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Abstract. In thic approach to the semantics of nondeterminism, we introduce and study the
complete partial order (cpo) of probability distributions on 2 domain. The approach avoids
considering equivalent subsets, used in theory of powerdomains, which may lead to some
unwelcome idertifications. These results show that the class of probzbility distributions on a cpo is
itself a cpo and that every probability distribution is the lub of an increasing sequence of ‘finite’
probability distributions. We introduce the probabilistic extensions of continuous functions in
order to extend the ‘usual’ continuous functions on this new domain. On the other hand the
structure of this cpo suggests introducing an operation called ‘random selection’, which is the
counterpart of the ‘OR’ (or union) operation, commonly used in nondeterministic programs.
The paper then studies the ‘naturalness’ of these extended notions and treats the question of
continuity, which is of prime importance in the Scott theory of fixed point semantics.

1. Introduction

Different methods have been used by many authors to study semantics of
nondeterministic programs. De Bakker [1], Hitchcock and Park [6] used a relational
approach to handle a fixed point semantics. The method presents some difficulties as
has been pointed out by Milner [11]. In a more recent paper, De Bakker [2]
improved this approach by using another ordcring (based on the Egli-Milner order,
see below), which is computationally more meaningful than the inclusion ordering.

More fundamental studies have been carried out by Plotkin [13] and Smyth [19]
who introduced the notion of powerdomains to model nondeterministic compu-
tations. The construction of strong powerdomains, introduced by Plotkin and studied
also by Smyth, is based on the Egli-Milner order, which suggests that a non-empty
subset A of states approximates another non-empty subset B if and only if every
element of A approximates an element of B and every element of B is approximated
by an element of A (the set of states is supposed to be a cpo partially ordered by
‘approximation’). This ‘ordering’ on the class of subsets is a preorder, and ir: the case
of non-flat cpo’s is not a partial order (acpo D is flatif x,yeDandx = y=>x=y
or x = 1). The method of Plotkin and Smyth consists in identifying finite subsets
which are equivalent with respect to this preorder. This is a powerful and elegant
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mathematical method. Nevertheless the equivalence may imply identifications on
the class of finitely generable subsets which are not computationally meaningful.

Another approach based on category theory has been developed by Lehmann [7].
who suggests that domains are categories, where every denumerable chain has a
colimit.

In the present paper, we suppose that doriains are cpo’s and we then prove that the
class of probability distributions on a domain is itself a domain. Here we intend to
identify the set of possible states, together with their respective ‘degrees of
frequency’, with a probability distribution on the domain of states. This should also
enable us to take into account a statistical evaluation of possible outcomes.

At this point it will be suitable to consider the following informal example inspired
by Lehmann’s introductory one [7]. Suppose that the domain D is the set of
non-negative integers enrichcd by 0 and ordered as in Fig. 1. Consider now the
following ‘recursive nondeterministic program’ on D

Y(Ax.p~>0,g->x+1)

where p and g are two non-negative real numbers such that p +q = 1. This program
might informally be denoted by the least fixed point (if it exists) of a ‘random
transformation’ which assigns to any x € D, 0 with probability p and x +1 with
probability g. Operationally it may be interpreted as a ‘probabilistic recursive
procedure’ which yields 0 with probability p, or with probability q adds 1 to the result
which it hopefully—by repeating the whole procedure—yields. Note that in the cpo,
L, an infinite computation does not necessarily correspond to 0 (the bottom
element).

More formally, as we shall see, the above random transformation is a function ¢ on
the set ?p of probability distributions on D. Here, a probability distribution P is
dominated by another one P’ (this will be denoted by P =4 P’) if and only if for any
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integer n, P{x e D|x =n})<P'({x € D|x =n}), which informally means that P’ is
distributed on higher elements (in ccmparisor: with P). As we shall prove, ?p
equipped with this ordering is a cpo and ¢ is continaous (for the definition of cpo and
continuous functions on a cpo see [10]). Therefore ¢ has a least fixed poini in Pp,
which is given by the well-known formula | |, ¢" (L), where L5 is the probability
distribution concentrated on L. A computation, which is formally disc*'ssed at the
end, yields

{(i,pq")|ie N}, ifp#0,
Ll¢"(La)=
i {(, D}, if p=0,

where the first one is a geometric probability distribution (i.e. the non-negative
integer i has probability pq’ to appear) and the second one ic the probability
distribution concentrated on oo.

When dealing with probability distributions, an important question is whether or
not discrete probability distributions are adequate for our purpose, or in other words,
car .very probability distribution, involved here, be determined uniquely by its
values on singletons. The following example provides a negative answer to this
question and shows that the class of discrete probability distributions is not closed
under lub. Let D be the set of all strings (finite and infinite) on {0, 1}, ordered as
follows.

forx,ye D, xcy iff x isaprefix of y.

