Corrigendum

Corrigendum to “Pre-torsors and equivalences”

Gabriella Böhm a,*, Tomasz Brzeziński b

a Research Institute for Particle and Nuclear Physics, Budapest, H-1525 Budapest 114, POB 49, Hungary
b Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, UK

Received 5 December 2007

Communicated by Susan Montgomery

Abstract

The following incorrect claim occurred: An A-coring \tilde{C} is a left, equivalently, right extension of an A-coring C if and only if there exists a homomorphism of A-corings $C \rightarrow \tilde{C}$. Here we present a corrected statement and claim that the error does not influence other results in the paper.

© 2007 Elsevier Inc. All rights reserved.

Instead of the incorrect claim on page 548, the following lemma holds. Let A be an associative and unital algebra over a commutative ring k and C and \tilde{C} be A-corings. Consider the right comodule categories \mathcal{M}^C and $\mathcal{M}^{\tilde{C}}$, and the forgetful functors $F : \mathcal{M}^C \rightarrow \mathcal{M}_A$ and $\tilde{F} : \mathcal{M}^{\tilde{C}} \rightarrow \mathcal{M}_A$ to the category of right A-modules.

Lemma 1. For two A-corings C and \tilde{C}, the following assertions are equivalent.

(i) There is a k-linear functor $U : \mathcal{M}^C \rightarrow \mathcal{M}^{\tilde{C}}$ such that $F = \tilde{F} \circ U$.

(ii) Considering the A-bimodule C as a left \tilde{C}-comodule via the coproduct, there is a right \tilde{C}-coaction $\tilde{\rho} : C \rightarrow C \otimes_A \tilde{C}$, making C a C-\tilde{C} bicomodule.

(iii) There is a homomorphism of A-corings $\kappa : C \rightarrow \tilde{C}$.
Proof. (i) \Rightarrow (ii). By property (i), there is a right \tilde{C}-coaction $\tilde{\rho}$ on the right A-module \tilde{C}. Since under assumption (i) \tilde{C} is a right extension of C, $\tilde{\rho}$ is a left C-comodule map by [1, Theorem 2.6].

(ii) \Rightarrow (iii). The map κ is constructed as $\kappa := (\epsilon_C \otimes_A \tilde{C}) \circ \tilde{\rho}$, where ϵ_C denotes the counit of C.

(iii) \Rightarrow (i). The functor U is given by the corestriction functor along κ, cf. [2, 22.11].

A symmetrical statement holds for the categories of left (co)modules. Note that, in order for the construction in the proof of the implication (ii) \Rightarrow (iii) in Lemma 1 to yield a well-defined and right A-linear map κ, the A-module structures of C, as an A-coring on the one hand and as a \tilde{C}-comodule on the other hand, need to be the same, as in Lemma 1(ii). This condition is missing in the original formulation of the claim.

As a consequence of this omission, part (1) of Lemma 3.7 needs to be modified as follows.

Lemma 2. Let T be a faithfully flat A-B pre-torsor and C and D be the associated A- and B-corings, respectively. Let \tilde{C} be an A-coring for which T (via the canonical right A-action determined by its A-ring structure) is a D-\tilde{C} bicomodule. Then there is a homomorphism of A-corings $\kappa : C \to \tilde{C}$.

Note that the additional assumption about the A-action on T is needed for the proof given in the original article to be correct. Observe that the right A-action on T has the required form in part (2) of Lemma 3.7 by definition: In a \tilde{C}-Galois extension $B \subseteq T$, T is an A-ring and a \tilde{C}-comodule via the same right A-actions.

In the proof of Theorem 3.4, part (2) of Lemma 3.7 is used, so it holds without modification.

References