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Single cell genomics (SCG) uncovers hereditary information at

the most basic level of biological organization. It is emerging as

a powerful complement to cultivation-based and microbial

community-focused research approaches. SCG has been

instrumental in identifying metabolic features, evolutionary

histories and inter-organismal interactions of the uncultured

microbial groups that dominate many environments and

biogeochemical cycles. The SCG approach also holds great

promise in microbial microevolution studies and industrial

bioprospecting. Methods for SCG consist of a series of

integrated processes, beginning with the collection and

preservation of environmental samples, followed by physical

separation, lysis and whole genome amplification of individual

cells, and culminating in genomic sequencing and the inference

of encoded biological features.
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Introduction
The introduction of DNA sequencing in phylogenetic

studies in the 1970s [1] and its application to uncultured

microorganisms in the 1980s and 1990s [2,3] revolutionized

microbiology and revealed that the diversity of unicellular

life on Earth vastly exceeds what has been discovered

using classical, cultivation-based techniques. During the

2000s, large metagenomics projects started providing

extensive gene content information from natural microbial

communities, spanning both cultured and uncultured taxo-

nomic groups [4–6]. Nevertheless, significant technical and

conceptual challenges remain unresolved. For example,

when analyzing complex microbial communities, metage-

nomics is not well suited to deliver unequivocal infor-

mation about the organization of discovered genes

within genomes, obscuring the knowledge of the metabolic

potential and evolutionary histories of specific microorgan-

isms. To bridge this gap, single cell genomics (SCG)
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emerged as a powerful complement to cultivation and

metagenomics, by providing genomic information from

individual, uncultured cells. Several prior publications

reviewed progress in this rapidly advancing field [7–14].

Here I focus on the most recent research findings and

technology improvements.

Recent breakthroughs enabled by SCG
Matching phylogeny and function of the microbial

‘uncultured majority’

By enabling sequencing of any genome region in an

uncultured cell, SCG provides direct link information

between cell’s phylogenetic (e.g. SSU rRNA genes) and

metabolic markers. A powerful example is the discovery

by Swan et al. [15��] of chemolithoautotrophy pathways

in uncultured Proteobacteria that constitute a major frac-

tion of dark ocean’s biomass, which may help reconcile

current discrepancies in dark ocean’s carbon budget. Mar-

tinez-Garcia et al. [16] discovered that members of the

poorly understood phylum Verrucomicrobia probably are

significant players in the degradation of polysaccharides.

Fleming et al. [17] settled the 100 years-long debate about

the phylogenetic position of the textbook iron oxidizer

Leptothrix ochracea. Blainey et al. [18] provided further

evidence for the importance of archaea in nitrogen cycling

in diverse environments. Rhodopsin and bacteriochloro-

phyll genes were confirmed in many aquatic bacteria,

indicating that photoheterotrophy is widespread among

freshwater [16,19�] as well as marine [20–22] taxonomic

groups. Yoon et al. [23��] showed that Picobiliphytes, a

novel phylum of marine protists with no cultured repre-

sentatives, are heterotrophic, not phototrophic as originally

described [24]. These examples illustrate the power of

SCG to effectively resolve the long-standing challenge of

identifying the metabolic potential of the uncultured

microbial groups that dominate many environments and

biogeochemical cycles.

Binning of environmental omics data

SCG generates reference genomes of the uncultured

microorganisms, facilitating the interpretation of com-

munity omics data sets. Woyke et al. [21] employed

metagenomic fragment recruitment by single cell gen-

omes to investigate biogeographic distribution of uncul-

tured, marine Flavobacteria (Figure 1). Mason et al. [25��]
combined SCG, metagenomics and metaproteomics to

identify members of marine bacterioplankton that were

involved in the degradation of hydrocarbons during the

Deepwater Horizon oil spill. Swan et al. [15��] utilized a

combination of SCG and other omics tools to verify the

presence and expression of chemoautotrophy pathways in

dark ocean bacteria. These and other examples [17,26,27]
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Figure 1

0.1
100

(a) (b)

90

80
MS024-2A

SAG-like DNA
in GOS samples:

SAG collection
site

North
America

6
5

432

7

8

14

15

17

16

18

19
20
2122

23
25

26

37

35

30
31 3629

34

33

32
27 28

00

Atlantic Ocean

South
America

13

Gulf Stream

La
br

ad
or

Cur
re

nt

12

91110

0%
0.01%
0.1%
1%

MS024-3C
Dokdonia donghaensis MED134

Leeuwenhoekiella blandensis MED217

Flavobacterium johnsoniae  UW101

Flavobacterium psychrophilum  JIP02/86

Polaribacter irgensii 23-P

Tenacibaculum sp. MED152

Pelagibacter ubique HTCC1062

Prochlorococcus marinus  MIT9312
Synechococcus sp. WH8102

Flavobacteria isolate BAL38

70

60

1 10 100

Recruits per Mbp and 1% identity interval

A
lig

n
m

en
t 

id
en

ti
ty

, %

1,000 10,000 100,000

Current Opinion in Microbiology

The abundance and geographic distribution of surface ocean microbial DNA that is similar to genomes of two uncultured, marine Flavobacteria cells.

These data demonstrate that, in contrast to all available marine Flavobacteria cultures, the two sequenced single cells represent genotypes that are

numerically significant in their source environment. Single amplified genomes of Flavobacteria MS024-2A and MS024-3C from the Gulf of Maine were

used to recruit metagenome fragments from the Global Ocean Sampling (GOS) expedition [6]. (a) Recruiting capacity of MS024-2A and MS024-3C,

relative to all available cultured marine Flavobacteria, the non-marine Flavobacterium johnsoniae, and the three best GOS fragment recruiters

Pelagibacter, Prochlorococcus and Synechococcus. (b) Geographic distribution of GOS metagenome fragments with >95% identity to MS024-2A.

Numerals on the map indicate GOS station numbers.

Modified from [21].
illustrate how the integration of SCG with other research

methods provides insights into microbial diversity, bio-

geography and processes that would not have been

detected by any of the individual techniques alone.

Revealing microbial interactions in situ

SCG provides access to sequences of all DNA in the

analyzed cell, including chromosome(s), organelles, plas-

mids, food items, symbionts and pathogens (Figure 2).

This enabled the recovery of a complete genome of a

novel nano virus that probably infects uncultured Pico-

biliphytes [23��] and DNA of putative prey items and

symbionts in diverse marine protists [23��,28]. Hongoh

et al. [29] obtained complete genomes of intracellular

symbionts inhabiting individual protist cells, which

themselves are symbionts of termites. Woyke et al.
[30�] and Pamp et al. [31] utilized SCG to study intra-

cellular symbionts of sharpshooter  insects and mouse gut

cells, respectively. Tadmor et al. [32�] employed a high-

density microfluidic device and multiplex PCR to

identify phage-infected bacteria, while Martinez et al.
[33] developed a fluorescent probe to specifically target
Current Opinion in Microbiology 2012, 15:613–620 
virus-infected algal cells for SCG. These examples

demonstrate a wide array of opportunities provided by

SCG to microbial ecology, including studies of predation,

infections and symbioses among microorganisms in their

natural environment.

Contributions to microbial evolution studies

SCG has been instrumental in obtaining genomic

sequences of microorganisms from several deep-branch-

ing phylogenetic groups with no cultured representatives,

such as TM7 [34,35], OP11 [36], Picobilliphytes [23��]
and divergent groups of aquatic Proteobacteria, Flavo-

bacteria and Archaea [15��,18,21,37,38]. Bhattacharya

et al. used SCG to study the origin of plastids [39].

Genomic contextual information obtained about gene

families from deeply divergent, and presumably ancient

lineages will aid our understanding of the early evolution

of life. On the practical level, more phylogenetically

balanced representation of genomes in databases, in-

cluding lineages that have no cultured representatives,

will improve models for computational gene annotation

and taxonomic binning [40].
www.sciencedirect.com
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Figure 2
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Strengths and limitations of SCG and metagenomic assemblies. Dashed lines indicate false assembly contiguity. Here cells 1 and 2 represent close

relatives, while cell 3 is evolutionarily distant, but has horizontally acquired a DNA region from a relative of cells 1 and 2. The main strength of an SCG

assembly is that all resulting contigs originate from DNA that was present in an individual cell, independent of the genetic complexity of the analyzed

microbial community and the number of DNA molecules comprising each cell’s genome. On the downside, SCG assemblies often are fragmented and

incomplete, owing to the challenging nature of some cells (e.g. tough cell walls, DNA–protein interactions), whole genome amplification artifacts (e.g.

