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Abstract

The results of investigations to determine the elastic–plastic behaviour of unpressurised pipes with long offset indenta-
tions and unsymmetric support conditions are presented in this paper. They include the results of experimental tests, FE
analyses and analytical methods. Three different materials and five different geometries are used to investigate their effects
on the behaviour. A comparison of the experimental results, FE and analytical solutions indicates that the general analyt-
ical formulation developed in this paper for predicting the peak indenter loads in offset indented pipes, is reasonably accu-
rate. Also, the analyses presented in this paper indicate that using a representative nominal flow stress, which is the average
of yield and ultimate tensile stresses, in the analytical method, is appropriate for predicting the peak indenter loads.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Buried pipelines are widely used for transmitting gases and liquids from their production sites to houses and
industrial organisations. The safety of gas pipelines is of considerable concern within the gas industry due to
the dangers associated with potential leaks and rupture. Indentation damage caused by diggers and earth
movement can have a serious effect on the structural integrity of a pipe and can result in leak or rupture.
The indentation of pipelines has therefore been the subject of research for many years, e.g., Corder and Cha-
tain (1995), Fowler et al. (1995), Park and Kyriakides (1996), Kiefner et al. (1996), Lancaster and Palmer
(1996a,b), Clapham et al. (1998), Doglione and Firrao (1998), Leis et al. (1998) and Alexander (1999).

Most impact damage to pipelines is very localised. However, in some cases, the damage can extend over a
significant length of the pipe, see, e.g., (Alexander, 1999; Hyde et al., 2005a,b), where the behaviour, except at
ends of the damage zone, is essentially two dimensional and can be analysed as a two-dimensional plane strain
ring.
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Nomenclature

a angular position
a1,a2,a3,a4,a5 angles of rotation of the plastic hinges
d deflection/dent depth at the top centre of pipe/ring
h1 indentation angular offset position
h2,h5,h3,h4 angular positions of the supports and hinges
ry,rf,rUTS yield, flow and ultimate tensile stresses
D outer diameter of the pipe/ring
F indenter force
FU upper bound to limit load
L axial length of a dented ring
Ls(h1,h2,h5) normalised function
M0 limit moment, defined as ryt2/4
R mean radius of the pipe/ring
t wall thickness
WI internal energy dissipated
WE work done by the force F
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The authors of this paper have investigated the limit load and force–deflection predictions of dented rings,
with symmetrical supports, subject to symmetrical radial indenter loading for unpressurised (Hyde et al.,
2005a) and pressurised pipes (Hyde et al., 2005b) using experimental tests, analytical methods and FE anal-
yses. Previous work for pipes with symmetric supports (Hyde et al., 2005a,b) has shown that internal pressure
causes the pipe to become much stiffer than the unpressurised pipe, and the analytical solutions for pressurised
pipes are generally more complicated. In this paper, only the effects of unsymmetric supports and loading con-
ditions on the indenter limit load for unpressurised pipes are investigated using experimental tests, FE analyses
and analytical methods. Pressurised pipes with offset indentation are covered in another publication (Hyde
et al., 2006).

For underground pipelines, the surrounding soil produces support for the pipelines and produces reaction
forces that resist the pipeline deformation or the movements caused by indentation loads. Exact simulation of
the support conditions produced by the surrounding soil is difficult and would require many experimental tests
and corresponding FE and/or analytical analyses to be performed. In this paper, a general analytical formu-
lation, which covers the effects of the support and indentation positions on the limit loads of indented rings, is
described.

The indentation type investigated in this paper is shown in Fig. 1. If the offset indentation angle, h1, is zero,
the indentation is radial with unsymmetric support conditions. Symmetric indentation conditions, in which
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Fig. 1. Indentation loading and support conditions.
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equal right and left support angles (h2 = h5) and zero offset indentation angle (h1 = 0�) exist, have been cov-
ered in previous publications for unpressurised (Hyde et al., 2005a) and pressurised pipes (Hyde et al., 2005a).
The objective of this work is to extend the previous work on FE and analytical solutions for a radial pipe
indentation with symmetrical supports to cover more practical offset unsymmetrical indentations. The radial
indentation may be considered as a special case of the offset indentation.

