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Growth Velocities of Branched Actin Networks

A. E. Carlsson
Department of Physics, Washington University, St. Louis, Missouri 63130-4899

ABSTRACT The growth of an actin network against an obstacle that stimulates branching locally is studied using several
variants of a kinetic rate model based on the orientation-dependent number density of filaments. The model emphasizes the
effects of branching and capping on the density of free filament ends. The variants differ in their treatment of side versus end
branching and dimensionality, and assume that new branches are generated by existing branches (autocatalytic behavior) or
independently of existing branches (nucleation behavior). In autocatalytic models, the network growth velocity is rigorously
independent of the opposing force exerted by the obstacle, and the network density is proportional to the force. The
dependence of the growth velocity on the branching and capping rates is evaluated by a numerical solution of the rate
equations. In side-branching models, the growth velocity drops gradually to zero with decreasing branching rate, while in end-
branching models the drop is abrupt. As the capping rate goes to zero, it is found that the behavior of the velocity is sensitive to
the thickness of the branching region. Experiments are proposed for using these results to shed light on the nature of the
branching process.

INTRODUCTION

In numerous instances of actin-based motility, including

extension of lamellipodia in cells (Small et al., 2002), and

‘‘rocketing’’ motion of Listeria monocytogenes (Dramsi and

Cossart, 1998; Goldberg, 2001), or small beads coated with

actin-polymerization activators (Cameron et al., 2001;

Bernheim-Grosswasser et al., 2002), actin filaments form

a branched network structure. Typical densities of filamen-

tous actin in such networks are 1 mM, and spacings between

branches along a filament are often in the range 40–70 nm

(Svitkina et al., 1997; Svitkina and Borisy, 1999). The

filaments are eventually terminated by capping proteins,

which prevent further filament growth. The branch points

have a characteristic angle of 708 and are decorated by

a seven-subunit complex of actin-related proteins, Arp2/3.

This complex has a low constitutive activity. However, it

can be activated directly or indirectly by several agents

associated with the obstacle (the cell membrane or the

bacterial/bead surface). These agents include the membrane

phospholipid PIP2, the membrane-associated protein Cdc42,

and the bacterial surface protein ActA. In the case of Cdc42

and PIP2, intermediate proteins such as Scar and WASp are

required for Arp2/3 activation. These are also constitutively

inactive but can be activated by Cdc42 or PIP2. When the

Arp2/3 is activated, it causes new branches to form on

existing filaments and thereby greatly stimulates actin

polymerization in the vicinity of the obstacle. The branching

activity of Arp2/3 has been confirmed by in vitro studies

(Mullins et al., 1998).

While several of the basic biochemical events in the

pathway leading to Arp2/3-induced actin assembly are well

established, the details of the process by which new filaments

are generated at the obstacle are not well understood. The

following issues are among those that are unresolved:

The relative importance of branching along filament sides
and branching at their ends

Initial data (Pantaloni et al., 2000) comparing the lengths of

mother and daughter filaments (beyond the branch point)

found a close correlation, suggesting the dominance of end

branching. However, recent total internal-reflection fluores-

cence microscopy studies (Amann and Pollard, 2001a,b) of

single filaments have found that most branches are formed

along filament sides. A recent confocal microscopy study

(Ichetovkin et al., 2002) found that branches can form

anywhere along the sides of filaments, but that there were

numerous instances of new branches forming very near the

barbed end, and branches formed more readily on newly

grown filaments. This suggested that branch formation could

be enhanced in the ATP cap region near a filament barbed

end.

The thickness of the region near the obstacle where new
branches can form

Branch formation could, for example, be activated by direct

contact with membrane proteins; on the other hand, Arp2/3

could be activated by membrane-bound proteins and

subsequently diffuse to the branching point, or it could be

indirectly activated by effectors of these proteins. In

a recently proposed model for filament generation at

membranes (Wear et al., 2000), Cdc42 and PIP2 in the

membrane are first activated by an external signal. They

interact with WASp, causing it to change to a partly active

conformation. Binding of actin to WASp completes its act-

ivation. Then the WASp binds to, and activates, the Arp2/3

complex, which is also associated with a filament. Finally,

a new filament grows from the activated Arp2/3 complex. In
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this model, if the WASp is attached to the Cdc42 and PIP2,

branching could only occur if the Arp2/3 is essentially in

physical contact with the obstacle; if the WASp detaches, the

branching region could be wider.

Whether new filaments are created on existing filaments,
or are created free and subsequently diffuse and attach to
existing filaments (cf. Fig. 1)

We term these models the autocatalytic and nucleation

models, respectively. In autocatalytic models, the formation

rate of new branches is proportional to the number of

filaments or amount of polymerized actin in the branching

region; in nucleation models, it is independent of the number

of preexisting branches. The scenario (Wear et al., 2000)

discussed above leads to an autocatalytic behavior if the

concentrations of Arp2/3 and WASp are not rate limiting,

since the Arp2/3 is filament associated. Such autocatalytic

models have generally been in favor because of the

enhancement of Arp2/3 in vitro nucleating activity in the

presence of preformed filamentous actin (Machesky et al.,

1999; Higgs et al., 1999; Pantaloni et al., 2000). In the

absence of preformed filaments, actin polymerization in the

presence of activated Arp2/3 typically has a lag time on the

order of minutes; this lag time is eliminated by the presence

of preformed filaments. We also note that in vitro

polymerization kinetics are well described by autocatalytic

models (Pantaloni et al., 2000). It is plausible that the

generation of new filaments in lamellipodia and around

intracellular pathogens/beads involves essentially the same

steps as the in vitro studies. However, the sequence of steps

may not necessarily be the same as in the in vitro studies. If

the concentration of Arp2/3 or its activators is rate limiting,

then the generation rate for new filaments will be nearly

independent of the filament concentration. At present, there

appears to be no straightforward experimental method for

distinguishing between the autocatalytic and nucleation

models in vivo. The true behavior is very likely somewhere

between the limiting cases defined here, but these cases form

a useful conceptual framework.