Consider the sequence

{(L, D} {0, %, 1,9} {00,5, 01,9, (10,3, 1L, )}, ...,

of probability distributions, where each element (x, ()" '), (i.e. x with probability
GY*"!) in the nth term is substituted by two elements (x0, 3)") and (x1, 5)"), (i.e.
x0 and x1 each one with probability (3)") in the next term. This sequence corre-
sponds roughly to the computation related to

while true do (3 - print 0, 3 - print 1).

It is an increasing sequence of probability distributions in the sense that each term is
the result of transmitting the previous term to higher elements. (Actually this notion
remains to be formalized). In this case a pointwise probabilistic study of the limit
outcome does not provide any interesting informaticn, since the probability that it
takes some fixed value is zero. Nevertheless, we do not believe that this really is a
disadvantage and that we should consider this case as an unfavourable one: We only
need to borrow more sophisticated tools from prebability theory. In probability
theory there exist many well-known distributions which are not uniquely determined
by their values ca singletons, aad in the case of real random variables the class of
intervals (more precisely the class of Borel sets) provides a measurable space fora
formal study (see [8, Chapter III]). We have here Scott’s topology (18], and the
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corresponding class of Borel sets (i.e. the o-algebra generated by the class of open
sets, see next section) should enable us to define a suitable measurable space.
Although in this particular e=:ample (and in many similar ones), the probability that
the random limit takes a given value is zero, there remain many non-obvious
interesting questions about the probabilistic behaviour of finitary characteristics of
the random outcome. For instance, one could put forward the following questions:

(a) whatis the probability of having a prime number of occurrences of 1 before the
first occurrence of 0 in the (random) outcome?

(b) what is the probability that, in every finite prefix of the outcome, the number of
occurrences of 0 does not exceed that of 1?
The answers are ., prime )"*! and 0 respectively, but what is important here is that
the sets defining the above events (and all similarly defined) are Borel sets and can be
defined in terms of open sets by using countable set operations. Therefore, in order to
take these events into account, it will be suitable to define probability distributions,
involved here, on the o-algebra generated by the class of open sets (see next section).

The application of probability theory in programming and algorithms is not a new
concept. Several authors, mainly Rabin [14] and Paz [12], have intensively studied
the notions of probabilistic algorithms and probabilistic automata. However, te the
author’s knowledge, the present approach is a new one based on the Scott theory of
fixed point semantics. It aims to provide a probabilistic foundation for nondeter-
ministic computations.

2. Preliminaries and notations

We denote the non-empty set of states and its ordering by (D, &=). We sometimes
refer to D as a ‘domain’. It is supposed to be algebraic with countable basis [19]. The
least element will be denoted by L. We denote the basis of D by Q. Markowsky and
Rosen [9] have discussed bases in full detail. We need only the following assertions
about Q:

(a) Q is the set of isolated elements of D;

(b) Q is countable;

(c) Every x € D is the lub of some increesing sequence in Q.
By a continuous function on D we mean a w-chain continuous function on D [10].

A topology O on D is defined in the folloving way. A subset U of D is open if and
only if whenever x € U and x S y, then y € U and whenever the lub of an increasing
sequence (x,) belongs to U, then x, € U, for some n. Scott [18] introduced a similar
topology to study the limits in continuous lattices. The transformations of Scott’s
topology on lattices into the present one on cpo’s is straightforward. The following
results are standard [18]:

(d) (D, 0) is a Ty-space;

(e) (D, 0) is separatle and {{x|q = x}|q € Q} is a base of this topology;

(fy A function f:D - D is continuous if and only if it is O-continuous;

(g) qQ if and only if {x |g = x} is open.
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A o-algebra (see [5, p. 28]) or o-field (see [8, p. 59])% on a set E is a non-empty
class of subsets of E closed under all countable set operations. Here, by the
introductory discussion, we use the o-algebra generated by O (i.e. minimal o-algebra
including 0) to define probability distributions. We denote this o-algebra by 2. It is
sometimes called the class of Borel sets in (D, ). Therefore by a probability measure
(or distribution) on D, we mean a o-additive function P:% -[0, 1} such that
P(D)=1. This class of Borel sets in Pw has been studied by Tang [20] for another
purpose. Here we are not concerned with its detailed constructive study; all we need
about & are the following assertions, which are easy consequences of its definition:

(h) & contains every singleton and consequently every countable subset of D. In
particular any subset of Q belongs to % ;

(i) B coincides with the o-algebra generated by the class {{x e D|q=x}|q € Q}.

We denote the set of probability distributions on D by Pp. If Pe Pp and x € D,
then we write P(x) instead of P({x}). We let |P|={x € D | P(x)> 0}. | P| is countable
and if P is such that P(|P]) =1, then we may represent it by {(x, P(x)) | x € |P}. P is
said to be finite if and only if | P| is a finite subset of Q and P(|P|) = 1. The set of iinite
probability distributions is denoted by %p.

