). Hence, the edge \((i, ad(i))\) will be dominated by \(t\), regardless if \(i\) belongs or not to \(t\). In the second part of the function, an edge \((i, j)\) is collapsed in a single marked node if \(i\) and \(j\) have both degree not greater than two. As consequence, if \(C\) is a path, this function transforms \(C\) in a single marked node. In Fig. 1, a cactus graph with marked nodes, and the resulting cactus after function preprocessing has been applied, are reported. Note that an optimal solution for the problem of finding MCDTS on a triple \((C, \mu, v)\) transformed by operations of Definition 3, and by function preprocessing is also optimal for the original triple.
3. Theoretical results

In this section the theoretical foundations of the algorithm reported in Section 4 are presented. We refer to the triple \((C,\mu,v)\), \(C = (V,E)\), as the triple obtained applying the function \(\text{preprocessing}\) to the original triple \((C_0,\mu_0,v_0)\), \(C_0 = (V_0,E_0)\), in which \(\mu_0(i) = 0, \forall i \in V\) and \(v_0(e) = 0, \forall e \in E_0\). Note that in \(C\), all leaves are marked. In the following, we deal with the problem of finding \(MCDTS\) on \((C,\mu,v)\).

The basic idea of the algorithm is to iteratively \(\text{process}\) the endblocks of the cactus \(C\). An edge endblock \(B = (i,j)\), with \(j = \text{cv}(B)\), is \(\text{processed}\) by the following function \(\text{visit}\).

\[
\text{function visit } ((C,\mu,v),B = (i,j)) \\
\text{begin} \\
\quad \text{edge-shrink}(B); \\
\quad \text{link } j \text{ to } i \text{ with a pointer.} \\
\text{end}
\]

This function removes the edge \(B = (i,j)\), \(j = \text{cv}(B)\), and the marked node \(i\) from \((C,\mu,v)\), marks the node \(j\), and links the cut vertex \(j\) with a pointer to the removed node. A pointer from \(j\) to \(i\) means that a trail passing in \(i\) there exists in \(\Sigma_c\). In the following, we say that a node \(j\) has a pointer if there exists a pointer from \(j\) to another node.

Since pointers are possibly associated by \(\text{visit}\) to some nodes, we classify the endblocks of a cactus into two sets \(EB1\) and \(EB2\). The set \(EB1\) contains the endblocks \(B = (V_B,E_B)\) whose nodes in \(V_B \setminus \text{cv}(B)\) have no pointer. The second set \(EB2\) contains endblocks \(B = (V_B,E_B)\), in which nodes with pointers in \(V_B \setminus \text{cv}(B)\) exist.

At each iteration of the algorithm, first the endblocks in \(EB1\) are processed, and then the endblocks in \(EB2\) are considered. In the following, results concerning endblocks of the set \(EB2\) are presented. The Lemma 5 allows to build the trails of a minimum cardinality dominating trail set linking up two adjacent pointers that are associated to a node of an edge or a cycle endblock in \(EB2\).

Lemma 5. Consider a triple \((C,\mu,v)\), where \(C\) is a cactus not containing endblocks in the set \(EB1\). Let \(B = (V_B,E_B)\) be an endblock, let \(n_1 \in V_B\) be a node having at
least two pointers. Let \(l_1 \) and \(l_2 \) be two nodes pointed by \(n_1 \). Then, there exists a minimum constrained dominating trail set on \((C, \mu, v)\) containing a trail \(t \) starting in \(l_1 \) and ending in \(l_2 \).

Proof. Let \(\Sigma_c = \{ t_1, \ldots, t_r \} \) be a constrained dominating trail set on \((C, \mu, v)\) of cardinality \(r \), such that \(t \not\in \Sigma_c \). Since \(\mu(l_1) = \mu(l_2) = 1 \), then there exist in \(\Sigma_c \) two trails \(t_q = (l_1, n_1, \ldots, n_q) \) and \(t_k = (l_2, n_1, \ldots, n_k) \), starting in \(l_1 \) and \(l_2 \), respectively. Obviously, trails \(t_q \) and \(t_k \) have no edge in common. Removing \(t_q, t_k \) from \(\Sigma_c \), and adding the trail \(t = (l_1, n_1, l_2) \) and the trail \((n_q, \ldots, n_1, \ldots, n_k)\) to \(\Sigma_c \), we obtain a new constrained dominating trail set \(\Sigma'_c \) with cardinality not greater than \(r \). Hence, given any \(\Sigma_c \), we can always find a \(\Sigma'_c \) containing \(t \) and such that \(|\Sigma'_c| \leq |\Sigma_c| \). This is true also when \(\Sigma_c \) is a minimum cardinality dominating trail set and the thesis follows. \(\square \)

From the previous lemma follows Corollary 6 that establishes how trails of a minimum constrained dominating trail set can be built, when at least three pointers are associated to a node of an endblock \(B \).

Corollary 6. Consider a triple \((C, \mu, v)\), where \(C \) is a cactus not containing endblocks in the set \(\text{EB}1 \). Let \(B = (V_B, E_B) \) be an endblock, let \(n_1 \in V_B \) be a node having at least three pointers. Let \(l_1 \) and \(l_2 \) be two nodes pointed by \(n_1 \). Then, there exists a minimum constrained dominating trail set on \((C, \mu, v)\) containing the trail \(t = (l_1, n_1, l_2) \).