The main purpose of this paper is to evaluate the

dependence of the growth velocity of actin networks on

key protein concentrations and opposing force, and to

ascertain how these dependences are modulated by key

molecular-scale details of the branching process, including

the relative importance of side and end branching, the

thickness of the branching region, and whether the branching

process is autocatalytic or nucleation driven. These predicted

dependences can be combined with experimental measure-

ments to establish important molecular aspects of the

branching process. Because the autocatalytic model is more

plausible in view of existing experimental data, we treat it in

more detail; our treatment of the nucleation model is mainly

focused on distinguishing it from the autocatalytic model

experimentally. We have previously evaluated (Carlsson,

2001) the dependence of the growth velocity on branching

rate, capping rate, and opposing force, for an autocatalytic

branch generation model, using a stochastic simulation

methodology. These simulations showed that over a limited

range of parameters at fixed actin concentration, the growth

velocity drops linearly with increasing capping rate, and

drops to zero for values of the branching rate at which the

number of branches per filament is less than ;1.5. It was

also found that the growth velocity is nearly independent

of the applied force. The present paper treats some of the

same issues using a deterministic rate-equation model. This

approach has three advantages over the stochastic-growth

approach. First, it is possible to prove rigorous results within

such a model, and this explains some puzzling results of the

stochastic-growth simulations. Second, it is possible to treat

parameter regimes that were computationally forbidding

using the stochastic-simulation methodology, in particular

the limits of small capping-protein concentration and slow

growth. The former leads to an unwieldy number of branches

per filament, and the latter results are very sensitive to sto-

chastic fluctuations in the simulations. Finally, by analysis

of the deterministic equations, it is possible to find intuitive

explanations for the behavior of the growth velocity.

Autocatalytic model

Our model assumes a flat obstacle of finite size in two

or three dimensions, although the rigorous results that we

prove hold for an obstacle of arbitrary shape. The branching

mechanism is such that new filaments are generated inside

a narrow branching region, of thickness d, at the obstacle.

Only filaments within a distance d of the obstacle can branch.
In a rigorously two-dimensional model, d would be a width,

but since there is a always a third dimension present, we will

still call d a thickness. The mathematical approach uses

simple rate equations based on the laterally averaged

filament orientation distribution n(u,t), where t is time, and

u is the angle of a filament with respect to the normal to the

surface (cf. Fig. 1). The component y of the filament growth

velocity in the direction of network growth is related to the

orientation by y(u) ¼ Vmax cos u, where Vmax is the growth

velocity of a free filament. The number of filament ends in

the branching region, per unit of obstacle length (in two

dimensions) or obstacle area (in three dimensions) with

FIGURE 1 Schematic of autocatalytic versus nucleation-based branch-

generation processes. d: branching layer thickness. u: angle between

filament and growth direction.
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angles between u and u1 du is n(u, t)du. The main factors of

interest to us are the formation of new filaments inside the

branching region, the capping of existing filaments, and the

motion of the obstacle away from the filaments in the

branching region. We ignore potential effects of uncapping

and branch detachment; the rationale for this is discussed in

the section ‘‘Sensitivity to key approximations.’’

We thus employ the following equation of motion for the

filament orientation distribution:

@nðu; tÞ
@t

¼ kbr

ðumax

0

Dðu; u9Þnðu9Þnðu9; tÞdu9� kcapnðu; tÞ

� H½Vobst � yðuÞ�½ðVobst � yðuÞÞ=d
1 ðnðuÞkbr � kcapÞ�nðu; tÞ:

(1)

Here umax is the maximum value of u (taken to be 1808 for
most of our calculations), kbr is the total branching rate for

a filament with u ¼ 0, kcap is the capping rate, D(u, u9) is the
distribution of filament orientations generated by branching

from filaments of orientation u9, and n(u) is a factor de-

scribing the dependence of filament length on orientation

in side-branching models; in end-branching models, we take

n(u)¼ 1. Vobst is the obstacle velocity, andH is the Heaviside

step function, defined by H[Vobst � y(u)] ¼ 1 if Vobst[ y(u)
and H[Vobst � y(u)] ¼ 0 if Vobst # y(u). For end branching

models, we assume that, unless u is restricted, the overall rate
of branching from a given filament is independent of u9.
Thus

R 1808
0

Dðu; u9Þdu ¼ 1 for all u9. For side-branching

models, we assume that the rate of branching from a given

filament is proportional to the length of its portion inside the

branching region, as described by the n(u) term. Detailed

forms for D(u, u9) and n(u) are given in the next section. The
last term on the right-hand side describes filaments with y\
Vobst leaving the branching region. The rate of this process is

proportional to the spatial number density of filament ends at

the back end of the branching region. (Here and in the rest of

the paper, the term ‘‘density’’ will always refer to number

density rather than mass density.) For most values of u, the
relative velocity of the filaments and the obstacle is large

enough that the distribution is fairly constant in space; in this

case the density can be approximated by n(u, t)/d, leading to

the first term in square brackets. However, filaments with y
very close to Vobst can remain in the branching region long

enough that the density at back of the branching region

greatly exceeds that at the front, because of exponential

growth due to branching (and modified by capping). For

such filaments, we assume a time growth rate of kbrn(u) �
kcap, leading to a spatial growth rate of (kbrn(u) � kcap)/(Vobst

� y). This yields the second term inside the brackets. For

filaments with y [ Vobst, we include no leaving terms.

Filaments are not able to leave at the front end of the

branching region because they are blocked by the obstacle,

and they cannot grow in from the back end, since branching

cuts off there, so that no new filaments can be nucleated

beyond that point.