3. CPO of @D-

Definition 1. For P, P' € ?p. we let P =5 P' (P is dominated in a probabilistic sense
by P') if and only if, for VU € 0, P(U) < P'(U).

Theorem 1. (Pp, S2) is poset with a least element.

Proof. =4 is clearly reflexive and transitive. In order to prove its antisymmetry,
suppose P =5 P' and P' = P. Then, by definition, P and P’ are equal on 0. On the
other hand O is closed under finite union and intersection operations and this implies
P =P’ (see[3, p. 185, Theorem 2]). The least element is {( L, 1)}, i.. the probability
measure concentrated on L.

Theorem 2. Suppose P, P'e ¥p. Then P = P’ iff

(i) (VA<|P|,A#0)(AB<|P'|)(A=uB ard P(A)<P'(B)), or iff

(i) WA<|P'|,A#9) (3B<|P|) (B=mA and P(B)=P'(A)), where Su is the
Egli-Milner order, discussed previously.
(i) and (ii) reflect the intuitive idea that P' is the result of transmitting P to higher sets or
P is the result of transmitting P' to lower sets (in the Egli-Milner sense).

Proof. We show only the equivalence of P=sP' with (i); the second part of the
theorem may be proved similarly. Suppose P=»P’ and consider any non-empty
subset A of |P|. Then B ={y € |P'||3x € A s.t. x Sy} satisfies (i). Assume now (i) and
consider any open set U. Then there exists B < |P'| such that U N|PlemB and
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P(U N |P))<P'(B). Therefore we have P(U)=P(U n|P|)<P'(B). On the other
hand U n|P|cyB implies B< U and consequently P'(B)<P'(U). This yields
P(U)<P'(U).

In order to prove :hat P is a cpo, we shall need the following definition.

Definition 2. A subset T of D is called a crescent, if and only if there exists two open
sets U and V such that V < U and T = U\ V. We denote the set of all crescents of
(D,0) by &.

Lemmal. (a) 0c ¥,
(b) T e &if and only if there are some open set A and some closed set B such that
T=AnNB;
(¢) Tis a crescent if and only if
(i) ifx,yeTandx=z<y, then z € T,
(i1) whenever (x,) is an increasing sequence in T, then | Jux. €T, and
(iii) whenever (x,) is an increasing sequence such that | |, x,. € T, then for some
nx, €T,
(d) Zis a semi-ring (see [5, p. 22)) or semi-algebra (see [15, p. 224]);
(e) A function u: ¥~ [0, 1] is uniquely extensible to a probability measure on R if
and only if it is finitely additive, o-subadditive (i.e. countably subadditive) and
wu(D)Y=1.

Proof. (a), (b), (c) and (d) are easily checked. For (e) see [15, pp. 223-224].

Lemma 2. Every increasing sequence in ¥p has a lub in Pp.

Proof. Let (P,) be an increasing sequence in %p. Then, for any U €0, we let
w(U)=lim, .o P,(U)=sup, P,(U). Since P,(U) is increasing and bounded by 1,
this limit exists. If the lub of (P,) exists, then by definition, its restriction to @ must be
u. On the other hand if u is extensible to a probability measure, then the extension is
unique. Therefore, by clause (e) of Lemma 1, it is sufficient to prove that 4 is
extensible to & and its extension satisfies the mentioned conditions in (e).

For any Te ¥ such that T=U\V, where U, Ve0 and V< U, let u(T)=
p(U)=u(V). It is not difficult to check that this definition is unambiguous and
p =1im,.« P,. In addition the finite additivity u is an easy consequence of that of P,
It remains, therefore to prove the o-subadditivity of 4, since clzarly g(D)=1. In
order to prove this, let (T,,)=(U,\V,), m=1,2,...,be a sequence of pairwise
disjoint crescents such that T =\_J,, T, = (U\ V) is also a crescent. Then we have to
prove u(T)<Y -, w(T,). In order to prove this inequality, we assume that there is
some a>0 such that for any positive integer p, @A(T)=X cm<p, @(Tm)=2a
and derive a contradiction. Since g is the limit of (P,), this relation may be
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Now we can define a sequence (A,) of finite subsets of T and subsequence (Py;, ) of
(P,) such that

Pn,(A)=a/2"! and (VycA,.1)(@xeA,)(xcsy)

as follows.
Since (P,(L))) is convergent, it is possible to choose N; such that P (TTC\—

A5 wwsaa 3 v PPYPUAVIY VW VIIVUDY 4V vAARe 2 g\

P.(U C)| <la, (where U€ denotes the complement of U in D), whenever n’,
n"=N,.Let A; =|Pn| N T. Since A, is finite and T =, T,,,, it is possible to choose
p2 such that U p<p, T, includes A;.