Proof. Let \(\Sigma_c = \{ t_1, \ldots, t_r \} \) be a constrained dominating trail set on \((C, \mu, v)\) of cardinality \(r \), such that \(t \not\in \Sigma_c \). Let \(n_1 \) has at least three pointers. Note that, since \(n_1 \) has at least three pointers, \(n_1 \) is pointed by \(\mu(l_1) = \mu(l_2) = 1 \), then at least two trails starting in \(l_1 \) and \(l_2 \) exist in \(\Sigma_c \). Hence, similar arguments employed in the proof of Lemma 5 can be used to show that it is always possible to build a new constrained dominating trail set \(\Sigma'_c \) containing \(t \), with cardinality not greater than \(r \). \(\square \)

When a node of an endblock has at least three pointers, Corollary 6 allows to build the trails of an optimal solution \(\Sigma_c \) linking up two adjacent pointers, as described in the following definition.

Definition 7. Given a triple \((C, \mu, v)\), let \(B = (V_B, E_B) \) be an endblock of \(C \), in which node \(n_1 \) satisfies conditions of Corollary 6. We call transform of the endblock \(B \) the transformation from \((C, \mu, v)\) to the triple \((C', \mu', v')\) defined as follows:

\[
C' = (V', E') = (V, E); \\
\mu'(q) = \mu(q), \ \forall q \in (V' \setminus n_1); \quad \mu'(n_1) = 0; \\
v'(e) = v(e), \quad \forall e \in (E' \setminus \{(i, n_1): i \in \text{ad}(n_1)\}); \\
v'(e) = 1 \quad \forall e \in E' \text{ incident to } n_1.
\]
Clearly, \(S(C', \mu', v') = S(C, \mu, v) - 1 \), where \((C', \mu', v')\) is the triple modified by operation transform1 and \(\Sigma_c = \Sigma_c' \cup (l_1, n_1, l_2) \).

Consider now a cycle endblock \(B \in EB_2 \), such that only one node having pointers exists in \(B \). The following lemma holds.

Lemma 8. Consider a triple \((C, \mu, v)\), where \(C \) is a cactus not containing endblocks of the set \(EB_1 \). Let \(B = (V_B, E_B) \) be a cycle endblock, in which only one node \(n_1 \in B \) having pointers exists in the set \(V_B \setminus cv(B) \). If one of the following cases holds:

i. \(n_1 \) has only one pointer to a node \(l_1 \) and only a marked node \(n_2 \notin \{n_1, cv(B)\} \) exists in \(B \);

ii. \(n_1 \) has only one pointer to a node \(l_1 \) and no marked node exists in \(B \setminus \{n_1, cv(B)\} \).

iii. \(n_1 \) has only one pointer to a node \(l_1 \) and two marked nodes \(n_2, n_3 \notin \{n_1, cv(B)\} \) exist in \(B \);

iv. \(n_1 \) has two pointers to nodes \(l_1 \) and \(l_2 \);

Then, a minimum constrained dominating trail set \(\Sigma_c^* \) exists in each case, such that:

- In case i, a trail \(t \) containing the trail \((l_1, n_1, n_2, cv(B))\) exists in \(\Sigma_c^* \).
- In case ii, a trail \(t \) containing the trail \((l_1, n_1, \ldots, cv(B))\) exists in \(\Sigma_c^* \).
- In case iii, a trail \(t = (l_1, n_1, n_2, cv(B), n_3) \) exists in \(\Sigma_c^* \).
- In case iv, a trail \(t = (l_1, n_1, n_2, cv(B), n_3, n_1, l_2) \) exists in \(\Sigma_c^* \).

Proof. Since \(n_1 \) is the only node in \(V_B \setminus cv(B) \) having an associated pointer, the endblock \(B \) is composed by a cycle with at most four nodes.

Case i: Figs. 2(i1) and 2(i2) report the two possible situations for this case. Since in both the situations the trail \((l_1, n_1, n_2, cv(B))\) dominates all the edges of \(B \), then it is possible to remove \(B \setminus cv(B) \) from \((C, \mu, v) \) and linking \(cv(B) \) to \(l_1 \) with a pointer (Fig. 2(i3)).

![Fig. 2. Cases i–iv of Lemma 8.](image)

Case ii: Similar arguments used in Case i. can be employed in this case. In Figs. 2(iii1) and 2(ii2) two possible situations of this case are reported. Note that since no marked nodes between \(n_1 \) and \(cv(B) \) exists in \(B \), in both the situations, two different trails dominating all the edges of \(B \) exist. Then it is possible to remove the \(B \setminus cv(B) \) from \((C, \mu, v) \) and linking \(cv(B) \) to \(l_1 \) with a pointer (Fig. 2(ii3)).

Case iii: Fig. 2(iii) shows this case and in Fig. 2(iii1) the dominating trail \(t = (l_1, n_1, n_2, cv(B), n_3) \) is reported. Let \(\Sigma_c = \{t_1, \ldots, t_r\} \) be a constrained dominating trail set on \((C, \mu, v) \) of cardinality \(r \), such that \(t = (l_1, n_1, n_2, cv(B), n_3) \notin \Sigma_c \). Then, since nodes \(l_1 \), \(n_2 \) and \(n_3 \) are marked, at least two trails \(t_q \) and \(t_k \) there exist passing for these nodes in \(\Sigma_c \). Without loss of generality we suppose \(t_q = (l_1, n_1, \ldots, n_q) \) and \(t_k = (n_3, \ldots, n_k) \).