This model is closely related to one previously employed

(Maly and Borisy, 2001) in the calculation of actin filament

orientation distributions near obstacles. The main difference

is that effects of filaments leaving the branching region are

treated explicitly in the present model. This allows us

to study the mechanism for establishing the steady-state

number of filaments and velocity. In Maly and Borisy

(2001), these were treated as fixed inputs. Our model is also

related to those studied in Mogilner et al. (2003) and

Mogilner and Edelstein-Keshet (2002); the parallel is

explored in more detail in the section describing nucleation

models.

Rigorous properties of rate equation

In this section, we demonstrate two rigorous steady-state

properties of the rate equation (Eq. 1): that the growth

velocity is independent of the applied force, and that the

network density is proportional to the applied force. These

results hold regardless of the form of the branching ori-

entation distribution D(u, u9), and are independent of the

shape of the obstacle. Before proving the results, we first

clarify the mechanism by which the steady-state Vobst is

determined. Fig. 2 sketches the generic behavior. We

consider the limits Vobst ¼ 0 and Vobst ¼ Vmax first. If Vobst

¼ 0, then the leaving terms vanish for filaments with u\908.
If we define k�br as the rate of branching restricted to the

subset of filaments with u \ 908, then Eq. 1 implies that

the total number of filaments touching the obstacle,

ntouchðtÞ ¼
R 908
0

nðu; tÞdu; satisfies

dntouch=dt$ðk�br � kcapÞntouchðtÞ; (2)

where the relation is an inequality because additional

touching branches can be produced by nontouching

filaments. Eq. 2 gives exponential growth if k�br[kcap: This

FIGURE 2 Mechanism determining steady-state obstacle velocity Vobst

in autocatalytic models. Vmax: free-filament growth velocity. ntouch: number

of filaments touching obstacle. Steady-state velocity is that for which

dntouch/dt ¼ 0.
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inequality holds for the networks that have been studied by

electron microscopy. Since the u[ 908 region includes half

of the angles available for branching, k�br is roughly half of

kbr. The ratio kbr/kcap, in turn, is the ratio of the filament

length to the branch spacing, and this is five or more in the

observed structures (Svitkina et al., 1997; Svitkina and

Borisy, 1999). Thus dntouch/dt[0 for Vobst¼ 0. On the other

hand, when Vobst is very close to Vmax, only a very small

fraction of newly generated filaments will touch the obstacle,

so capping and leaving terms will dominate. Then dntouch/dt
\0. The value of dntouch/dt will then cross zero at a value of
Vobst between 0 and Vmax, and this determines the steady-

state velocity.

The above discussion is somewhat incomplete because

dntouch/dt is determined not just by ntouch, but by the entire

distribution n(u, t). The time evolution of n(u, t) can be

described more precisely by noting that the growth or decay

of the filament density is determined by the eigenvalues of

the right-hand side of Eq. 1. The largest eigenvalue will

dominate at large times. For Vobst ¼ Vmax, all of the

eigenvalues are negative and the solution decays. For Vobst¼
0, there will be a positive eigenvalue, and the filament

density will grow exponentially. At a critical value of Vobst,

the largest eigenvalue will cross zero, and this is the steady-

state value of Vobst. The filament orientation distribution is

proportional to the eigenvector corresponding to the zero

eigenvalue, as was noted by Maly and Borisy (2001).

To show that the growth velocity is independent of the

applied force, we first demonstrate that if n(u) is a steady-

state solution, then any multiple of n(u) is also a steady-state

solution. This follows immediately from the form of Eq. 1,

since each term is linear in n(u, t). We then write the total

force exerted by the filaments on the obstacle as

Fobst ¼
ðuobst

0

f ðyðuÞ; VobstÞnðuÞdu3 ðarea or lengthÞ; (3)

where f(y(u); Vobst) is the force exerted by a filament at an

angle u on an obstacle moving at velocity Vobst, uobst is
defined by y(uobst) ¼ Vobst, and the total force contains

a factor of either area or length according to whether the

model is three or two dimensional. Filaments growing at

angles greater than uobst exert no force since they do not

remain in contact with the obstacle. If a given set [n(u), F,
Vobst] gives a steady-state solution, then Eqs. 1 and 3 show

that for any a the set [an(u), aF, Vobst] will also give a steady-

state solution. Thus for any force aF, the steady-state

velocity will be Vobst; the filament orientation distribution is

an(u), and is thus proportional to the applied force.

The physical scenario leading to the obstacle velocity

being independent of the applied force is that when the force

on the obstacle is increased, the obstacle will temporarily

slow, allowing the creation of new filaments, until the

filament density is precisely that required to compensate for

the additional obstacle force. Then the velocity returns to its

steady-state value. The present results explain the corre-

sponding results found in the stochastic-growth simulations

(Carlsson, 2001), which were not previously understood.

The result obtained here is significantly more general than

that obtained in these simulations. The only aspect of Eq. 1

used to derive the result is that all the terms are linear in n(u).
Therefore, the result would also hold for obstacles of

arbitrary shape, for which D(u,u9) would depend on the

position of the branching filament. It also holds for any form

of the interaction force between the filaments and the

obstacle. It continues to hold when several effects not

included in the present model are included, but its validity

will be limited when filament-filament interactions, de-

pletion of actin and actin-binding proteins, and filament-

number fluctuation effects are important. These aspects of

the results are discussed in the section Sensitivity to key

approximations.

Numerical solution of rate equation

Evaluation of the dependence of the growth velocity on the

rate parameters kbr and kcap provides several avenues for

comparing the model predictions with experimental data.

These parameters should correspond roughly to the concen-

tration of activated Arp2/3 complex and capping protein.