Apply now (1) to p, in order to obtain N3 > N, such that P,({Um>p, Tm)=a,
whenever n = N3. Suppose that N3 is such that

P U VS) =P Unner, V5)

m=sp»

= 4a’

whenever n', n" = N3, and let N, =sup{N3, N3}. We can prove that the finite subset
A5 =|Pn,|N (U,,.>,,2 T,.) has a subset A, such that Py,(A;) =3« and (Vye A)(3x e
A)xcy).

In order to prove this, let B,={yc A5|¥Yxe A, xZy} and then apply (ii) of
Theorem 2 to Py, Py, and B,u U€ in order to prove P,(B)<3e, which yields
Pn,(A3\B) =3a.

We now choose ps such that _,»<p, T includes |Pn,|~ T and apply (1) again to
obtain N4 > N, such that P,({Um>p, Tn) < a, whenever n = N 3. Suppose again N3 is
such that

P U vE)-Pu U VE)|<ha

ms<ps ms=sps

whenever n', n"=Nj, and let N;3=sup{N3, N’3} Again the finite set |Pn,|N
(Um>ps Tw) has a subset A; such that Pn,(A3)= jaand (Vye A;) @xe Ay (x=y).
For the proof of this see below, the general case of N..

Suppose, in general, that N, A; and p;(i =2) are defined such that

PN.-(A-')?a/Zicl, (Vye A;))@ExeAi)(x2y),
Bi={ye|Pn|nT|VxeA; 1, xZy}

with

PyBi)<a-

pi{ U v)-r{ U v9) =2

m=p; m=p;

&
21"—1 21)

whenever n’, n"=N;. Then Ni.1, Ai+\ and p;.; will be defined as follows.
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We choose p;+; such that {m<p,., Tm includes |Py | T and apply (1) to p;. in
order to obtain N}.; >N; such that P,(Um>p,., Tm)=a, whenever n=Ni.
Suppose N7 is such that

o
= 2i+]$

P U VE)-re U VE)

m<pi+i m<p;j+)

"

whenever n', n"=N!,,. Let Ni.y=sup{N}s1, Ni'1}. Now let A},; =|Pn, |nT.
Then we prove that A,; has a subset A,,;, such that P, (A;.1)=a/2' and
(Vye Aiyy) @xeA) (x = y). To do this, let Bi.1={ye Al..1[Vxe A, x = y}. If we
apply (ii) of Theorem 2 to Py, Py,., and Bi+1U B; U (U<, V =), then by using the
facts that the change of probability for U, <, VS, is bounded by a/2' and that
PniB)<a-a/2""', we obtain Py, (Bi.1)<a—a/2', which yields P, ,({y[3xe
A,xcyh=a/2"

Now, we may apply Kénig’s infinity lemma (see e.g. [21, p. 40]) to the sequence
(A, ) to obtain an increasing sequence (x,), with x, € A, for any n. By clause (c, ii) of
Lemma 1, U, x, € T. Hence LI, x, € T,,,, for some m,. But then, by clause (c, iii) of
Lemma 1, all but a finite number of x, are in T,,,. This is not possible, since by the
construction of (A,), if x, € T, then x,,41 € T,

For the sake of smoothness, we prove the following lemma. From now on for any
qeQ, welet V,={x|q=x}.

Lemma 3. Suppose P € Pp and let U be any non-empty open set. Then, for any £ >0,
there exists a finite subset {ry, . .., r,n} of Q n U such that

Pl U V) >P(U)~e.

l<ism

Proof. It is not difficult to check that U =|_J{V,|q € Q n U}. On the other hand,
there is a well-known result in measure theory, which asserts that if an increasing
sequence (A, ), in a measure space (D, 8, P), converges from below to A, then P(A,,)
converges tc P(A) (See [5, p. 38] or [8, p. 85]). This proves the lemma.

Theorem 3. Every element of Pp is the lub of some increasing sequence in Fp.

Proof. If Q is finite, then the theorem is obvious. Otherwise let go(= 1),
q1,qz, - .. be an infinite enumeration of Q without repetitions. First we define a
sequence (f,,) = ((Am) m=o...k)n=0,1.2,. Of finite partitions of 1D, where each term is
a refinement of the previous one and each A}, has a least element b, in Q. Then P,
is defined by letting P, (b,,) = P(A%).
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Consider any finite non-empty sequence S =ry, . .., r;in Q such thatr,= 1.For S,
we define a partition ofs = (A;)i—o..;1 of D intc [ +1 crescents as follows:

A=V \U{Ajl0s)<i e r),
Ai=ANU{A|0<j<], A2 A).

Itis not difficult to see that (A;); o, is a partition of D and that r, is the least element
of Ai. Also,ifS=ry,...,nand S'=rg, ..., 1, 141, .. ., hek, then Ag is a refinement
of .2¢s.