2. Experimental work and validation of the FE analyses

2.1. Material

The material chosen for the experimental investigation is 6082-T6 aluminium alloy. The tensile stress–strain
curve for the material is shown in Fig. 2; Young’s modulus, Poisson’s ratio, yield stress and ultimate tensile
stress are given in Table 1. Fig. 2 also shows the stress–strain curve for a practical gas pipeline material,
namely X65 SAW. The material properties for 6082-T6 aluminium alloy, X65 SAW steel and an idealised elas-
tic–plastic material (Ideal-A) are given in Table 1.

2.2. Geometry and loading

In order to perform the experimental tests for unsymmetric supports, 6082-T6 aluminium alloy rings were
placed on a V-block, and plaster, which was cast into the gap between the rings and the V-block, was used to
form an arc supporting bed, as shown in Fig. 3. The rings were also clamped to the V-block at position F.
These support conditions provide an arc support. The support angles, h2 and h5 (55� and 35�, respectively)
are shown in Fig. 3. Radial indentation, i.e., h1 = 0�, was used. The rings were radially loaded at point A

by a Bright Drawn Mild Steel indenter with an end radius of 2 mm and an axial length of 50 mm.
The tests were conducted on an Instron 1195 uniaxial test machine with 1 kN and 50 kN load cells. The

load point displacement rate was set to 2 mm/min and the data (force and displacement) were recorded auto-
matically. Tests were performed on four rings with the dimensions given in Table 2. Also given in Table 2 are
the peak indenter loads obtained during the tests. The peak loads, or limit loads, were obtained from the max-
imum load point of the indenter force (per unit length of the pipe) versus dent depth curves, as shown in Fig. 4.
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Fig. 2. True stress–strain curves of 6082-T6 aluminium alloy and X65 SAW pipe steel.

Table 1
Material parameters used in experiment tests

Material E (GPa) ry (MPa) rUTS (MPa) Poisson’s ratio

6082-T6 alloy 70 300 351 0.3
X65 SAW 223 448 675 0.3
Ideal-A 70 300 · 0.3
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Fig. 3. Dented ring test conditions.

Table 2
Geometries and experimental peak load results for 6082-T6 aluminium alloy dented ring tests

Test no. D (mm) t (mm) D/t L (mm) Peak load/unit length (N/mm)

TE1 120 1.5 80.0 50 14.9
TE2 125 3 41.6 50 64.0
TE3 120 5 24 50 203
TE4 120 5 24 50 200.3
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Fig. 4. Indenter force versus dent depth curves for 6082-T6 aluminium alloy rings, obtained from experiments with an offset angle,
h1 = 0�, a right support angle h2 = 55�, and a left support angle h5 = 35�.
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2.3. Ring test results

The indenter force versus depth curves obtained from the four experiments are shown in Fig. 4. The repeat-
ability of the results is seen to be good from the results obtained for tests TE3 and TE4, which have the same
dimensions and test conditions. As the thickness is reduced and hence the D/t value is increased, the peak load
drops very significantly and the initial slopes are also reduced.

2.4. FE meshes, boundary conditions

The ABAQUS FE software (ABAQUS, 2003) was used for the analyses. All models consisted of 3600 8-
noded plane strain elements with 2 · 2 integration points, as shown in Fig. 5. This level of mesh refinement
was considered adequate for predicting accurate displacements and stresses. However, a coarser mesh may
be used if only the displacements are of interest. Alternatively, shell elements can also be used to represent
the pipe geometry, see, e.g., Hyde et al. (2001).
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Fig. 5. FE mesh used for the dented ring tests: (a) mesh of a ring and (b) locally amplified mesh.
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The rings were fully restrained at the outer diameter at positions C and D. These support points were cho-
sen in order to compare the FE solutions to the analytical solution described in Section 4. The support con-
ditions used in the experiments are only prevented from movement in the outer normal directions of the rings.
The indentation load was applied in the vertical downward direction at the outer diameter position at point A.

The loads were applied using a rigid indenter with a 2 mm radius and rigid surface contact elements and
assuming that no slipping occurs between the indenter and the rings. The large deformation, elastic–plastic
analyses were performed using the standard arc-length (Riks) algorithm facility within ABAQUS.