However, the correspondence is not exact, since changes in

the concentrations of these proteins can lead to changes in

the free actin monomer concentration and thus change Vmax,

as well as kbr. In addition, the net branching and capping

rates will be determined by capping-uncapping and branch-

ing-debranching equilibria, which do not give a strictly linear

dependence of the rates on the protein concentrations. To

evaluate the dependence of the growth velocity on kbr and
kcap, we solve the rate equation numerically, using four

different forms for D(u,u9):

Two-dimensional geometry, end branching

In this geometry, we assume a Gaussian spread of the

branching angle of width Du ¼ 108 with respect to its

average value ubr ¼ 708. This value is a rough mean of the

measured widths of the distribution in in vitro experiments,

which range from 78 (Mullins et al., 1998) to 108–138
(Blanchoin et al., 2000). Then

Dðu; u9Þ ¼½expð�ðu� u9� ubrÞ2=2Du2Þ
1 expð�ðu� u9� ubrÞ2=2Du2Þ
1 expð�ðu� u9� ubrÞ2=2Du2Þ
1 expð�ðu� u9� ubrÞ2=2Du2Þ�=ð32pÞ1=2Du: (4)

The alternating plus and minus signs preceding ubr
correspond to branching in clockwise and counterclockwise

directions, and those in front of u9 account for branching
from the right semicircle to the left semicircle.
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Three-dimensional geometry, end branching

In this geometry, we assume the same values of ubr ¼ 708
and Du ¼ 108 as in the two-dimensional model. However, in

three dimensions the orientation distribution is more

complicated because different values of the azimuthal angle

f (the angle describing rotation about the mother filament) of

the new filament give different values of u. One readily

shows that

cos u ¼ cos ubr cos u91 sin ubr cosf sin u9; (5)

where f ¼ 0 is chosen to be in the plane defined by the

orientations of the mother filament and the normal to the

obstacle. Then

Dðu; u9Þ ¼ ðsin u=pÞ
ðp

0

d½cos u� cos ubr cos u9

� sin ubr cosf sin u9�df; (6)

which, after simplification, yields

Dðu; u9Þ ¼ sin u=½p sin ubr sin u9 sinf�; (7)

where f is determined by Eq. 5 and we choose 0 # f #
1808. We include the broadening by writing D(u, u9) as

a linear combination of terms of the form given by Eq. 7, for

closely spaced set of values of ubr, with weights determined

by the Gaussian distribution used in Eq. 4.

Two-dimensional geometry, side branching

When side branching is present, filaments nearly parallel to

the obstacle will have a greater length inside the branching

region, and will thus branch more rapidly than those

perpendicular to the obstacle. We take this into account by

multiplying the end-branching result of Eq. 4 by the

following angular factor, which takes different forms for

filaments with y[ Vobst and those with y\ Vobst:

nðu9Þ ¼ min½1=cos u9; Vmax=kcapd� y[Vobst

nðu9Þ ¼ min½1=cos u9; Vmax=kcapd;

Vmax=4ðVobst � yðu9ÞÞ� y\Vobst (8)

This factor is approximately equal to the average filament

length, divided by d. In the first case, the filament ends are in

contact with the obstacle, and the 1/cosu term comes from

the length of the piece of an infinitely long filament that is

inside the branching region; the Vmax/kcapd term accounts for

the finiteness of the filament length induced by capping. In

the second case, the last term accounts for the fact that the

filament length is limited by the amount of time it has spent

in the branching region. A calculation assuming uniform

filament distributions shows that the average age of a filament

in the branching region is d/4(Vobst � y(u9)).

Three-dimensional geometry, side branching

The three-dimensional end-branching result, Eq. 7, is

multiplied by the same factor n(u9) as in the two-dimensional

case.

To obtain the obstacle velocity, the integral in Eq. 1 is

replaced by a Riemann sum over a finely spaced set of values

of u and u9. This converts it into a matrix equation of the

form dni=dt ¼ +
j
Aijnj, where the coefficients Aij include all

of the terms in Eq. 1. A standard eigenvalue finder (dgees.f in

the Lapack library (Anderson et al., 1999)) is used to find the

eigenvalues of the matrix Aij. They are monotonically

decreasing as a function of Vobst, and a search is made over

a range of possible values of Vobst to find the value of Vobst at

which the largest eigenvalue is closest to zero, which gives

dni/dt ¼ 0 and thus leads to steady-state behavior.

The results are plotted in Fig. 3 vs. kbr and Fig. 4 vs. kcap.
In generating Fig. 3, we use a fixed value of 0.35 s�1 for kcap.
This is obtained from measured in vitro capping rate

constants (Schafer et al., 1996) of ;3.5 mM�1 s�1 and

a typical capping-protein concentration (Pollard et al., 2000)

of 1 mM, on the assumption that diffusion in the cellular

environment is slower than that in vitro by a factor of 10,

with a corresponding reduction in the capping rate. Our value

of Vmax, 0.27 mm s�1, is obtained from the measured on-rate

(Pollard, 1986) of roughly 10 mM�1 s�1, a typical free-actin

concentration (Pollard et al., 2000) of 100 mM, and the

monomer step size of 2.7 nm, together with the diffusion-

factor reduction used in obtaining kcap. (Most of the

nonpolymerized actin in cellular environments is present as

profilin-actin complexes, and it is not known at what rate

actin in this form contributes to filament elongation. If its

addition rate is much less than that for actin monomers, then

the overall scale of the velocities will be reduced. However,

when Vobst is scaled by Vmax as in Figs. 3 and 4, the shape of

the curves is independent of Vmax.) We normalize kbr by kcap

FIGURE 3 Dependence of steady-state obstacle velocity Vobst on

branching rate kbr, with kcap fixed at 0.35 s�1. Vmax: maximum projected

filament velocity. kcap: capping rate. Solid line: side-branching model in

three dimensions. Dotted line: end-branching model in three dimensions.