Let So = qo and o = ;. If A, is already defined, then &4, .1, derived from S, ., is
defined as follows. Suppose q.+1€ A/. Let B,.; =D\A[ and C,+1=B,.1"V,,,. It
is not difficult to check that C,., is open. If P(C,+1) =0, then we let S,,.1 = S,, qn+1.
Otherwise, by Lemma 3, there exist ry, . . ., 1, € C,+1 0 Q such that P( U <i<p, V,,) =
3P(C..1) and we let S,+1=S,, Gus1, T, ..., I Let (P,) be defined by P,(b0) =
P(A,), m=0,1,...,k,.

Since Y o<m<k P(Alm) =1, the above equality determines uniquely P, as an ele-
ment of %#p. We now prove the following assertions about (P, ):

(i) (P,) is increasing. For any open set U, P,(U) =Y P(b},,), where the sum-
mation is extended to all m for which b}, € U. But then, by the definition of P(b},)
and the fact that b,, € U if and only if A}, < U, we have P,(U) =Y P(A},), where the
summation is extended to all m for which A}, < U. This equality, and the ract that
A1 is a refinement of &, imply P,(U)< P, (U).

(ii) P,(U)=e P(U). This is an immediate consequence of P,(U)=Y P(A,)
mentioned above.

(iii) [_l. P, = P.To prove this, it is sufficient to show that, for any non-empty open
set U, we have sup, P,(U)= P(U). To do this, since P,(U) =Y P(A},), where the
summation is extended to all m for which A}, < U, we have only to prove that the
probability (with respect to P) of B{, ={x € U|VA/, = U, x¢ A} converges to zero,
as n->0 (for P(U)-P,(U)=P(BY)). It is easy to check that for any 4:€ Q,
P.(V,)=3P(V,), whenever n = i. We now prove that for any £ >0 and n there exists
m > n such that P(BD)<3P(R%)+s.

If P(B7,) =0, then we have done. Otherwise, since BY; is a finite union of disjoint
crescents, it follows from Lemma 3 that there exist ry, . .., r; € By such that

P(( U V) mB'b) = P(BY)—e¢.

1=sisj

Thus, whenever m > n is sufficiently large such that S,, contains ry,...,r; then
Vi ..., V,, are included in U, and consequently
P(BD)<3P(BD)+e.

On the other hand, since B, is decreasing lim,.. P(By)=P( . By) exists.
Therefore, it follows from the above inequality that iim, . P(By) = 0.
This yields sup, P,(U)=P(U).
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Remark. In the case of consistenily complete cpe’s, there exists a short proof for this
theorem (see [16]).

Corollary 1. Suppose P, P'e€ Pp and P=4P'. For every increasing sequence (P,) in
Fp such that P=| |, P,, there exists an increasing sequence P, in Fp such that
P’ =| |, P, and P,= P, for all n.

Proof. By the above theorem, there exists a sequence (P77) such that ' =| |, PZ. We
now ¢ :fine a subsequence (P,) = (PX,) of (£;) which also satisfies P, = »P,, for any
n. Since | P, | is finite, there exists N, such that the set of the N,.th first elements of Q,
considered in the proof of the above theorem for defining (P}), includes |P,|.
Consequently, by the facts P = » P' and P,(U) = P(_{V,lq €|P.|}), P. S, PK..

Theorem 4. (Pp, E5) is a cpo.

Proef. It is sufficient to prove that every increasing sequence (P, )n=0.1...in #p has
n=0,1,...in Fpsuchthat P, =| |, Py foranyn,and P, = » Py, foranym ;;ld n.
Then we have (|_|, P,)(U) =sup, Pi(U) for any open U.

Example 1. We are now able to treat the second introductory example formally. Let
Q be the denumerable set of finite strings on {0, 1}. Then any open subset U7 of D
equals U{gD |qe Q U}, where gD ={qx | x€ D}. Let P, ={(x,3")|x€Q and
Ig(x) = n}, where Ig(x) is the length of the finite string x. It is easy to check that (P,) is
increasing and, therefore by virtue of Lemma 2, P=| |, P, exists. P is not uniquely
determined by its values on singletons, but it is by its values on @. In order to compute
P(U), where U €0, let A(U) be the set of the minimal elements of U n Q. Then
(qD)scaw) is a class (possibly empty) of pairwise disjoint open sets such that
U =\J{qD|q e A(U)}. Consequently
PU)= Y P@D)= ¥ 1/2¥9

qe A(U) qeA(U)

| Ce )
(N e

PRINT O PRINT 1

LA 1

-~ P 20, p+tg=1, p',q'20, p'+q' =1.
Fig. 2.