2.5. Comparison of FE results with the experimental data

The FE predictions are compared with the experimental results in Table 3 and Fig. 6. It can be seen that the
FE predictions are slightly higher than the experimental results, but in general, the predictions are in good
agreement with the experimental data. The small discrepancy between the FE and experimental results is
thought to be due to the fact that the support conditions, on the outer surface of the rings at C and D, used
in the FE analyses, were fully fixed whereas the displacements at the same positions in the experiments are
only prevented from movements in the outer normal directions of the rings. Hence, the rings used in the
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Fig. 6. Comparison of FE predictions with experimental indenter force versus depth curves obtained from the 6082-T6 alloy ring tests
with h1 = 0�, h2 = 55� and h5 = 35�.

Table 3
D/t ratios, limit loads obtained from the experimental tests and FE

D/t Limit load (N/mm) Limit load (N/mm) Difference (%)

80 TE1 14.9 FE1 15.5 4
41.6 TE2 64.0 FE2 69.5 8.6
24 TE3 203.0 FE3 225 10.8
24 TE4 200.3 12.5
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FE analyses are subjected to a slightly higher level of constraint than those used for the experiments. However,
all of the differences between the FE solutions and the corresponding experimental results are within 13%. This
degree of correlation was considered to be good enough and so the same mesh was used for all of the subse-
quent analyses reported in this paper.

3. Results of general FE analyses

3.1. Materials and geometry

In addition to the FE analyses performed for comparison with the experimental test results for the alumin-
ium alloy (6082-T6), FE analyses were obtained for two other materials. Since practical pipelines are usually
made from a variety of steels, FE analyses were performed using material data for one of these steels, namely
X65 SAW. An idealised material, Ideal-A, with elastic, perfectly plastic material properties was also used to
investigate the influence of material properties on the elastic–plastic response. Ideal-A material has a Young’s
modulus of 70 GPa and yield stress of 300 MPa. The material properties are summarised in Table 1. In all of
the FE analyses, the materials were assumed to obey an isotropic hardening rule. The ring dimensions used in
the FE analyses are shown in Table 4. Details of the FE analysis are shown in Tables 5–8.

3.2. Behaviour for pipes made from an idealised elastic perfectly plastic material (Ideal-A)

The idealised elastic perfectly plastic material, Ideal-A, was chosen to investigate the effects of the support
and indenter offset angular position on the limit loads. A total of 111 FE analyses (FE4 to FE114) were per-
formed for the Ideal-A material. The typical behaviour obtained from these analyses is as indicated in Fig. 6
which was obtained for the aluminium alloy (FE and experiments). The peak (i.e., limit) loads obtained from
analyses (FE4 to FE114) were normalised by dividing them by (ryt2/2R) and these are shown in Figs. 7–10.

Fig. 7 shows that the peak load slightly increases as the indenter offset angle increases from 0� to 20�. The
peak load increases more significantly as the offset angle increases from 20� to 60�. However, at these higher
offset angles, it is more likely that slipping will occur between the indenter and the ring. Also, it can be seen,
from Figs. 8–10, that the peak load decreases when either the right or left support angle is increased.

3.3. Behaviour of pipes made from X65 SAW steel material

A further 111 FE analyses were performed using the X65 SAW steel material data. The loading and bound-
ary conditions used for the analyses (FE115 to FE225) are given in Tables 6–8. The main reason for perform-
Table 5
Ring dimensions, loading and support positions, and limit load solutions obtained from the FE analyses for 6082-T6 aluminium alloy

FE no. D/t h1 (�) h2 (�) h5 (�) Flimit (N/mm)

FE1 80.0 0 35 55 15.5
FE2 41.6 0 35 55 69.5
FE3 24.0 0 35 55 225

Table 4
Ring dimensions used in the FE analyses

FE model no. D (mm) t (mm) D/t

1 120 1.5 80
2 120 5.0 24
3 128 3.0 42.6
4 88.8 1.2 72
5 92.4 3.0 30.8



Table 6
Ring dimensions, loading and support positions, and limit load solutions obtained from the FE analyses for the idealised material (ideal-
A) and for X65 SAW, for D/t = 72

D/t h1 (�) h2 (�) h5 (�) Idealised-A results X65 SAW results

FE no. Flimit (N/mm) FE no. Flimit (N/mm)