Dashed line: side-branching model in two dimensions. Long-dashed line:

end-branching model in two dimensions.
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because the ratio corresponds roughly to the average number

of branches per filament. In these curves and those in Fig. 4,

we use d ¼ a, where a ¼ 2.7 nm is the step size per

monomer; the effects of varying d are treated in the

discussion of Fig. 5 below. In both the two- and three-

dimensional cases, Vobst appears to approach an asymptotic

value less than Vmax for large kbr, as was seen in the

stochastic-growth simulations (Carlsson, 2001). For small

kbr, the velocity in the end-branching case drops abruptly to

zero at a value of kbr between kcap and 2kcap; for side

branching, the decrease is smoother. This difference was not

resolved in the stochastic-growth simulations because they

did not treat long enough times. In the two-dimensional

geometry, the curve has a shoulder around kbr ¼ 2kcap, which
is not seen in the three-dimensional results. We believe that

this shoulder is due to the presence of sharp peaks in the

filament orientation distribution around 6358. Such peaks

were seen in the analysis of Maly and Borisy (2001), and we

see similar peaks here.

In Fig. 4, we use kbr ¼ Vmax/20a ¼ 5 s�1, which gives

a branch spacing of ;20 monomers at the higher obstacle

velocities, roughly commensurate with experimentally

measured branch spacings (Svitkina and Borisy, 1999). For

all four of the branching models considered, Vobst drops

monotonically and smoothly with kcap for kcap[ 0.05kbr, as
in the stochastic-growth simulations. The asymptotic

kcap ! 0 value extrapolated from this range is between

0.8Vmax and 0.9Vmax. However, for smaller values of kcap,
the curve turns up, and approaches Vmax as kcap ! 0; this
effect was not seen in the stochastic-growth simulations

because such small values of kcap could not be treated.

We can understand these aspects of the behavior of the

growth velocity as follows:

Vanishing of growth velocity at finite kbr/kcap

We note that the only positive term in Eq. 1 is the branching

term. Therefore, when kbr ¼ kcap in the end-branching

models, the total number of filaments must decay because

leaving terms make a negative contribution to its time

derivative (we recall that
R 1808
0

Dðu; u9Þ du ¼ 1). Thus no

growth is possible for kbr/kcap # 1. The actual threshold is

greater, because of the leaving effects. For side-branching

models, the situation is different because of the n(u9) factor
in Eq. 1. This factor can be significantly greater than unity

for filaments with u near 908, which means that in principle

growth is possible for kbr/kcap # 1. As the obstacle slows, the

proportion of filaments with u near 908 increases because

they can remain in contact with the obstacle, and this causes

the branching rate per filament to increase. This explains the

small kbr tail in the side-branching results.

Asymptotic velocity

One would expect that as either the branching rate becomes

infinite, or the capping rate becomes small, sufficiently many

filaments would be generated that even the small fraction of

the filaments with u ’ 0 would be able to push the obstacle,

leaving the other filaments behind. This would give an

asymptotic velocity of Vmax. This is seen in Fig. 4 for very

small values of kcap, but the apparent asymptotic velocity

extrapolated from higher values is less than Vmax. To

understand this crossover behavior, we note that the

branching events can be divided into two types, those

occurring on filaments touching the obstacle, having

y[Vobst, and those occurring on filaments in the branching

region but not touching the obstacle, which have y\ Vobst.

As above, we will denote the number of filaments touching

the obstacle by ntouch. In steady state, contributions to ntouch
from branching are cancelled by capping effects alone, since

the leaving terms do not apply to the touching filaments. The

branching contribution consists of ‘‘direct’’ branching events

in which a touching filament is generated from another

touching filament, and ‘‘indirect’’ events in which a touching

FIGURE 4 Dependence of steady-state obstacle velocity Vobst on capping

rate kcap, with kbr fixed at Vmax/20a ¼ 5 s�1. Vmax: maximum projected

filament velocity. kbr: branching rate. Solid line: side-branching model in

three dimensions. Dotted line: end-branching model in three dimensions.

Dashed line: side-branching model in two dimensions. Long-dashed line:

end-branching model in two dimensions.

FIGURE 5 Effect of branching layer thickness d on kcap-dependence of

obstacle velocity Vobst, with kbr fixed at Vmax/20a ¼ 5 s�1. Vmax: maximum

projected filament velocity. kbr: branching rate. Solid line: d ¼ 0.1a (a ¼
monomer size). Dotted line: d ¼ a. Dashed line: d ¼ 5a. Long-dashed line:

d ¼ 10a.
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filament is generated from a nontouching one. In general, we

expect direct events to dominate if d is much less than the

typical branch spacing, since most newly generated non-

touching filaments will not have time to branch before they

leave the branching region. If we ignore indirect events

entirely, and take Du ¼ 0 for simplicity, then the angle u of

some of the touching filaments must exceed ubr/2 ¼ 358 for
direct branching events to occur. This means that Vobst #
cos(358)Vmax ¼ 0.87Vmax, giving an asymptotic value less

than Vmax. This explains the main parts of the curves in Figs.

3 and 4.

However, if kcap is very small, it is possible for the indirect

events to dominate. Even though they are a small fraction of

the total branching events, they can be sufficient to cancel

a small kcap. For indirect events, there is no geometrical limit

on the obstacle velocity. For example, a filament with u ¼
0 will produce a daughter filament with u ¼ 708, and this

filament can produce its own daughter filament with u ¼ 0.

Thus for very small values of kcap, propulsion at velocities

near Vobst is possible, and in this case indirect processes

dominate. Using very large values of kbr will also yield an

asymptotic velocity of Vmax, since the relevant quantity in

balancing branching with capping is the ratio of the

branching to the capping rates. In this case there will be an

added effect from the decrease of the average branch

spacing, which will also increase the fraction of indirect

branching events.

The above argument depends on the ratio of d to the re-

lative branch spacing. As d becomes smaller, the magnitude

of the indirect branching terms becomes less. One should

then have to go to progressively smaller values of kcap to

reach the regime where indirect branching dominates and the

velocity approaches Vmax. This is demonstrated in Fig. 5,

which shows Vobst vs. kcap for a range of values of d ranging

up to 10a, in the three-dimensional side-branching model.