Example 2.
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The probabilistic flow chart program’ shown in Fig. 2 differs from a usual oxne in that
it admits at two points different random choices, characterized by the pairs (p, q) and
(p', q') respectively. One can easily check that if x,, is the printed string at the nth step
(i.e. after the apparition of the nth character), then it takes values 0° 1"~ with
probability gp" ~'q’ (where 1<i<n—1), 1" with probability p and 0" with prob-
ability gp'"~'. Thus the probability distribution related to the nth step of the
computation is given by )

P ={(0" gp" {01, gp" g 1=i=n—-1}0{(1", p)}.
This is an increasing s=auence of probability distributions on (D, = ) (where (D, = ) is
the same as in the previous example) and its lub is given by

({(1®, pru{(0™'1°, gp"q"|i=0}, ifq'>0,

" {(lw’ P), (Ow, CI)}, if q' =0,
where a® is the infinite string aaa. ...
Remark. The previous results show that (Pp, = ») is a cpo and Pp, is generated by

Fp. Actually it is possible to prove that %p has countable subsets generating %p.
Consider, for example,

Rp ={P e %p|Vx €|P|, P(x) is rational}.

It is easy to see that every element of F#p is the lub of some increasing sequernce in
Rp.

Nonetheless 2?p is not algebraic in general; indced {(L, 1)} is its only isolated
element. Consider the cpo in Fig. 3. In this example ¥p=%p. Let P=
{(L, p),(T,1-p)}, where O0<sp<1 and P,={(L,p+1/n),(T,1—-p—1/n)}, for
n=1/(1-p). Thenl |, P, = P; but for no n, P =g P,. This should no" be surprising,
since the lattice [0, 1] equipped with the usual ordering is not algebraic.

Theorem 5. The mapping 0 : D > Pp, defined by 6(x):~{(x, 1)} is continuous.
Proof. For any increasing sequence (x,) in D and any open set U, we have
{(l_] Xns 1)}(U) =if| | x, € U then 1 else 0
' = su;;1 (if x,, € U then 1 else 0)

=|_{(xn, D).

?T

Fig. 3.



30 N. Saheb-Djahromi

Remark. The above result allows us to embed D in #p. From now on we identify
c4 with = and {(x, 1)} € Pp with x € D, whenever no ambiguity is possible.

4. Operations on 2?p

The first operation introduces a random element.
4.1. Random selection

In considering programs which choose different computations at random, we may
treat the simple but interesting case of those which may select at random between
two possibilities in steps of their computations. The more general case of programs
which use finite probabilistic branchings may be transformed into this case (for any
probabilistic finite branching there exists an equivalent finite sequence of prob-
abilistic bi-branchings).

The following definition formalizes this idea:

Definition 3. For a €[0, 1] and P, P'€ Pp, we let
R@a)P)P)=a.P+(1—-a).P.
A simple computation shows that R(a)(P)(P’') € #p. We often denote R(a)(P)(P')

by a more usual notation a . P+ (1 —a) . P' and call it the random selection between P

and P’ under probability ¢. The following results are immediate consequences of this
definition:

(i) R(O)P)P)=P';
(ii) R(1)(P)(P')=P;
(i) if 0<a <1,then|a.P+(1-a).P|=|P|u|P!.

Theorem 6. R is continuous with respect to each of its arguments.

Proof. (i) Obviously if a, = a, then R(a,)-> R(a);
(ii) R(a)(P)(P') is continuous with respect to P. Suppose that (P,) is an
increasing sequence in #p. For any open set U, we have

[a P, +(1-a)- P'](U)=a-L_|P..(U)+(1-a) - P'(U)
=aq -sup P,(U)+(1-a)- P'(U)
=Sgp[a - P,(U)+(1-a)- P'(U)]

= {[a:P,+(1-a): P'YU);

(1) The proof for the continuity of R with respect to P’ is similar.
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Remark. It is possible to generalize the notion of random selection for a sequence
(P,) of probability distributions with respect 1o a sequence (a,) of pon-negative real
numbers such that ), a, = 1 (both sequences may be finite or infinite, but they must
have the same cardinality). Then it is not difficult to prove similar resuits for this
generalized notion of random selection.

4.2. Probabilistic extension of a continuous function

In the Scott theory of fixed point semantics [10], computable functions are
supposed to be continuous transformations on the cpo of states. Here, dealing with a
nondeterministic computation, where each state has a probability to appear, we
should be able to apply such functions to probability distributions on the set of states.
Operationally this means that, if D is the cpo of states and f is a continuous function
on it and if # is a nondeterministic computation which yields a probability dis-
tribution P on D, then if we want to compose 7 and f we must be able to definic the
meaning of f(P). From a mathematical point of view we are led to extend the
continuous f: D - D to #p-> Pp.

In the sequel, for any domains D and D', [D - D'] denotes the class of continuous
functions from D into D'.

Definition 4. Let f: D - D be a continuous and consequently measurable function
(i.e. f(B)< B, see [5, p. 162]). Then f: Pp > Pp, called the probabilistic extension
of f, is defined as follows.

Ff(P)(A)=P[f '(A)] foranyPePpandanyAcB; (f(P =Pof).

It is well-known and also easy to check that f(P)is a probability measure on B (see
[5, pp. 162-163)).

Theorem 7. If fe[D - D) and P %p, then |f(P)|=f(P)).