72.0 0 45 45 FE4 12.7 FE115 24.2
72.0 10 45 45 FE5 12.7 FE116 24.4
72.0 20 45 45 FE6 12.9 FE117 25.0
72.0 30 45 45 FE7 13.9 FE118 26.2
72.0 40 45 45 FE8 15.1 FE119 28.6
72.0 50 45 45 FE9 17.3 FE120 32.7
72.0 60 45 45 FE10 20 FE121 38.2
72.0 20 45 0 FE11 20.8 FE122 39.5
72.0 20 45 10 FE12 18.3 FE123 34.5
72.0 20 45 20 FE13 16.4 FE124 30.9
72.0 20 45 30 FE14 14.8 FE125 28.2
72.0 20 45 40 FE15 13.5 FE126 26.0
72.0 20 45 50 FE16 12.8 FE127 24.1
72.0 20 45 60 FE17 11.7 FE128 22.5
72.0 20 45 70 FE18 11 FE129 21.2
72.0 20 45 80 FE19 10.3 FE130 19.8
72.0 20 45 90 FE20 9.35 FE131 17.9
72.0 20 0 45 FE21 13.8 FE132 26.8
72.0 20 10 45 FE22 13.6 FE133 26.5
72.0 20 20 45 FE23 13.4 FE134 26.1
72.0 20 30 45 FE24 13.2 FE135 25.5
72.0 20 40 45 FE25 13.0 FE136 25.3
72.0 20 50 45 FE26 12.8 FE137 24.8
72.0 20 60 45 FE27 12.6 FE138 24.3
72.0 20 70 45 FE28 12.4 FE139 23.9
72.0 20 80 45 FE29 12.2 FE140 23.4
72.0 20 90 45 FE30 11.7 FE141 22.4
72.0 0 0 45 FE31 15.0 FE142 29.8
72.0 0 10 45 FE32 14.5 FE143 28.3
72.0 0 20 45 FE33 13.9 FE144 27.0
72.0 0 30 45 FE34 13.5 FE145 25.8
72.0 0 40 45 FE35 13 FE146 24.7
72.0 0 50 45 FE36 12.4 FE147 23.7
72.0 0 60 45 FE37 12.0 FE148 22.8
72.0 0 70 45 FE38 11.7 FE149 22.0
72.0 0 80 45 FE39 11.2 FE150 21.2
72.0 0 90 45 FE40 10.4 FE151 19.9
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ing these analyses was to investigate the applicability of using a representative nominal flow stress, rf, for pre-
dicting the peak loads. In this paper, rf is taken to be the average of the yield stress and the ultimate tensile
stress. As with the idealised material, Ideal-A, the peak loads obtained from X65 SAW steel are normalised by
dividing them by (rft

2/2R). The results are shown in Figs. 11–14.
A comparison of Figs. 11–14, for the X65 SAW material, with the corresponding results for the Ideal-A

material (Figs. 7–10) shows very close correlation. This is more clearly shown in Fig. 15(a)–(d) in which
the normalised peak loads for the X65 SAW material are also plotted against the corresponding results
obtained for the Ideal-A material, for different indenter offset and support angles. It can be seen, from
Fig. 15(a)–(d), that very close correlation of the results is obtained for Ideal-A and X65 SAW steel materials.
This indicates that the representative nominal flow stress chosen to normalise the data can be used to predict
the peak loads, or limit loads, for hardening materials, from data for idealised elastic–plastic materials (see
Hyde et al., 2005a). This conclusion is important when considering the suitability of analytical methods for
predicting the behaviour of steel pipes.



Table 7
Ring dimensions, loading and support positions, and limit load solutions obtained from the FE analyses for the idealised material (ideal-
A) and for X65 SAW, for D/t = 42.6

D/t h1 (�) h2 (�) h5 (�) Ideal-A results X65 SAW results

FE no. Flimit (N/mm) FE no. Flimit (N/mm)