The branching layer thickness cannot be much greater than

10a, because this would lead to exponential growth in the

filament density away from the obstacle, and this has not

been observed. It is seen in Fig. 5 that the growth velocity

varies in a fairly linear fashion with kcap down to a crossover
value kcap

c , at which it turns upward; kcap
c increases with d.

kcap
c should be proportional to the rate of indirect branch-

ing events. The latter is proportional to both the rate of

production kbr of new filaments and the fraction of these new

filaments which branch before they leave the branching

region. Since most of the new filaments will point at angles

relatively far from the growth direction, they will leave the

branching region rapidly. The fraction that branch before this

happens will be proportional to d/lbr, where lbr is the average
spacing between branches along a filament. Thus

k
c

cap ¼ akbrd=lbr; (9)

where a is a dimensionless constant. From our numerical

results, we find that a ¼ 0.2 and a ¼ 0.4 for side and end

branching, respectively, in three dimensions. The possibility

of applying this effect experimentally is evaluated in the

Discussion section.

Nucleation model

In nucleation models, the obstacle generates new filaments

without making use of the existing filament network, and it is

assumed that the generated filaments subsequently attach to

this framework. We thus take the overall generation rate for

new filaments to be independent of the filament density.

However, it is not possible for the orientation distribution of

new branches to be independent of n(u, t), since the new

branches must satisfy the 708 branching angle constraint. For
this reason, we obtain the equation of motion for the

nucleation model by dividing the first term in Eq. 1 by the

total rate of new filament generation, so that

@nðu; tÞ
@t

¼ knuc
B

ðumax

0

Dðu; u9Þnðu9Þnðu9; tÞdu9� kcapnðu; tÞ
� H½Vobst � yðuÞ�½ðVobst � yðuÞÞ=d�nðu; tÞ;

(10)

where knuc is total the number of filaments generated per unit

time,

B ¼
ðumax

0

Dðu; u9Þnðu9Þnðu9; tÞdu du93 ðarea or lengthÞ;

and the other quantities and parameters are as in the

autocatalytic model.

The area factor is used for three dimensions, the length

factor in two dimensions. We ignore the correction used in

Eq. 1 to account for exponential growth of the filament

density, because in nucleation models this does not occur.

This rate equation is solved by numerically stepping

forward in time, at a fixed obstacle velocity, until a steady-

state filament orientation distribution n(u) is obtained. The

force is then obtained via Eq. 3. In order to evaluate the right-

hand side of Eq. 3, it is necessary to take a specific form for

the force-velocity relation of a single filament. We take the

form suggested by Brownian-ratchet theory (Peskin et al.,

1993; Mogilner and Oster, 1996):

f ðy;VobstÞ ¼ kT

a

Vmax

y
lnðy=VobstÞ ðy$VobstÞ (11)

f ðy;VobstÞ ¼ 0 ðy\VobstÞ; (12)

which translates to an exponential dependence when the

velocity is given in terms of force. Here the factor of

ðVmax=yÞ ¼ 1=cos u accounts for the orientation dependence

of the step size per monomer.

Fig. 6 shows the calculated force-velocity relation for the

network in three-dimensional side- and end-branching nu-

cleation models. The parameters, kcap ¼ 0.35 s�1 and kbr ¼
Vmax/20a, are the same as in Figs. 3 and 4. To evaluate knuc
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we use the value knuc/kcap ¼ 100 suggested by experiments

(Kuo and McGrath, 2000) on Listeria; similar results are

obtained for the value knuc/kcap ¼ 10 suggested by experi-

ments (Cameron et al., 1999) on beads, except that the

horizontal scale is compressed. For comparison, we include

the force-independent behavior found in the autocatalytic

models. The network force-velocity relation in the nucleation

models differs from the exponential decay for a single

filament in two ways:

There is a very rapid drop-off in the low-force region,

where Vobst is near Vmax. For Vobst ’ Vmax; the number

of filaments is reduced by leaving effects, and only the

fraction of filaments with near optimal orientations

contact the obstacle. Thus only a very small number of

filaments contact the obstacle. This leads to a rapid

decrease of the velocity with applied force, since the

force per filament is large.

There is a decay at large forces, but it is slower than

exponential. This occurs because with increasing force

the load is redistributed between filaments of different

orientations. For small forces, filaments with u ’ 0

carry most of the load, because they are the only ones

in contact with the obstacle. However, for larger forces,

the most rapidly growing filaments are those with

larger values of u, as was pointed out in previous work

developing the Brownian-ratchet model for single

filaments (Mogilner and Oster, 1996). The velocities

of these filaments decay less rapidly with force, be-

cause their orientation gives a smaller step size per

monomer. At large forces, filaments with progressively

smaller values of y dominate, reducing the decay rate

of the velocity with applied force.

The overall shape of the force-velocity relation is quite

similar to that obtained by a ‘‘tethered-ratchet’’ model

(Mogilner et al., 2003) which treats two types of filaments,

attached and working, where the working filaments supply

the motile force by polymerization. In this model the

deviations from exponential behavior result from changes in

the relative numbers of attached and working filaments, an

effect not included in the present model.

We do not show detailed results for the dependence of the

velocity in nucleation models on the rate parameters kbr and
kcap. However, the main findings are that the drop-off of

velocity with increasing kcap is steeper than in autocatalytic

models, and its drop-off with decreasing knuc is more

rapid than its drop-off with decreasing kbr in autocatalytic

models.