Proof. Suppose x € D. Then x |f(P)| if and only if f(P)(x)>0. But this means
P[f '({x})]> 0. Therefore, since |P| is finite, x € |f(P)|if and only if there exists y € | P|
such that f(y) = x. This clearly implies |f(P)| = f(|P)).

Theorem 8. For any fe[D - D] and x € D, f(x)=f(x), i.e. f{{x, L) ={(f(x), 1)}.

Proof. Fiist, let x € Q and apply Theorem 7 to the probability distribution {(x, 1)} to
prove f({(x, )})={(f(x), 1)}. The theorem then follows as a consequence of the
continuity of Ax * {(x, 1)}: D > %p.

Theorem 9. If fc[D - D], then fe[®p~ Ppl.
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Preof. Let (P,) be any increasing sequence in ?p and U be any open set. We have

[f(l_"_l P,.)](U) = (Ln_l Pn)f—l(U) ~ (by definition)
=s1:pP,,(f"(U,‘ (since f~'(U) is open)

=sup f(P.,)(U>=[Ln_l feo ).

Theorem 10. The »apping Af - f :[D » D]-[Pp = Pp] is continuous.

Proof. Consider an increasing sequence (f,) of continuous functions on D, any
PeP?p and U € 0. Then: we have

(Us)ean=p[{Us) @)
On the other hand, x € {| .. £.)""(U), if and onlyif| |, f,(x) € U. But this latter is true

if and only if f,/x)e U for some n, which is equivalent to xel, 21 (U).
Consequently

(W) =p(Us @).
It is easy to see that, since f, = fus1, fr' (U)< fnt1(U) and consequently

(L£) @) =sup PUf! @) = FuPO).

Theorem 11. If f,, f,€[D - D], then f, f=f1° fa.
Proof. Result of a sirsiple computation.

Remark. The above results allow us to embed [D- D]in[?p - Pp]. From now on
we identify f with f, for any fe[D - D].

Theorem 12. Iffe{D->» D], a€[0, 1] and P, P' € Pp, then
fla-P+(Q-a)-Py=a-f(P)+(1-a)" f(P).

Proof. Result of a sim:ple computation.

Remark. The notion of probabilistic extension may be generalized for functions
from [D - D'}, where D' is a domain. In particular, if fe[D">D] and P=
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(Pl, ceey “D,.)G (@D)", we let

fe...P)a=( T P) AN, vAcs,

sjspn

where []1<i<n P; is the product measure on the product space (see [5, pp- 143-145]or
[8, pp. 135-136)).

The verification of Theorems 7, 8,9, 10, 12 when f € [D -» D'] and of Theorem 11
when f,«[D - D'] and f, €[D' > D"], does not present any problems.

S. A relation between ?p, and ?[D].

In their study of nondeterminism, Plotkin [13] and Smyth [19] assume that any
infinite subset of #[D] must contain L. In #p, we do not have any similar
assumption, since it is not difficult to define a discrete probability distribution P (i.e.
P(|P))=1) such that |P| is countably infinite and yet L £|P).

Although a more fundamental study on relations between ?p and Plotkin’s 2[ D]
seems possible, here we develop it for a very particular case.

Theorem 13. Let D be w-discrete (i.e. flat and countable) and P{ D] its powerdomair.
equipped with the Egli-Milner order [13). Let ¥ : Pp » P[D] be defined by ¥{(P)=
|P|U{L}. Then
(i) WV is continuous
(ii) if 0O<p<1,then ¥(p-P+(1-p) - P)=W(P)LW¥(P);
(iii) iffe[D>D]and f(L)= L, then ¥(f(P))=f(¥(P)), VP e Pp.

Proof. Result of an easy computation.

6. A treewise approach to theory of nondeterministic computations

In [17], the author introduces a random walk on the set of terms in order to study
the operational semantics for a nondeterministic typed A-calculus. We use here a
variant of Smyth’s method [19] to explain how the process of computation works.
This process for a particular nondeterministic (or more precisely probabilistic)
computation is modelled by an arborescence T with infinite paths as follows.

In T each vertex of depth n corresponds to a possible intermediate result of the
computation at its nth step and has an evaluation E, which is an isolated element of
the cpo D of states. Therefore if x is a vertex of T, then E(x), its evaluation, is an
element of Q. The idea is that these vertices result from finite computations and
consequently should be evaluated bty isolated elements of D. Other elements of D
are used to evaluate the limits along paths which are increasingly evaluated. This
evaluation depends on the rature of problems in the deterministic case and not on
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the new probabilistic notions involved here. The existence of an arc (x, y), where
depth(x)=n and depth(y)=n+1, corresponds to the fact that x is a possible
intermediate result ai the nth step which may produce y at the next step. In the
deterministic case it commonly admitted that the successive steps of computation
produce an increasing chain in D. Therefore it will be a natural extension of this
assumption to suppose that if y is a successor of x in T, then E(x)= E(y). Inorder to
make a homogenous study, we replace a pendant vertex x (which corresponds to a
final result in the computation) by the infinite path (x, x, x, . . .). As Plotkin [13] and
Smyth [19], we consider only computations with the possibility of selecting between
a finite number of nrocesses at random at their successive steps. This restriction is
largely justified by Theorem 3 (which proves every probability distribution is the lub
of a sequence of finite probability distributions). Under the above assumptions, each
vertex x has either only one successor y or else more successors y, . . . , y,. In the first
case we let p(x, y) =1 and in the second one p(x, y1) =p1, ..., p(X, yn) = Dn, Where
P1,. .., Pn are non-negative real numbers such that } ;<;<, p; = 1 and depend on the
involved problem.