Suppose that a trail \(t = (n_1, \ldots, cv(B), \ldots, n_j) \in \Sigma_c \) exists, such that \(n_i \in B \) and \(n_j \notin B \). We call it an intersecting trail. There are no more than two distinct intersecting trails in \(\Sigma_c \), since each intersecting trail must pass either in \(n_2 \) or in \(n_3 \). Hence, only three cases are possible:

(a) \(t_q \) and \(t_k \) are not intersecting trails;
(b) either \(t_q \) or \(t_k \) is an intersecting trail;
(c) \(t_q \) and \(t_k \) are intersecting trails.

In each case we will show that a constrained dominating trail set \(\Sigma'_c \) exists containing \(t \) and such that \(|\Sigma'_c| \leq |\Sigma_c| \).

In case (a), \(t_q \) and \(t_k \) are fully contained in \(t \). Removing from \(\Sigma_c \) \(t_q, t_k \) and all the other trails strictly contained in \(t \) (if any) and adding the trail \(t \), we obtain a new constrained dominating trail set \(\Sigma'_c \) with cardinality not greater than the cardinality of \(\Sigma_c \).

In case (b), either \(t_q = (l_1, n_1, n_2, cv(B), \ldots, n_q) \), with \(n_q \notin B \), or \(t_k = (n_3, cv(B), \ldots, n_k) \), with \(n_k \notin B \), is the intersecting trail. If \(t_q = (l_1, n_1, n_2, cv(B), \ldots, n_q) \) is the intersecting trail, removing all the trails strictly contained in \(t \) and the trail \(t_q \) from \(\Sigma_c \), and adding \(t \) and the trail \((cv(B), \ldots, n_q) \) to \(\Sigma_c \), we obtain a new constrained dominating trail set with cardinality not greater than \(r \). If \(t_k = (n_3, cv(B), \ldots, n_k) \) is the intersecting trail, removing all the trails strictly contained in \(t \) and the trail \(t_k \) from \(\Sigma_c \), and adding \(t \) and the trail \((cv(B), \ldots, n_k) \) to \(\Sigma_c \), we obtain a new constrained dominating trail set with cardinality not greater than \(r \).

In the case (c), let \(t_q = (l_1, n_1, n_2, cv(B), \ldots, n_q) \) and \(t_k = (n_3, cv(B), \ldots, n_k) \) be the intersecting trails. Removing \(t_q, t_k \) from \(\Sigma_c \), and adding \(t \) and the trail \((n_q, \ldots, cv(B), \ldots, n_k) \), we obtain a new constrained dominating trail set \(\Sigma'_c \) with cardinality not greater than \(r \).

Case iv: If \(t = (l_1, n_1, n_2, cv(B), n_3, n_1, l_2) \notin \Sigma_c \), since nodes \(l_1 \) and \(l_2 \) are marked, then at least two trails there exist passing for these nodes in \(\Sigma_c \). Hence, similar arguments employed in case iii can be used also in this case. Note that nodes \(n_2 \) and \(n_3 \) can be marked or not. Fig. 2(iv) shows the situation of case iv, and in Fig. 2(iv1) the dominating trail \(t = (l_1, n_1, n_2, cv(B), n_3, n_1, l_2) \) is reported.

Hence, given any \(\Sigma_c \), we can always find a \(\Sigma'_c \) containing \(t \) and such that \(|\Sigma'_c| \leq |\Sigma_c| \). This is true also when \(\Sigma_c \) is a minimum cardinality dominating trail set and the thesis follows. Note that in all the four cases, the lemma is still valid without regarding whether \(n_1 \) and/or \(cv(B) \) are marked or not. □
In force of Lemma 8, the following transformation can be considered.

Definition 9. Given a triple \((C, \mu, v)\), let \(B = (V_B, E_B)\) be a cycle endblock of \(C\) of Lemma 8. By \(\text{transform}^2\) of the endblock \(B\) we mean the transformation from \((C, \mu, v)\) to the triple \((C', \mu', v')\) defined as follows:

- **in cases i and ii** of Lemma 8 then:

 \[
 C' = (V', E') = (V \setminus (V_B \setminus cv(B)), E \setminus E_B);
 \]

 \[
 \mu'(q) = \mu(q), \quad \forall q \in V';
 \]

 link \(cv(B)\) with a pointer to \(l_1\);

- **in cases iii and iv** of Lemma 8 then:

 \[
 C' = (V', E') = (V \setminus (V_B \setminus cv(B)), E \setminus E_B);
 \]

 \[
 \mu'(q) = \mu(q), \quad \forall q \in (V' \setminus cv(B)); \quad \mu'(cv(B)) = 0;
 \]

 \[
 v'(e) = v(e), \quad \forall e \in (E' \setminus \{(i, cv(B)) : i \in ad(cv(B))\});
 \]

 \[
 v'(e) = 1, \quad \forall e \in E' \text{ incident to } cv(B).
 \]

Note that \(\text{transform}^2\) can be applied also when \(B = (n_1, cv(B))\) is an edge endblock, in which \(n_1\) has one or to two pointers. It is easy to see that these cases are similar to case i and case iv, respectively, of Lemma 8. In the algorithm, we will apply \(\text{transform}^2\) also to these situations. Clearly, an optimal solution for \(\text{MCDTS}\) on a triple \((C', \mu', v')\) modified by operation \(\text{transform}^2\), is also optimal for the original triple in cases i and ii; while \(S(C', \mu', v') = S(C, \mu, v) - 1\) in cases iii and iv.