Sensitivity to key approximations

The preceding sections have presented calculated growth

velocities for several models for branch generation during

actin-based motility, which differ in their underyling

assumptions and give distinct results. We now discuss how

these results depend on the approximations and assumptions

made in the models. The most important of these are the

following:

Neglect of filament-filament interactions

The stochastic simulations (Carlsson, 2001) showed that at

typical polymerized-actin densities, steric volume exclusion

has only a small impact. Electrostatic interactions are also

expected to have minor effects because the Debye screening

length of 1 nm at typical physiological ionic strengths of 150

mM is much less than the typical filament spacing (Abraham

et al., 1999) of 30 nm. Thus the neglect of filament-filament

interactions in the above models seems to be a reasonable

approximation. Inclusion of these interactions would cause

the velocity to be reduced at large branching rates, small

capping rates, and high forces in autocatalytic models. The

effects in nucleation models would be weaker because the

density of filaments approaches a constant value at high

forces.

Neglect of filament bending and branch-point elasticity

These effects could lead to individual filaments changing

their orientation over time. However, as discussed above,

typical branch-point angle fluctuations are ;108. Provided
that filaments remain short, the angle fluctuations from

filament bending are roughly the same as those from the

branch points (Carlsson, 2001). Thus the changes in filament

orientation should not have a major impact on the results.

Bending and elasticity could also have a substantial impact

on the single filament force-velocity relation. However,

previous work (Mogilner and Oster, 1996) has argued that

the exponential form continues to hold when filament

elasticity is included.

The actin network can also propagate effective elastic

interactions from one point to another. These could lead to

FIGURE 6 Force-velocity relation for nucleation and autocatalytic

models, with side and end branching. Rate parameters are kcap ¼ 0.35 s�1

and kbr ¼ Vmax/20a ¼ 5 s�1. Vobst: obstacle velocity. Vmax: maximum free-

filament velocity. Fobst: force exerted by filaments on obstacle. a: step size

along filament.
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long-range effective interactions between filaments. The

major effect of such interactions would be a stiffening which

would increase with increasing filament density. Such

a stiffening would reduce the filament-end fluctuations in

a density-dependent fashion. This would lead to a reduction

in network growth velocity with increasing density.

However, this effect is expected to be small, because at

observed filament lengths, the thermal fluctuations of

individual filaments are already equal to or greater than the

monomer size; the network elasticity would only serve to

enhance these.

Neglect of severing and annealing effects

These have been treated previously in a rate-equation model

(Sept et al., 1999). The rates obtained there are much lower

than the capping and branching rates used here. However, if

there is a very large acceleration of severing and/or

nucleation in the cellular environment, these effects could

become important. If filament severing is independent of

interactions between filaments, the severing terms are linear

in the filament concentration. Thus they would add a linear

term to Eq. 1. Such a term would transfer free ends in the

network from the branching region to regions farther from

the obstacle, since the leftover filament free barbed ends

would generally be outside the branching region. The

severing effects would thus in some ways act like

an increase in kcap or the leaving terms. The force-

independence of the velocity in the autocatalytic models

would continue to hold because it depends only on the

linearity of the rate equation. However, in the nucleation

models, inclusion of severing would have the effect of

accelerating the drop-off of velocity with applied force.

On the other hand, annealing corresponds to nonlinear

terms (Sept et al., 1999) in the rate equation. The most

important type of event would be the incorporation of

filament fragments into the network. The resulting effects on

the branching region would be small, because the fragments

would be overwhelmingly capped. Even the uncapped ones

would have a small effect because the likelihood of their free

ends being inside the branching region after network

incorporation would be small. In addition, the time scales

for annealing were found (Sept et al., 1999) to be on the

order of several hours, and thus they are likely too slow to be

important here.

Filament uncapping and branch detachment

Spontaneous uncapping rates are estimated (Schafer et al.,

1996) to be in the range of 10�4 s�1. Thus very little

uncapping would occur during the time that a capped

filament spends in the branching region. However, obstacle-

induced filament uncapping could occur more rapidly, and

this would change the growth velocities. Branch detachment

rates are related to the decay of the filamentous-actin density

away from the obstacle. Observations of Listeria tails

(Tilney and Tilney, 1994) and tails on beads mimicking

Listeria (Cameron et al., 2001) indicate that the tail density

decays over a distance of microns away from the obstacle,

and similar results are obtained for the network density

around lamellipodia (Svitkina and Borisy, 1999). Thus little

branch detachment is expected over the thickness of the

branching region.

Restrictions on the orientation of new filaments

Our earlier simulations (Carlsson, 2001) had suggested that

observed filament structures near the growth front are better

described if new branches are allowed only in the forward

direction. We have performed runs including such effects,

and find curves quite similar to those shown above. Provided

that kbr is adjusted to keep the filament generation rate

constant, the main effect of the orientation restriction is

a moderate increase in the growth velocity.

ATP hydrolysis

Hydrolysis of a filament subunit generally is believed to

occur on a time scale of several seconds (Blanchoin and

Pollard, 2002), and by this time the branching region will

have moved away from the subunit.

Depletion of actin and actin-binding proteins

These effects would change the rate parameters in Eq. 1, as

well as Vmax and the force-velocity relation. A previous

analysis of this issue (Carlsson, 2001) showed that for

obstacles of size up to 1 mm, the depletion effects are less

than 20%. For larger obstacles, the effects can be more

significant.

Rate-limiting activation steps upstream
of the branch-generation step

If the Arp2/3 activation process has a long activation time,

then there will be a limit to the number of filaments that can

be generated per unit time per unit area of the obstacle. The

presence of such activation steps would result in a behavior

similar to that of nucleation models, even if preexisting

branches are required for new branch nucleation.

Effects of fluctuations due to small numbers of filaments

We expect these to be proportional to
ffiffiffiffiffiffiffi
Ntot

p
. Taking 20% as

a cutoff for fluctuations, substantial corrections to the present

results would begin to set in at Ntot ¼ 25.