42.6 0 45 45 FE41 63 FE152 119
42.6 10 45 45 FE42 63.5 FE153 120.
42.6 20 45 45 FE43 65 FE154 125
42.6 30 45 45 FE44 69 FE155 133.
42.6 40 45 45 FE45 76.5 FE156 145.
42.6 50 45 45 FE46 89 FE157 166
42.6 60 45 45 FE47 107 FE158 199.
42.6 20 45 0 FE48 106 FE159 202
42.6 20 45 10 FE49 92 FE160 176
42.6 20 45 20 FE50 81.5 FE161 157
42.6 20 45 30 FE51 73.5 FE162 142
42.6 20 45 40 FE52 67.5 FE163 130
42.6 20 45 50 FE53 63 FE164 120.
42.6 20 45 60 FE54 59 FE165 112.
42.6 20 45 70 FE55 55.5 FE166 105
42.6 20 45 80 FE56 52 FE167 98
42.6 20 45 90 FE57 46.8 FE168 88
42.6 20 0 45 FE58 71 FE169 134.
42.6 20 10 45 FE59 70 FE170 133
42.6 20 20 45 FE60 68.5 FE171 130.
42.6 20 30 45 FE61 67.5 FE172 128.
42.6 20 40 45 FE62 66 FE173 126
42.6 20 50 45 FE63 64.5 FE174 124
42.6 20 60 45 FE64 63 FE175 121.
42.6 20 70 45 FE65 62 FE176 119.
42.6 20 80 45 FE66 61 FE177 117
42.6 20 90 45 FE67 56.5 FE178 110.
42.6 0 0 45 FE68 75.5 FE179 148.
42.6 0 10 45 FE69 72.5 FE180 140.
42.6 0 20 45 FE70 69.5 FE181 133.
42.6 0 30 45 FE71 67 FE182 127
42.6 0 40 45 FE72 64 FE183 121.
42.6 0 50 45 FE73 62.5 FE184 116.
42.6 0 60 45 FE74 59.5 FE185 112
42.6 0 70 45 FE75 57.5 FE186 108
42.6 0 80 45 FE76 55 FE187 104
42.6 0 90 45 FE77 50.5 FE188 96
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4. Analytical methods

4.1. Initial load–displacement gradient

As with the case of symmetrical loading and support conditions for unpressurised pipes (Hyde et al.,
2005a), the elastic force–deflection behaviour, for an unpressurised ring, with unsymmetrical loading and sup-
port conditions, can be obtained using Castiglano’s method. The resulting relationship between force and
deflection is given by
F ¼ Et3

12R3

D
ADþ Bþ C

� �
d ð1Þ
where A, B, C and D are functions of the angles h2 and h5, i.e.,



Table 8
Ring dimensions, loading and support positions and limit load solutions obtained from the FE analyses for the idealised material (ideal-A)
and for X65 SAW, for D/t = 30.8

D/t h1 (�) h2 (�) h5 (�) Ideal-A results X65 SAW results

FE no. Flimit (N/mm) FE no. Flimit (N/mm)

30.8 0 45 45 FE78 90.5 FE189 170.
30.8 10 45 45 FE79 91 FE190 177.
30.8 20 45 45 FE80 92.5 FE191 179
30.8 30 45 45 FE81 99 FE192 190.
30.8 40 45 45 FE82 111 FE193 203.
30.8 50 45 45 FE83 128. FE194 237.
30.8 60 45 45 FE84 152. FE195 284
30.8 20 45 0 FE85 153. FE196 292
30.8 20 45 10 FE86 133. FE197 254.
30.8 20 45 20 FE87 117 FE198 226
30.8 20 45 30 FE88 104. FE199 203.
30.8 20 45 40 FE89 96 FE200 186
30.8 20 45 50 FE90 89.5 FE201 172
30.8 20 45 60 FE91 83.5 FE202 160
30.8 20 45 70 FE92 78 FE203 149
30.8 20 45 80 FE93 73 FE204 138.
30.8 20 45 90 FE94 66.5 FE205 124.
30.8 20 0 45 FE95 101 FE206 192
30.8 20 10 45 FE96 99 FE207 189.
30.8 20 20 45 FE97 97.5 FE208 186.
30.8 20 30 45 FE98 95 FE209 183.
30.8 20 40 45 FE99 93.5 FE210 180.
30.8 20 50 45 FE100 91.5 FE211 177.
30.8 20 60 45 FE101 90 FE212 174.
30.8 20 70 45 FE102 88.5 FE213 171.
30.8 20 80 45 FE103 86.5 FE214 167.
30.8 20 90 45 FE104 81.5 FE215 157.
30.8 0 0 45 FE105 109. FE216 214
30.8 0 10 45 FE106 104. FE217 202
30.8 0 20 45 FE107 100 FE218 191
30.8 0 30 45 FE108 96 FE219 182
30.8 0 40 45 FE109 92 FE220 174
30.8 0 50 45 FE110 88.5 FE221 167
30.8 0 60 45 FE111 85.5 FE222 160.
30.8 0 70 45 FE112 82 FE223 154.
30.8 0 80 45 FE113 78.5 FE224 148
30.8 0 90 45 FE114 72 FE225 136.
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A ¼ 1