Let us consider now a cycle endblock \(B = (V_B, E_B)\) in which more than one node has pointers. The following three cases will be considered:

- (α) a path \(p = (n_1, n_2, n_3)\) exists in \(B\), in which both nodes \(n_1\) and \(n_3\) have at least one pointer, node \(n_2\) is marked and has no pointers, \(n_1, n_2, n_3 \neq cv(B)\);

- (β) a marked node without pointers adjacent to \(cv(B)\) exists in \(B\);

- (γ) no node without pointers in \(V_B \setminus cv(B)\) is marked.

In case α, Lemma 10 shows how trails of an optimal solution can be found.

Lemma 10. Consider a triple \((C, \mu, v)\), where \(C\) is a cactus not containing endblocks of set \(EB1\). Let \(B = (V_B, E_B)\) be a cycle endblock of case α. Let \((n_1, n_2, n_3)\) be a trail in \(B\), in which nodes \(n_1\) and \(n_3\) have at least one pointer, and node \(n_2 \neq cv(B)\) is marked. Let \(l_1\) and \(l_3\) the nodes pointed by \(n_1\) and \(n_3\), respectively. Then, there exists a minimum constrained dominating trail set on \((C, \mu, v)\) containing the trail \(t = (l_1, n_1, n_2, n_3, l_3)\).

Proof. In Fig. 3(1) the cycle endblock \(B\) and the trail \(t = (l_1, n_1, n_2, n_3, l_3)\) is shown. Let \(\Sigma_c = \{t_1, \ldots, t_r\}\) be a constrained dominating trail set on \((C, \mu, v)\) of cardinality \(r\), such that \(t \notin \Sigma_c\). Suppose that a trail \(t_i \in \Sigma_c\) exists, which contains at least one edge of \(t\) and at least one edge of \(C\) that is not in \(t\). We call \(t_i\) intersecting trail.
There are no more than two distinct intersecting trails in \(\Sigma_c \), since each intersecting trail must pass either in \(n_1 \) or in \(n_3 \). Hence, only three cases are possible:

(i) there are no intersecting trails in \(\Sigma_c \);
(ii) there is exactly one intersecting trail in \(\Sigma_c \);
(iii) there are two intersecting trails in \(\Sigma_c \).

In each case we will show that a constrained dominating trail set \(\Sigma'_c \) exists containing \(t \) such that \(|\Sigma'_c| \leq |\Sigma_c| \).

In the case (i), since \(l_1 \) and \(l_3 \) are two pointed nodes, and \(\mu(n_2) = 1 \), in \(\Sigma_c \) there must be at least one trail fully contained in \(t \). Removing from \(\Sigma_c \) all trails fully contained in \(t \) and adding the trail \(t \), we obtain a new constrained dominating trail set \(\Sigma'_c \) with cardinality not greater than \(|\Sigma_c| \).

In the case (ii), let \((i_p, \ldots, i_q) \) be the unique intersecting trail. Obviously, it cannot contain both \(l_1 \) and \(l_3 \). Since \(l_1 \) and \(l_3 \) are two pointed nodes, and \(\mu(n_2) = 1 \), without loss of generality, we have three possible intersecting trails:

1. \(p_1 = (l_1, n_1, \ldots, i_q) \), \(i_q \notin t \);
2. \(p_2 = (l_1, n_1, n_2, n_3, \ldots, i_q) \), \(i_q \notin t \);
3. \(p_3 = (i_p, \ldots, n_1, n_2, n_3, \ldots, i_q) \), \(i_p, i_q \notin t \).

In Figs. 3.2, 3.3 and 3.4, the intersecting trails \(p_1, p_2 \) and \(p_3 \) are, respectively, reported. In case (1), since \(l_3 \) is a pointed node and \(\mu(n_2) = 1 \), then at least another trail \(p_q \subset t \) there exists passing in \(n_2 \) and in \(l_3 \) in \(\Sigma_c \). Removing from \(\Sigma_c \) the trails \(p_1 \) and \(p_q \), and adding \(t \) and the trails \((n_1, \ldots, i_q) \) to \(\Sigma_c \), we obtain a new constrained dominating trail set containing \(t \), with cardinality not greater than \(r \).

In the case (2), since \(l_3 \) is a pointed node, then at least another trail \(p_q \subset t \) there exists passing in \(l_3 \) in \(\Sigma_c \). Removing from \(\Sigma_c \) the trails \(p_2 \) and \(p_q \), and adding \(t \) and the trail \((n_3, \ldots, i_q) \) to \(\Sigma_c \), we obtain a new constrained dominating trail set with cardinality not greater than \(r \).

