Research on Combustion Heat Release Rate Testing Technology Based on TDLAS

Jian-yong Liua,b,c, Xia Zhaoa,b, Shi-jie Gaoa,b, Xiao-qian Mac,*

a Guangzhou Building Materials Institute Limited Company, Guangzhou 510006, China
b Guangdong Province Enterprise Key Laboratory of Materials and Elements Fire Testing Technology, Guangzhou 510006, China
c South China University of Technology, Guangzhou 510000, China

Abstract

This paper researched heat release rate testing technology based on TDLAS oxygen analyzer and paramagnetic oxygen analyzer, and researched the test data of the two systems when testing the oxygen concentration of air and the combustion exhaust gas. Experiments showed that, the TDLAS testing system could realize the measurement of the combustion heat release rate. Compared with the paramagnetic testing system, the TDLAS testing system has a shorter response time to the change of heat release rate which was about 3s, but the data fluctuation range is bigger and the biggest data fluctuation was bigger than 10kW under test condition.

Keywords: TDLAS; Paramagnetic; Heat Release Rate; Combustion

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{q}</td>
<td>Heat released rate, kW</td>
</tr>
<tr>
<td>k</td>
<td>Constant;</td>
</tr>
<tr>
<td>ΔP</td>
<td>The orifice meter pressure differential, Pa</td>
</tr>
<tr>
<td>T</td>
<td>The absolute temperature of gas at the orifice meter, K</td>
</tr>
<tr>
<td>C</td>
<td>The oxygen analyser reading, mole fraction of oxygen, %</td>
</tr>
</tbody>
</table>

1. Introduction

The cone calorimeter based on the principle of oxygen consumption has been widely used in the world. It was widely used not only in fire engineering research field, but also in the research of polymer materials [1-2].

General cone calorimeter use paramagnetic oxygen analyzer to analyse oxygen concentration of the combustion exhaust gas. Because paramagnetic oxygen analyzer is particularly sensitive to water, so the exhaust gas must be cooled and filtered before entering the oxygen analyzer. Due to the complexity of the sample gas handling system, the response time to the change of the exhaust gas was longer, and also causes linear drift of data in long duration tests because of the gradual...
increase of water content in the sample gas. At the same time, the maintenance of the sample gas handling system was not easy, and which cause the high cost of the testing.

A new type of high precision oxygen analyzer based on laser has been emerged in recent years. Tunable diode laser absorption spectroscopy (TDLAS), is established on the basis of infrared absorption, which is based on Beer-Lambert’s law. The gas concentration is obtained by analyzing the signal changes of the laser beam after the selected absorbing [2-7].

TDLAS technology is becoming the best choice for gas analysis in the chemical and petrochemical industries. TDLAS oxygen analyzer has many advantages, such as high accuracy, simple and easy to use, shorter response time and so on. Therefore, TDLAS technology must be used in the combustion heat release rate testing technology in the future.

This paper researched heat release rate testing system based on TDLAS, compared and analyzed the testing data from two testing system.

2. Formula for calculating heat release rate of combustion [1]

The net heat of combustion is proportional to the amount of oxygen required for combustion, the relationship is that approximately 13100kJ of heat are released per kilogram of oxygen consumed. The combustion heat release rate testing technology based on this theory. The simplified formula for calculating heat release rate of combustion sees Equation (1).

\[\dot{q} = k \left(\frac{0.2095 - C}{1.105 - 1.5C} \right) \sqrt{\frac{\Delta P}{T}} \]

(1)

Where, \(\dot{q} \) is the heat released rate, kW;
\(k \) is the constant;
\(\Delta P \) is the orifice meter pressure differential, Pa;
\(T \) is the absolute temperature of gas at the orifice meter, K;
\(C \) is the oxygen analyzer reading, mole fraction of oxygen, %.

3. Combustion heat release rate testing system

The Schematic of combustion heat release rate testing system based on TDLAS see Fig.1.

![Schematic of combustion heat release rate testing system based on TDLAS](image)

During the test, the thermocouple was used to test the temperature of the combustion exhaust gas, the pressure sensor was used to test the orifice meter pressure differential, and nitrogen gas was used to protect the TDLAS oxygen sensor. All data was transmitted to the computer, special computer software calculated the heat release rate nearly in real time.

The TDLAS oxygen analyzer was made by METTLER TOLEDO, the type is GPro 500, see Fig.2 and Fig.3. The paramagnetic oxygen testing system was made by FTT, the type is furniture calorimeter, see Fig.4.
4. Comparison and analysis of air

Without combustion, run the two different systems at the same time, analysis and record the concentration of oxygen in the exhaust pipe for about 1400 seconds. The oxygen-time curves of the two systems see Fig.5.
Fig. 5. Oxygen-time Curve of two systems

From the curve of Fig.5, we found that the two curves were obviously different. The paramagnetic oxygen curve was stable, and the data fluctuation was smaller, but there was obviously linear drift because of the long duration tests. This phenomenon may be due to the drying capacity of the sample gas handling system gradually weakened in the long duration test. The TDLAS oxygen curve had a bigger data fluctuation, but there was not obviously linear drift. Because TDLAS oxygen testing is in situ measurement, the test data is affected by the air flow in the exhaust pipe, which produces the big data fluctuation.

5. Comparison and analysis of the combustion process

A 240mm inner diameter and 38mm height and 3mm thickness steel round pan was used in the test. The pan was firstly put on the ground below the center of the exhaust hood. And then 500 ml water was poured into the pan, and after that 500 ml heptane was poured into the pan. Before ignition, the data acquisition system began to work. 60 seconds later, the oil pan was ignited. Data acquisition system continuously worked until heptane was exhausted and the fire extinguished. The HRR-time curves of the two systems see Fig.6.

Fig. 6. HRR-time curve of the two systems

From the HRR-time curve of the two systems we know that both the TDLAS testing system and the paramagnetic testing system could realize the measurement of the combustion heat release rate. At the same time, there was still a bigger data fluctuation of TDLAS curve and the biggest data fluctuation was bigger than 10kW. But the data fluctuation of
paramagnetic curve was generally about 5kW. From Fig.6 we can also found that either in the ignition or in the extinction, the TDLAS testing system has a shorter response time to the change of heat release rate which was about 3s, and the time was about 9s of paramagnetic testing system. This phenomenon is related to the characteristics of two different testing systems. TDLAS was in situ testing, so the response time was shorter. For the paramagnetic testing system, the exhaust gas must be cooled and filtered before entering the oxygen analyzer, the complexity of the sample gas handling system caused a longer response time which mostly between 10 to 20 seconds.

6. Conclusion

The test results indicated that the TDLAS testing system could realize the measurement of the combustion heat release rate. Compared with the paramagnetic testing system, the TDLAS testing system has a shorter response time to the change of heat release rate which was about 3s, but the data fluctuation range is bigger and the biggest data fluctuation was bigger than 10kW under test condition. The experimental results showed that the TDLAS technology could be used in the measurement of the combustion heat release rate, but further study was also needed to reduce the bigger data fluctuation in the testing.

Acknowledgements

This paper is supported by the special funding of China Guangzhou Science and Technology Project (2015090100223).

References