8
pþ h2 þ h5 þ

1

2
ðsin 2h2 þ sin 2h5Þ

� �

B ¼ 1þ 1

2
sin h2 þ

1

2
sin h5

� �
ðB1þ B2þ B3Þ

B1 ¼ sin 2h2 þ sin 2h5 þ sinðh2 þ h5Þ þ 3þ 1

2
sin h2 sin h5

� �
ðcos h2 þ cos h5Þ

B2 ¼ � 1

2
ðpþ h2 þ h5Þðcos2 h2 þ sin h2 þ cos2 h5 þ sin h5 þ 2Þ

B3 ¼ � 1

2
cos h2 sin2 h5 �

1

2
sin2 h2 cos h5

C ¼ 1

4
1þ 1

2
sin2 h2 þ sin h2 þ

1

2
sin2 h5 þ sin h5

� �
ðC1þ C2Þ

C1 ¼ ðpþ h2 þ h5Þðcos2 h2 þ cos2 h5Þ
C2 ¼ � sin 2h2 � sin 2h5 � 2 sinðh2 þ h5Þ � 4 cos h2 � 4 cos h5

D ¼ 1

2
ðpþ h2 þ h5Þ2 � ðcos h2 þ cos h5Þ2 �

1

4
ðpþ h2 þ h5Þðsin 2h2 þ sin 2h5Þ

ð2Þ
Hence, the initial slope, K, of the indenter force versus depth curves, for an unpressurised ring with unsym-
metrical loading and support condition, is given by
K ¼ Et3

12R3

D
ADþ Bþ C

� �
ð3Þ
Fig. 16 shows a typical comparison between the initial gradients obtained from the FE and experimental
tests with the analytical predictions. It can be seen that the agreement is excellent. This degree of accuracy
is applicable to all of the materials, geometries, load positions and support positions investigated.

4.2. Upper bound limit load theory

As in the case of symmetrical support and radial loading conditions, discussed in Hyde et al. (2005a), FE
analysis indicated that the offset indentation resulted in the ring having five distinct plastic regions. Hence, in
order to determine the upper bound, it was assumed that the offset indenter ring has five plastic hinges, at posi-
tions A, B, C, D and E, as shown in Fig. 17(a). The rotational angles of these five plastic hinges (A, B, C, D and
E) are denoted as a5, a2, a1, a3 and a4, respectively, as shown in Fig. 17(b). If the load point, position A, moves
vertically downwards, as shown in Fig. 17(b), the relationships between the angles of rotation and the load line
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displacement can be determined and hence the upper bound analysis method, previously used for symmetrical
support and loading (Hyde et al., 2005a,b), can again be used.
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To determine the upper bound, the angles of the plastic hinge rotation and the line displacement are
assumed to be very small. On the basis of the geometric compatibility of the deformations, the kinematic rela-
tionships can be represented by the following equations:
da2 ¼
cos h1 þ sin h5

cos h1 � sin h3

da1 ð4aÞ

da4 ¼
cos h1 þ sin h2

cos h1 � sin h4

da3 ð4bÞ

da5 ¼ da2 þ da4 � da1 � da3 ð4cÞ

dd ¼ R
cosðh4 � h1Þ � cosðh2 � h1Þ þ sinðh2 þ h4Þ

cos h1 � sin h4

da3 ð4dÞ

dd ¼ R
cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ

cos h1 � sin h3

da1 ð4eÞ
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From Eqs. (4d) and (4e), it follows that
da3 ¼
cos h1 � sin h4

cos h1 � sin h3

cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ
cosðh4 � h1Þ � cosðh2 � h1Þ þ sinðh2 þ h4Þ

da1 ð5Þ
Substituting Eq. (5) into (4b) gives
da4 ¼
cos h1 þ sin h2

cos h1 � sin h3

cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ
cosðh4 � h1Þ � cosðh2 � h1Þ þ sinðh2 þ h4Þ

da1 ð6Þ
The internal energy dissipated, WI, at the plastic hinges, is given by
W I ¼ M0ðda1 þ da2 þ da3 þ da4 þ da5Þ ð7Þ

where
M0 ¼
1

4
ryt2 ð8Þ
where t is the ring wall thickness and ry is the material yield stress.
Substituting for da2, da3, da4 and da5 from Eqs. (4a), (5), (4b) and (4c) into (7) gives
W I ¼ 2M0

cos h1 þ sin h5

cos h1 � sin h3

þ cos h1 þ sin h2

cos h1 � sin h3

cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ
cosðh4 � h1Þ � cosðh2 � h1Þ þ sinðh2 þ h4Þ