In case (3), since \(l_1 \) and \(l_3 \) are two pointed nodes, then two trails \(p_h \) and \(p_k \) there exist in \(\Sigma_c \), passing in \(l_1 \) and \(l_3 \), respectively. Removing from \(\Sigma_c \) the trails \(p_3, p_h \) and \(p_k \), and adding \(t \) and the trails \((i_p, \ldots, n_1) \) and \((n_3, \ldots, i_q) \) to \(\Sigma_c \), we obtain a new constrained dominating trail set with cardinality not greater than \(r \).
If two intersecting trails exist in Σ_c (case (iii)), since l_1 and l_3 are two pointed nodes and $\mu(n_2)=1$, without loss of generality, we may have three possible intersecting trails pairs:

(a) $a_1 = (l_1, n_1, \ldots, i_q)$, $a_2 = (l_3, n_3, \ldots, i_t)$, $i_q, i_t \notin t$;
(b) $b_1 = (l_1, n_1, \ldots, i_q)$, $b_2 = (n_2, n_3, \ldots, i_t)$, $i_q, i_t \notin t$;
(c) $c_1 = (n_2, n_1, \ldots, i_q)$, $c_2 = (l_3, n_3, \ldots, i_t)$, $i_q, i_t \notin t$;

In case (a), since $\mu(n_2)=1$, then another trail $p_q \subseteq t$ there exists passing in n_2 in Σ_c. Removing from Σ_c the trails a_1, a_2 and p_q, and adding t and the trails (n_1, \ldots, i_q) and (n_3, \ldots, i_t) to Σ_c, we obtain a new constrained dominating trail set with cardinality not greater than r.

In case (b), since l_3 is a pointed node, then another trail p_q there exists passing in l_3 in Σ_c. Removing from Σ_c the trails b_1, b_2 and p_q, and adding t and the trails (n_1, \ldots, i_q) and (n_3, \ldots, i_t) to Σ_c, we obtain a new constrained dominating trail set with cardinality not greater than r.

The case (c) is symmetric to case (b).

Hence, given any Σ_c, we can always find a Σ'_c containing t and such that $|\Sigma'_c| \leq |\Sigma_c|$. This is true also when Σ_c is a minimum cardinality dominating trail set and the thesis follows. \square

If conditions of Lemma 10 holds, a MCDTS Σ_c containing the trail t exists. The trail t can be removed from the triple (C, μ, ν) and added to Σ_c. As consequence, the endblock B results opened. Note that this opened endblock can be considered as a tree rooted in the node $cv(B)$. More formally, the following transformation can be defined.

Definition 11. Given a triple (C, μ, ν), let $B = (V_B, E_B)$ be a cycle endblock and $t = (l_1, n_1, n_2, n_3, l_3)$ the trail of C of Lemma 10. By open1 of the endblock B we mean the transformation from (C, μ, ν) to the triple (C', μ', ν') defined as follows:

$$C' = (V', E') = (V \setminus n_2, E \setminus \{(n_1, n_2), (n_2, n_3)\})$$

$$\mu'(q) = \mu(q), \forall q \in (V' \setminus \{n_1, n_3\})$$

$$\mu'(n_1) = \mu'(n_3) = 0$$

$$\nu'(e) = \nu(e), \forall e \in (E' \setminus \{(n_1, n_2), (n_2, n_3)\})$$

$$\nu'(e) = 1, \forall e \in E' \text{ incident to } n_1 \text{ and } n_3.$$

By Definition 11 follows $S(C', \mu', \nu') = S(C, \mu, \nu) - 1$ and $\Sigma_c = \Sigma'_c \cup t$, where (C', μ', ν') is the triple after the Transformation open1 has been applied.

Lemma 12. Consider a triple (C, μ, ν), where C does not contain endblocks of set E1. Let $B = (V_B, E_B)$ be a cycle endblock of case B. Let $(n_1, n_2, cv(B))$ be a trail in B, in which the node n_1 has a pointer to the node l_1, n_2 is marked and has no pointer. Then, there exists a minimum constrained dominating trail set Σ_c on (C, μ, ν), in which a trail $t \in \Sigma_c$ that contains $p = (l_1, n_1, n_2, cv(B))$ exists.
Proof. Let $\Sigma_c = \{t_1, \ldots, t_r\}$ be a constrained dominating trail set on (C, μ, v) of cardinality r not containing a trail $t \supseteq p$. Let $p_1 = (l_1, n_1)$ be the trail connecting n_1 to the pointed node l_1. Only two cases are possible:

(i) the trail $p_1 \in \Sigma_c$;
(ii) a trail containing p_1 exists in Σ_c. In each case, we will show that a constrained dominating trail set Σ_c' containing t and such that $|\Sigma_c'| \leq |\Sigma_c|$ exists.

In case (i), let $t_y = (n_k, \ldots, n_2, \ldots, n_q)$ of Σ_c be the trail passing in the node n_2. Without loss of generality, suppose that $cv(B) \in (n_2, \ldots, n_q)$. If the node $n_1 \in t_y$, then $n_1 \in (n_k, \ldots, n_q)$ and adding to Σ_c the trail $(l_1, n_1, n_2, \ldots, n_q)$ and the trail (n_k, \ldots, n_1), we obtain a new constrained dominating trail set Σ_c' with cardinality not greater than r. Note that trail (n_k, \ldots, n_1) can be empty (i.e., when $(n_k = n_1)$). Otherwise, if $n_1 \not\in t_y$ then n_2 necessarily is an endpoint of t_y. Hence, $n_2 = n_k$. Removing p_1 and t_y from Σ_c, and adding the trail $(l_1, n_1, n_2, \ldots, n_q)$, we obtain a new constrained dominating trail set Σ_c' with cardinality $r - 1$.

In case (ii), let $t_y = (l_1, n_1, \ldots, n_q)$ of Σ_c be the trail containing the trail p_1. If $n_2 \notin t_y$, since $\mu(n_2) = 1$, a trail t_z containing node n_2 there exists. Removing t_y and t_z from Σ_c, and adding the trail $p_1 \cup t_z$ and the trail (n_1, \ldots, n_q), we obtain a new constrained dominating trail set Σ_c' with cardinality not greater than r.

