BECOMING A PRIMARY SITE FOR THE RADIATION INJURY TREATMENT NETWORK (RITN): ARE YOU PREPARED?
Lahm, L.N., Siteman Cancer Center of Barnes-Jewish Hospital/Washington University, St. Louis, MO.

Background: The Radiation Injury Treatment Network (RITN) has been established to provide primary treatment facilities for radiological or nuclear emergencies resulting in hematopoietic system injury or failure. As a primary site for the RITN, Siteman Cancer Center needed to build a comprehensive plan to successfully meet the milestone objectives, as well as to ensure integration of the protocol into the hospital’s own preparedness plan.

Objectives: To establish Siteman Cancer Center as a primary site within the RITN, the development committee identified four objectives which included: early involvement by senior leadership; collaboration with hospital/university based environmental health and safety programs; coordinated updates to inpatient and outpatient transplant programs; and outreach to surrounding states within our region by educating teams regarding RITN milestones and preparedness planning.

Method: The senior leadership team was actively involved in the initial review of the RITN participation agreements, as well as to ensure integration of the protocol into the hospital’s own preparedness plan. This early involvement secured the ongoing resources and support that the developmental committee identified for this study.

Results: As a Level One Trauma Center and part of the National Disaster Medical System, Barnes-Jewish Hospital has a well defined emergency preparedness program. Now as one of the thirteen primary RITN sites, Siteman Cancer Center of Barnes-Jewish Hospital holds a comprehensive clinical and organizational plan for emergencies resulting in hematopoietic system injury or failure.

PASS IT ON
Harris, L.N., Guess, C.W., Frey, M.A., Kurtzberg, J. Duke University Medical Center, Durham, NC.

Transfer (hand-off) of patient care has been identified as a high risk period for hospitalized patients. In health care there are numerous types of hand-offs including, but not limited to nursing shift changes, physicians transferring on-call, and temporary re-assignment of patient responsibility for breaks. The JCAHO 2008 National Patient Safety Goals demand the implementation of “a standardized approach to ‘hand-off’ communications, including an opportunity to ask and respond to questions.”

In 2005 the Duke Pediatric Blood and Marrow Transplant Unit (PBMTU) Nursing Committee developed a protocol for nursing hand-offs that occur during shift change, with the goals to minimize interruptions and provide complete, concise information to the oncoming nurse. Standardizing the nursing shift change hand-off on the PBMTU was critically important, as the nurses on this unit administered over 19,000 medications and 500 blood products each month. The key component of every shift change is a customized report sheet and safety checklist. This tool provides uniformity in shift change report as all systems are covered. Intravenous infusions are identified, labs are reviewed, and doctor’s orders are double checked. A human centered engineering group described the PBMTU nursing hand-off in 2007 as “remarkably efficient and effective”. Their analysis recommends that the PBMTU shift hand-off among nurses should be treated as a model for other types of hand-offs within the unit and across Duke Medical Center.

The purpose of this poster is to describe the protocol for hand-offs on the Duke Pediatric Blood and Marrow Transplant Unit.

EFFECTS OF GUIDED IMAGERY ON HEMATOPOIETIC STEM CELL TRANSPLANTATION PATIENTS
Kim, H.S. The Catholic HSCT Center, Seoul, Korea.

The present research is a quasi-experimental study based on non-equivalent control group pretest-posttest design, which was purposed to examine the effects of guided imagery therapy on immune cells, fatigue and emotional state in hematopoietic stem cell transplantation patients.

For patients admitted to 8-person hospital rooms for hematopoietic stem cell transplantation, we conducted guided imagery therapy for 4 weeks from a week before the hematopoietic stem cell transplantation to three weeks after, and three times per week and 13 minutes each time. The subjects were 37 patients (20 in the experimental group, 17 in the control group) who had received hematopoietic stem cell transplantation at C University Hospital during the period from October 2006 to April 2007.

We measured neutrophils count, total leukocyte count and lymphocyte count for immune cells. In addition, fatigue was measured with the Piper Fatigue Scale (PFS) modified for this study, and stress was measured with Kim Hyung-sook’s tool modified and supplemented for this study.

Collected data were analyzed using SAS through χ²-test, Fisher’s exact test, t-test and repeated measures ANOVA. The results are as follows.

1. The total leukocyte count, the neutrophils count and the lymphocyte count decreased until week 1 from the transplantation and then began to increase from week 1 in both the experimental group and the control group, but the experimental group showed a significantly larger increase in the neutrophils count.
2. After the experiment, fatigue increased more in the control group than in the experimental group, but the difference was not significant.
3. After the experiment, stress increased more in the control group than in the experimental group, and anxiety and depression decreased more in the experimental group than in the control group, but the differences were not significant.

According to the results of this study presented above, the guided imagery therapy promoted the recovery of immune cells and reduced anxiety and depression in hematopoietic stem cell transplantation patients. Because guided imagery therapy is convenient and