Following this idea, we call such an arborescence together with the function p on
its arcs as above a computational arborescence. An evaluation of a computational
arborescence is a function E from the set of vertices into Q such that if y is a
successor of x, then E(x)= E(y).Foreachn (n =0, 1, ...) a probability distribution
P, is defined on the set A, of vertices having depth n:

Py={(r,1)}, where ristherootof T;
P, .1(y)=P,(x)p(x,y), where n is the fatherof y;yc A, ;.

It is easy to check that P, is a probability distribution on A, furthermore it defines in
an obvious way a probability distribution P, € #p:

VacQ,P,(a)= ¥ P,(x).

xeE '({a})

Roughly speaking P, Py, P, ... correspond to the successive evaluations of the
probabilistic computation at times 0, 1, 2, . . . respectively.

Consider now two successive cross-sections A, and A,.; of T at depth n and
n+1, P, and P,.,. An informal survey suggests that since, for any x € A,, each
successor y € A,,; of x has more information than x, then P,., is the result of
transmitting P, to ‘better’ elements and should be regarded as an ‘improvement’ of
P,. At this poix: it is not obvious that this ordering, which is naturally induced by the
usual assumption, is the same as = » introduced previously. The following theorem
fills this gap and proves the equivalence of = » and this concept.

Theorem 14. Suppose P, P'€ Fp. Then P= P' if and only if there exists a compu-
tational arborescence T with an evaluation E and a rositive inieger n such that P = P,
and P' =P, ., where P, and P, ., are defined with respect to T and E as above.
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Outline of proof. By virtue of Theorem 2, it is sufficient to prove that the existence of
T mentioned above is equivalent to (i). The ‘if’ part of the theorem is easily checked.
The ‘only if* part of the theorem is proved by using Ford and Fulkerson’s theorem on
the maximal flow in a graph (see [4, p. 82]).

7. An Application

De Bakker [1, 2] and Plotkin [13] consider an extra operation, union (or OR)
operation, which corresponds to a nondeterministic choice. Here, we introduced the
notion of ‘random selection’ which is informally the counterpart of nondeterministic
choice. In a paper [17], the author develops a probabilistic typed A-calculus, where
programs are probabilistic terms of ground types. Here, by a ‘probabilistic program’
we simply mean a program (in any language), where the possibility of this extra
operation is admitted. A rough method to transform a pure nondeterministic
pregram into a probabilistic program is to substitute for union operations a random
selection under probability 3.

Example 3. Consider again the first introductory example for a formal treatment:
Y(Ax.p->0,9q->x+1),

where p and q are non-negative real numbers such that p +q = 1. The domain of
interpretation and its ordering is given by Fig. 1. In this example + is interpreted as
the natural extension of additionon D =Nu{+},p-> :++-,q-> - - - astherandom
selection under probability p and Y as the least fixed point operator. Tae functions
Ax -0 and Ax - x+1 on D are continuous. Consequently, by virtue of Theorem 9,
they have probabilistic extensions in [?p > Pp). Therefore, by Theorem 6, the
function ¢ : #p > Pp, defined by ¢ =AP - (p - 0+q - (1+ P)), is continuous. Thus,
Y(Ax - p->0,q-x+1) should be interpreted as the least fixed point of ¢, which is
given by | |, 4" (L), see [10].

Note that in the following computation, by the remarks which follow Theorems 5
and 11, {(x, 1)}e ?p is identified with x€ D and AP. (PF1)e[Pp>Pp] with
AP - (P+1):

1=0, ¢°1)=0,
¢(L)=p-0+q-(0+1)={(0,p), (1, q)},
¢*(L)=p-0+q - {(0,p), (1,9} +1)={(0, p), (1, pg), (2, ¢*)}.

Then it will be easy to see, by an induction on #, that

¢"(L1)={(0,p), (1,pq), ..., (n=1,pq" "), (n,q")}.
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Consequently

{Gi,pa')|ieN}, ifp#0,

L,.‘I¢”('L)={oo, if p=0.

Note that if we usec: the flat domain of { L} UN as the domain of interpretation,
then the same result would be obtained with the exception that L should be
substituted for co.
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