Let us now suppose $n_2 \in t_y$. Since $t \not\in \Sigma_c$, if the edge $e = (n_2, cv(B))$ is contained in a trail $t_e \not= t_y$ of Σ_c then e is an extreme edge of this trail $(t_e = (n_2, cv(B), \ldots, n_w))$. Removing t_y and t_e from Σ_c, and adding the trail $t_y \cup e = p$ and the trail $(cv(B), \ldots, n_w)$, we obtain a new constrained dominating trail set Σ_c' with cardinality not greater than r. Otherwise, if the edge $e \not\in t_y$, $\forall t_i \in \Sigma_c$, removing t_e from Σ_c, and adding the trail $t_y \cup e = p$, we obtain a new constrained dominating trail set Σ_c' with cardinality not greater than r.

Hence, given any Σ_c, we can always find a Σ_c' containing the trail t and such that $|\Sigma_c'| \leq |\Sigma_c|$. This is true also when Σ_c is a minimum cardinality dominating trail set and the thesis follows. \hfill \square

In force of Lemma 12, the trail $p = (l_1, n_1, n_2, cv(B))$ can be replaced with a pointer from $cv(B)$ to l_1. This transformation is described in the following definition.

Definition 13. Given a triple (C, μ, v), let $B = (V_B, E_B)$ be a cycle endblock and $p = (l_1, n_1, n_2, cv(B))$ the trail considered in Lemma 12. By open2 of the endblock B we mean the transformation from (C, μ, v) to the triple (C', μ', v') defined as follows:

$$C' = (V', E') = (V \setminus (p \setminus \{l_1, cv(B)\}), E \setminus \{(n_1, n_2), (n_2, cv(B))\});$$

$$\mu'(q) = \mu(q), \quad \forall q \in V';$$

$$v'(e) = v(e), \quad \forall e \in E';$$

link $cv(B)$ with a pointer to l_1.

An optimal solution for $MCDTS$ on a triple (C', μ', v') modified by operation open2, is also optimal for the original triple (C, μ, v). Note that, also in this case, the endblock B is transformed in a tree rooted in $cv(B)$.

Let B be a cycle endblock of case γ, containing nodes n_i, $i = 1, \ldots, k$, having pointers, and let l_i be a node pointed by n_i. Since $\mu(l_i) = 1$, trails starting in l_i, $i = 1, \ldots, k$, there exist in the $MCDTS$ Σ_c. Hence, trails that join together two of this pointed nodes (say, l_i and l_k) by means of edges of the endblock B can be considered. In particular if B has ρ nodes labeled with a pointer, then $\rho/2$ is the minimum numbers of trails that we need to dominate B, when ρ is even; otherwise $\rho/2 + 1$ trails occur. The following lemma shows how these trails can be constructed.

Lemma 14. Given a triple (C, μ, v), where C is a cactus containing no endblocks of set $EB1$. Let $B = (V_B, E_B)$ be a cycle endblock of case γ containing at least two nodes having pointers. Let $n_1, n_2 \in B$ be two of these nodes such that either (case (a)) n_1 and n_2 are adjacent or (case (b)) a node n_x without pointers exists in B adjacent to n_1 and n_2 (i.e., such that B contains the trail $p_x = (n_1, n_x, n_2)$). Let l_1 and l_2 be nodes pointed respectively by nodes n_1 and n_2, and let $p_1 = (l_1, n_1)$ and $p_2 = (l_2, n_2)$.

Then, a minimum constrained dominating trail set Σ_c on (C, μ, v) exists, that does not contain:

1. both the trails p_1 and p_2;
2. the trail $t_1 = p_1$ and a trail $t_2 = (l_2, \ldots, n_1, \ldots, n_q)$, in which $n_q \neq l_1$, or, vice versa, the trail $t_2 = p_2$ and a trail $t_1 = (l_1, \ldots, n_2, \ldots, n_q)$, in which $n_q \neq l_2$.

Proof. Let $\Sigma_c = \{t_1, \ldots, t_r\}$ be a constrained dominating trail set on (C, μ, v) of cardinality r containing the trails $t_1 = p_1$ and $t_2 = p_2$ as in (1).

Let $t_3 = (n_q, \ldots, n_1, \ldots, n_2, \ldots, n_k) \notin \{t_2, t_1\}$ be the trail of Σ_c (if exists) containing the edge (n_1, n_2) in case (a), or the edges (n_1, n_x) and (n_x, n_2) in case (b). Note that may be either $n_q \equiv n_1$ or $n_k \equiv n_2$. Then, we may construct a new constrained dominating trail set Σ'_c by removing t_1, t_2 and t_3 (if exists) from Σ_c, and adding to Σ_c the trail $p_i = (l_1, n_1, n_2, l_2)$ in case (a), $p_i = (l_1, n_1, n_x, n_2, l_2)$ in case (b), and the trails $t_4 = (n_q, \ldots, n_1)$ and $t_5 = (n_2, \ldots, n_k)$ (if t_3 exists). Clearly, $|\Sigma'_c| \leq |\Sigma_c|$. Let now $\Sigma_c = \{t_1, \ldots, t_r\}$ be a constrained dominating trail set on (C, μ, v) of cardinality r containing the trails t_1 and t_2 as in (2). Without loss of generality, let $t_1 = p_1$ and $t_2 = (l_2, \ldots, n_1, \ldots, n_q)$. Then, we may construct a set Σ'_c removing t_1 and t_2 from Σ_c, and adding the trails $(l_2, n_2, \ldots, n_1, l_1)$ and (n_1, \ldots, n_q). Clearly, $|\Sigma'_c| = |\Sigma_c|$. □