The relation (Eq. 11) between force and filament velocity,
used in the nucleation model

This relation assumes an exponential dependence of the

velocity on applied force, and a particular exponential decay
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parameter. Although such a relationship has been found in

model calculations (Peskin et al., 1993; Mogilner and Oster,

1996) and Brownian-dynamics simulations (Carlsson,

2000), the true relation may be more complex or have

a different decay parameter. In addition, Eq. 11 ignores

potential attachment forces between the filaments and the

obstacle. The presence of such attachments in the case of

Listeria has been demonstrated by attempts to detach the

bacterium from its tail using optical tweezers (Gerbal et al.,

2000), and by measurements of the bacterium position (Kuo

and McGrath, 2000) which have found very small fluctua-

tions. In the case of beads, the presence of attachments is

demonstrated by the continuous motion of a 50 nm bead

propelled by a single filament (Cameron et al., 2001);

without attachments, the bead would rapidly diffuse away

from the filament tip. The results for the velocity in the

autocatalytic model would continue to hold regardless of the

attachment force, since the force does not enter these

calculations. The results for the nucleation model would be

strongly influenced by attachments, although the nature and

magnitude of the effects are not certain. As mentioned above,

a recent model (Mogilner et al., 2003) has treated the effects

of filament attachments on the force-velocity relation for

Listeria, and found that the attachments tend to accentuate

the drop-off at small forces, and reduce the drop-off at high

velocities. Thus they tend to reinforce the behavior found

here, and could amplify the differences between the

autocatalytic and nucleation models.

DISCUSSION

The above analysis has shown that both the dependence of

the growth velocity on key protein concentrations and the

force-velocity relation are sensitive to the details of the

generation process for new branches. This motivates

measurements of these dependences. Measurement of the

dependence of the growth velocity on the activated Arp2/3

and capping-protein (CP) concentrations would require the

use of a pure-protein medium in order to control secondary

effects from the concentrations of other proteins. Such media

have been used in studies of both Listeria (Loisel et al.,

1999) and plastic beads coated with VCA (Bernheim-

Grosswasser et al., 2002). In pure-protein media, one could

monitor the free-actin concentration in the growth medium as

the concentrations of activated Arp2/3 and capping protein

are changed, and buffer the actin appropriately to keep the

free-actin concentration constant. Measurements of the

dependence of the growth velocity on the Arp2/3 concen-

tration at fixed CP concentration could shed light on the

relative importance of side and end branching. As indicated

in Fig. 3, end-branching models would lead to a sharp cutoff

in growth when the Arp2/3 concentration drops below

a critical value, while side-branching models would display

a much more gradual cutoff. Measurements of the de-

pendence of the growth velocity on CP concentration at fixed

Arp2/3 concentration could, in principle, help establish the

thickness of the branching region. The results in Fig. 5 show

that for a branching region less than a single monomer in

thickness, the plot is essentially a straight line as the CP

concentration goes to zero. If the branching layer thickness is

one or a few monomers, the velocity displays a sharp upturn

at small CP concentrations. If the thickness is greater than

a few monomers, the velocity curves smoothly upwards as

the CP concentration drops. However, because the magni-

tude of the differences between the curves is fairly small,

obtaining velocity measurements of sufficient resolution to

assess the branching layer thickness might be impossible.

Quantitative measurement of the force-velocity relation

would appear to be the most straightforward way of using the

present results to evaluate competing models of filament

generation. Such experiments have been performed by using

methylcellulose to vary the viscosity, for beads moving in

pure-protein media (Wiesner et al., 2003) and bacteria

moving in cell extracts (McGrath et al., 2003). Because of

the simplicity of the growth medium and moving obstacle,

the bead experiments would appear to be the closest to the

present calculations. These experiments indicated that, over

a broad range of forces up to;50 pN, the velocities of 2 mm
beads varied by only 30%. This behavior is consistent with

the autocatalytic model discussed above. However, we

cannot yet draw a definite conclusion because the nucleation

rate in the nucleation model is not firmly established, and

with a very high nucleation rate the velocity could be

insensitive to force up to 50 pN. The measurements of

bacterial motion found that the velocity at 50 pN opposing

force is much less than its value at zero opposing force.

These results would suggest that the generation rate of new

filaments is limited, perhaps because of the presence of

different rate-limiting steps than for the beads. We note,

however, that in the bead experiments, a correction for the

effects of methylcellulose not related to viscosity was made,

and no such correction was made in the bacterium experi-

ments. This could also be an important factor in explaining

the differences between the results.

Other possible methods for measuring the force-velocity

relation involve the use of laser-based optical-tweezer tech-

niques. In such methods one tracks a fluorescently labeled

object (bead or bacterium), and the force is determined by

the position of the object relative to the center of the laser

spot. One can then impose a feedback loop which keeps the

force fixed by motion of the substrate, and then measure the

velocity by tracking the object’s coordinates. This method

would avoid any uncertainties resulting from the addition of

thickeners to the cell extract. However, because optical

tweezers are only able to exert forces up to;40 pN, it would

be necessary to use conditions under which not too many

filaments impinge on the object.

Two other types of experiments in the literature have some

relevance to our results. The first involves attempts to stop
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the motion of Listeria with an optical trap (Gerbal et al.,

2000). These experiments found that the trap could temp-

orarily stop the motion, but the bacterium eventually broke

free due to an increase in the force supplied by the tail.

However, because the force exerted by the trap is only ;10

pN, these experiments are unable to distinguish between the

models considered here. The second treats the dynamics of

the actin filament density behind ‘‘hopping’’ Listeria. These
are mutants in which roughly 80 residues of the ActA surface

protein have been deleted. They move rapidly for short

intervals of time, stop for longer periods, then move again

and repeat the cycle. Experiments with fluorescent actin

(Lasa et al., 1997; Fung and Theriot, 1998) have shown that

the fluorescence intensity increases during the stationary

period, suggesting that the actin density is building up to

counter the forces opposing the motion of the bacterium.

However, the opposing force is not known in these

experiments.
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