� �
da1 ð9Þ
Based on Eqs. (4d) and (4e), the work done, WE, by the external force, F, is given by
W E ¼ F dd ¼ RF
cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ

cos h1 � sin h3

da1 ð10Þ
Since the work done by the external force is equal to the internal energy dissipated, then Eqs. (9) and (10) give
F ¼ 2M0

� 1

R
cos h1 þ sin h5

cosðh3 þ h1Þ � cosðh5 þ h1Þ þ sinðh5 þ h3Þ
þ cos h1 þ sin h2

cosðh4 � h1Þ � cosðh2 � h1Þ þ sinðh2 þ h4Þ

� �
ð11Þ
Minimising the external force F with respect to h3 and h4, the optimised upper bound, FU, is given by
F U ¼ 2M0

1

R
Lsðh1; h2; h5Þ ð12Þ
where Ls(h1,h2,h5) is a normalised function of h1, h2 and h3, given by
Lsðh1; h2; h5Þ ¼
cos h1 þ sin h2

2 sin p
4
þ h2þh1

2

� �
� cosðh2 þ h1Þ

þ cos h1 þ sin h5

2 sin p
4
þ h5�h1

2

� �
� cosðh5 � h1Þ

ð13Þ
If taking h2 = h5 and h3 = h4, then h1 = 0 and Eq. (13) becomes:
Lsðh2Þ ¼
2ð1þ sin h2Þ

2 sin p
4
þ h2

2

� �
� cos h2

ð14Þ
which is the same as the solution for an unpressurised pipe with symmetrical supports, as shown in Hyde et al.
(2005a). It can be seen that the solution presented in Hyde et al. (2005a) is a special case of the offset inden-
tation studied in this paper.

5. Comparison of the analytical solutions with the FE and experimental results

5.1. 6082-T6 alloy results

The indenter force versus dent depth curves, obtained from the FE analyses and experimental tests per-
formed on the aluminium alloy models, are shown in Fig. 18. The analytical limit load solutions, also shown
in Fig. 18, were calculated by using a representative nominal flow stress which is the average of the yield stress



0

5

10

15

20

0 5 10 15 20 25 30

Dent depth (mm)
In

de
nt

er
 fo

rc
e 

(N
/m

m
)

TE1

FE1

Analytical

Limit load solutionAnalytical initial gradient

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30

Dent depth (mm)

In
de

nt
er

 fo
rc

e 
(N

/m
m

)

TE2
FE2
Analytical

Analytical initial gradient
Limit load solution

0

50

100

150

200

250

0 5 10 15 20

Dent depth (mm)

In
de

nt
er

 fo
rc

e 
(N

/m
m

)

TE3
FE3
TE4
Analytical

Limit load solutionAnalytical initial gradient

(c)

(b)

(a)

Fig. 18. Indenter force versus dent depth curves obtained from the FE analyses, experimental tests and the analytical methods, for the case
with h1 = 0�, h2 = 55� and h5 = 35�, for the 6082-T6 aluminium alloy rings (a) D/t = 80 (b) D/t = 41.6 (c) D/t = 30.8.

414 T.H. Hyde et al. / International Journal of Solids and Structures 44 (2007) 399–418
and the ultimate tensile stress. The analytical, elastic solutions for the initial load–displacement gradient, also
shown in Fig. 18, are obtained using Eq. (1). The limit loads, obtained from the FE and analytical analyses,
are also given in Table 9, which shows that the analytical limit loads, obtained using the nominal flow stress in
the predictions, are generally in reasonably good agreement with those obtained from the experiments and the
FE analyses. However, these data indicate that if a slightly lower representative flow stress was used for the
analytical predictions, then generally closer correlation between the analytical solutions and those obtained
from the FE analyses and experimental tests would be obtained.
Table 9
FE, experimental and analytical limit loads for 6082-T6 aluminium alloy rings using yield, flow and ultimate tensile stresses in the
analytical formulations (ry = yield stress; rf = flow stress; rUTS = ultimate tensile stress) for h1 = 0�, h2 = 55� and h5 = 35�

D/t Experimental (N/
mm)

FE (N/mm) Analytical using ry Analytical using rf Analytical using rUTS

80 TE1 14.69 15.5 17 18.4 19.8
41.6 TE2 64.03 69.5 66.6 72.3 77.9
24 TE3 203.25 225 196.3 213. 229.7

TE4 200.29
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5.2. Ideal-A results

The peak loads obtained from each of the FE analyses, using the elastic perfectly plastic material model
(Ideal-A) and from the theoretical analyses, are normalised by dividing them by (ryt2/2R); the results are
shown in Figs. 19–22.

Figs. 19–22 show that for the smaller D/t ratios, i.e., D/t = 41.6 and 30.8, very close correlation of the FE
and the analytical solutions can be obtained. However, for the larger D/t ratios, i.e., D/t = 80, the FE solu-
tions are significantly lower than the corresponding analytical solutions. This is because large non-linear
deformation effects which occur in the large D/t ratio rings, is included in the FE analyses but not in the ana-
lytical solutions. Therefore, for the peak load predictions of large D/t ratios, it is suggested that the yield stress
should be used in the analytical method (see Hyde et al., 2005a).
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5.3. X65 SAW steel results

The normalised limit loads obtained from each of the FE analyses for the X65 SAW steel models are com-
pared with those obtained for the idealised material Ideal-A in Fig. 15(a)–(d). The close correlation of the
results indicates that the normalised limit loads can be obtained either using the idealised material Ideal-A
or using the X65 SAW steel models in the FE analyses. The normalised limit loads obtained from the FE anal-
yses and the analytical methods for the idealised material Ideal-A are the same as those for the X65 SAW steel.
Comparisons of the peak loads, obtained from the FE analyses, and the analytical solutions are shown in Figs.
23–26 for the X65 SAW steel material. It can be seen from Figs. 23–26 that a reasonably close correlation
0

1

2

3

4

5

6

0 15 30 45 60
Offset indentation angle (θ1

o)

N
or

m
al

is
ed

 li
m

it 
lo

ad

Analytical
FE  D/t=30.8
FE  D/t=42.6
FE  D/t=72

Fig. 23. A comparison of the FE and analytical normalised limit loads for different offset angular positions, with h2 = h5 = 45�, for X65
SAW steel material.

0

1

2

3

4

5

6

0 15 30 45 60 75 90

Right supported angle (θ5
o)

N
or

m
al

is
ed

 li
m

it 
lo

ad

Analytical

FE  D/t=30.8
FE  D/t=42.6

FE  D/t=72

Fig. 24. A comparison of the FE and analytical normalised limit loads for different right support angular positions, with h1 = 20� and
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exists between the analytical solutions and the FE predictions of the peak loads for the X65 SAW steel
material.

6. Conclusions

The reasonably close correlation between the FE predictions of indenter force versus depth and the corre-
sponding experimental test data indicates that large deformation non-linear FE analysis is capable of produc-
ing accurate results.

An upper bound limit load analytical approach for predicting the peak (or limit) loads gives good (i.e., close
to the FE results) upper bounds for rings with elastic perfectly plastic material behaviour models. The corre-
lation is generally good but is poorest for the larger D/t ratios because the analytical approach does not model
the significant effect of the large deformations which occur with large D/t ratios.

Using a representative nominal flow stress, which is the average of the yield stress and ultimate tensile
stress, a reasonably good correlation between the analytical and FE predictions, for rings made from 6082-
T6 aluminium alloy and X65 SAW steel, are obtained. For higher D/t ratios, better correlation would be
obtained if the yield stress is used to predict the limit loads using the analytical approach.

The initial slope and peak values of the force versus dent depth curves can be accurately predicted using
simple analytical approaches. Use of the simple analytical approaches could significantly reduce the time
and effort required in assessing the likely effects on the structural integrity of dents created in pipelines due
to accidents.

However, since impact damage of a short 3D indenter is very localised, a pipe with a short indenter may
burst or rupture before collapsing, due to a high stress concentration on the edge of the indentation. Hence it
is expected that the force–deflection behaviour of a 2D ring with a long indenter will be different from an
indented pipe with a short 3D indenter.
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