The previous lemma allows to consider a $MCDTS$ for an endblock $B = (V_B, E_B)$ of case γ (i.e., having no marked nodes in $V_B \setminus cv(B)$), in which dominating trails are obtained joining a pair of nodes, as n_1 and n_2 (i.e. l_1 and l_2) of Lemma 14. Let $\Sigma_B = \{t_1, \ldots, t_k\}$ be the set of trails that dominates B. In order to construct a $MCDTS$ for the whole triple (C, μ, v), it is useful that one trail of Σ_B passes in $cv(B)$. This is always possible according to Lemma 14. Hence, the following corollary trivially holds.
Corollary 15. Consider a triple \((C, \mu, \nu)\), where \(C\) is a cactus not containing endblocks of set \(EB_1\). Let \(B = (V_B, E_B)\) be a cycle endblock of case \(\gamma\). Let \(p_h = (l_1, n_1, \ldots, c_v(B))\) be a trail, in which \(n_1 \in B\) has a pointer to the node \(l_1, c_v(B)\) is the cut vertex of \(B\), and such that between nodes \(n_1\) and \(cv(B)\) at most one node of \(B\) with no pointers exists. Then, there exists a minimum constrained dominating trail set \(\Sigma_c\) on \((C, \mu, \nu)\), such that a trail \(t \in \Sigma_c\) containing the trail \(p_h\) exists.

From Lemma 14 and Corollary 15, the Transformation \(open3\) can be defined as follows.

Definition 16. Given a triple \((C, \mu, \nu)\), let \(B = (V_B, E_B)\) be a cycle endblock and \(p_h = (l_1, n_1, \ldots, c_v(B))\) be the trail considered Corollary 15. By \(open3\) of the end-block \(B\) we mean the transformation from \((C, \mu, \nu)\) to the triple \((C', \mu', \nu')\) defined as follows:

\[
C' = (V', E') = (V \setminus \{n_1, \ldots, c_v(B)\}, E \setminus \{e : e \in \{p_h \setminus (l_1, n_1)\}\});
\]

\[
\mu'(q) = \mu(q), \quad \forall q \in V';
\]

\[
\nu'(e) = \nu(e), \quad \forall e \in E';
\]

link \(cv(B)\) with a pointer to \(l_1\).

An optimal solution for MCDTS on a triple \((C', \mu', \nu')\) modified by Transformation \(open3\), is also optimal for the original triple \((C, \mu, \nu)\). The endblock \(B\) results open and is transformed in a tree rooted in \(cv(B)\).

4. Finding a MDTS of a cactus \(C\) and HCN(\(L(C)\)) in linear time

In this section, a linear algorithm for MDTS on a cactus is presented. The algorithm, called DOMCACTUS, is reported in Fig. 4 and consists of four different phases.

In the first phase, the function preprocessing is applied on \((C, \mu, \nu)\), where \(C = (V, E)\) is the original cactus graph, \(\mu(i) = 0 \ \forall i \in V, \ \nu(i,j) = 0 \ \forall (i,j) \in E\). Note that, after the preprocessing, all leaves of the cactus are marked. The first phase is applied once in the algorithm and requires a linear time.

In the second phase, the blocks of the cactus are individuated, employing the linear algorithm proposed by Aho et al. [3] (addressed as AHU procedure in what follows) for finding the biconnected components of a graph. This algorithm uses a stack structure to store biconnected components of a graph. When applied to a cactus graph \(C\), the AHU procedure provides an endblock \(B\) of \(C\) at the top of the stack. On the removal of \(B\) from \(C\) and from the stack, the AHU procedure behaves exactly as it would on the graph \(C' = C \setminus B\), and another endblock \(B' \in C'\) appears at the top of the stack structure. The AHU procedure allows to easily obtain all information about blocks and
Fig. 4. Algorithm DOMCACTUS.

cut vertex of a cactus. These data will play an important role in the DOMCACTUS algorithm.
Phases 3 and 4 are iteratively performed until an empty graph is obtained.
In Phase 3, first the cycle-shrink operation introduced in Definition 3 is applied on all the cycle endblocks of the set $EB1$, then the edge endblocks are processed, by the visit procedure introduced in Section 3. During this phase, new endblocks that could be inserted in the sets $EB1$ and $EB2$ could generated. In the algorithm, the updating operation of these sets is indicated as update $EB1$ and $EB2$. This instruction, that will be described in the following, removes from $EB1$ and $EB2$ the processed endblocks, and possibly adds new endblocks that have been generated.

In Phase 4, either an edge endblock or a cycle endblock of $EB2$ is analyzed according to Lemmas 5, 8, 10, 12 and 14 and Corollaries 6 and 15. Phase 4 calls the function $Dominate-EB2$, reported in Fig. 5. In $Dominate-EB2$, if $B = (i, j), cv(B) = j$, is an edge endblock such that the node i has pointers then transform1 is applied, until at most one pointer remains. Then transform2 is employed. Note that edge (i, j) is dominated and can be eliminated from C. If B is an cycle endblock, transform1 is applied until no node with more than three pointers exists in B. Then either transform1 is employed or the cycle is opened by $open1$, $open2$ or $open3$. In particular, if B is opened, the linear algorithm presented by Agnetis et al. [2] is used to dominate the tree rooted in $cv(B)$. Note that $Dominate-EB2$ may generate new endblocks, and hence the sets $EB1$ and $EB2$ must be updated at the end of this function.

The whole algorithm DOMCACTUS can be implemented to run in linear time. At this aim, the following data structure allows to use the AHU procedure once in the overall algorithm. Each block has associated the number of its cut vertices. The blocks are partitioned in three sets $EB1$, $EB2$ and other blocks. Set $EB1$ is stored in a list partitioned in two subsets containing the cycle endblocks and the edge endblocks, respectively. Note that, unless C is empty, $EB1 \cup EB2 \neq \emptyset$.

We consider a vector CV dedicated to vertices, in which a component $CV(i), i \in V$, contains the number of blocks having i as cut vertex ($CV(i) = 0$ if i is not a cut vertex). Another vector EBL is associated to edges. Every component $EBL(e), e \in E$, indicates the block B in which the edge e is contained. The vectors CV and EBL are initialized in Phase 2, starting from the stack structure provided by the AHU procedure. This initialization requires linear time.

Every time that an endblock B is removed from the current graph C, say k its unique cut vertex, CV is updated as follows: $CV(k) = CV(k) - 1$. If $CV(k) = 0$, k is not even a cut vertex. In this case, we can find the unique block Q which contains k by using the vector EBL. Let $PT(k)$ be the number of pointers of the node k, and let $PT(Q)$ be the number of pointers associated to the nodes of $Q \setminus cv(Q)$, if $CV(k) = 0$ we set $PT(Q) = PT(Q) + PT(k)$. If the block Q has only one cut vertex, it is immediately put in the set $EB1$ or $EB2$ according to the number of its pointers (the rest of stored data remains the same). Hence, every time an endblock is removed the vector CV and the sets $EB1$ and $EB2$ can be updated in constant time.

The previous data structure allows to efficiently implement the algorithm DOMCACTUS (in particular, the operation update $EB1$ and $EB2$) and the function $Dominate-EB2$. Note that, processing a block $B = (V_B, E_B)$ by $Dominate-EB2$ requires $O(|E_B|)$ time. Since $Dominate-EB2$ removes B from the graph and each block is processed once, $Dominate-EB2$ runs in $O(|E|)$, in the overall algorithm. Then the DOMCACTUS algorithm finds a MDTS on a cactus C and the $HCN(L(C))$ in linear time.
function \text{Dominate-EB2}((C, \mu, v), B, \Sigma)
begin
 \text{if (} B = (i, j), \text{ cv}(B) = j \text{) then}
 \begin{align*}
 \text{begin}
 \quad \text{while (} i \text{ has at least three pointers (Corollary 6)) do transform1 } B;
 \quad \text{if (node } i \text{ has one or two pointers) then transform2 } B;
 \quad \text{eliminate edge (} i, j \text{) from } C;
 \end{align*}
 \text{end}
 \text{if (} B \text{ is a cycle endblock) then}
 \begin{align*}
 \text{begin}
 \quad \text{while(} B \text{ falls in Corollary 6) do transform1 } B;
 \quad \text{if (} B \text{ falls in Lemma 8) then transform2 } B;
 \quad \text{if (} B \text{ falls in case of Lemma 10) then open1 } B;
 \quad \text{if (} B \text{ falls in case of Lemma 12) then open2 } B;
 \quad \text{if (} B \text{ falls in cases of Lemma 14 and Corollary 15) then open3 } B;
 \quad \text{if (} B \text{ has been opened) then}
 \begin{align*}
 \text{begin}
 \quad \text{Let } T = (V_T, E_T) \text{ the tree rooted in } \text{cv}(B);
 \quad \text{Let } (T, \mu, v) \text{ be the triple associated to } T.
 \quad \text{Find a minimum dominating path set } \Sigma_T = \{ p_1, \ldots, p_k \} \text{ on } (T, \mu, v);
 \quad \text{if (a path } p = (n_1, \ldots, n_2) \text{ passing in } \text{cv}(B) \text{ exists in } \Sigma_T \text{) then}
 \begin{align*}
 \text{begin}
 \quad \Sigma = \Sigma \cup (\Sigma_T \setminus \{ p_i \});
 \quad \text{link } \text{cv}(B) \text{ with a pointer to } n_1 \text{ if } n_1 \neq \text{cv}(B);
 \quad \text{link } \text{cv}(B) \text{ with a pointer to } n_2 \text{ if } n_2 \neq \text{cv}(B);
 \end{align*}
 \end{align*}
 \end{align*}
 \end{align*}
 \text{end}
 \text{end}
\text{while (} \text{cv}(B) \text{ has at least three pointers (Corollary 6)) do}
begin
 \text{let } l_1 \text{ and } l_2 \text{ be two nodes pointed by } \text{cv}(B);
 \text{a dominating trail } t = (l_1, \text{cv}(B), l_2) \text{ has been found;}
 \text{remove the pointers to } l_1 \text{ and } l_2 \text{ from } \text{cv}(B);
 \Sigma = \Sigma \cup t;
 \text{mark as dominated the edges incident to } \text{cv}(B);
\end{align*}
\text{end}
\end{align*}
end

Fig. 5. The function Dominate-EB2.
Acknowledgements

We would like to thank prof. Z. Skupień for his personal comments and suggestions on this work and two anonymous referees for their helpful comments.

References