uneven amplification, chimeras) and not fully optimized genome assembly algorithms. In some cases, metagenomic assemblies may result in more

contiguous and complete genome recoveries than SCG assemblies, owing to a more even sequence coverage depth. However, metagenomic

assemblies are consensuses from a multitude of cells and, potentially, detrital DNA that share high-homology regions but may vary in their genome-

wide similarity, owing to mutations, horizontal gene transfer and recombination. Thus, metagenomic assemblies should be viewed only as

approximations of the genome content of environmental microorganisms.
Arguably the most novel type of data that SCG provides is

the quantitative information on genomic variability in

natural microbial populations. Genome rearrangements,

gene insertions, duplications and loss can be analyzed,

even when multiple DNA molecules are present in a cell

(e.g. chromosomes, plasmids, organelles) (Figure 2A).

Such information is hard to obtain from metagenomics,

where genome assemblies, when achieved [22,41,42], are

consensuses from a multitude of cells that are assumed to

be clonal. In reality, metagenomic assemblies may be

mosaics of DNA from cells that share high-homology

regions but vary in genome-wide similarity (Figure

2B), owing to mutations, horizontal gene transfer and

recombination, which appear to be more frequent in

nature than previously assumed [43–45]. In pilot studies,

Martinez-Garcia et al. [19�] demonstrated the utility of

SCG to detect horizontal gene transfer and recombination

events in freshwater bacterioplankton, while Woyke et al.
www.sciencedirect.com 
[30�] analyzed population structure of intracellular sym-

bionts. Future, scaled-up SCG projects may provide the

type of data that is required to develop and verify the

currently contested [46–49] concepts of prokaryote diver-

sity and diversification.

Biotechnology relevance

Biotechnology applications to date rely almost exclusively

on the <1% of microbial diversity that has been amenable

to cultivation, although metagenomics-based biopros-

pecting is gaining momentum [50–52]. By discovering

entire genomes rather than individual genes of the

uncultured microorganisms, SCG offers a powerful comp-

lement. Complex metabolic pathways can be recon-

structed from the same cell, ensuring compatibility of

the discovered genes with each other and facilitating the

selection of suitable heterologous expression systems.

Genomic information obtained through SCG may also
Current Opinion in Microbiology 2012, 15:613–620
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enable cultivation of microorganisms of interest. Early

examples of SCG relevance in biotechnology include

recoveries of polyketide biosynthesis pathways from

sponge symbionts [53,54] and marine cyanobacteria

[55], and genomes of uncultured microorganisms that

degrade specific macromolecules [52,56��] and fix CO2

through chemoautotrophy [15��]. Future integration of

SCG-based biochemical pathway discovery with syn-

thetic biology holds enormous potential for novel, envir-

onmentally responsible energy solutions, bioremediation

of toxins, and natural products for nutritional, medicinal

and other uses.

SCG methods
SCG consists of a series of integrated processes, starting

with the collection and preservation of environmental

samples, followed by physical separation, lysis and whole

genome amplification of individual cells, then proceeding

into either targeted loci or whole genome sequencing and

sequence interpretation (Figure 3).

Unless analyzed immediately, environmental samples

require storage that preserves the integrity of the cell

and its DNA and does not interfere with downstream

cell separation and DNA analyses. Deep freezing in the

presence of glycine betaine or glycerol is the most com-

mon approach [15��,19�]. Aldehydes, which are com-

monly used in microbial sample preservation for

microscopy, are not suitable for SCG, because they

cross-link DNA and prevent its amplification.

The majority of SCG work today relies on fluorescence-

activated cell sorting (FACS) for cell separation
[15��,18,17,19�,20–22,23��,27,28,33,37–39,52–54,56��, 57,

58��,59�,60,61]. This well-established technology [62]
Figure 3
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offers automated, rapid delivery of individual cells into

tubes or microwell plates and can be combined with a

wide variety of fluorescent cell labeling techniques. Only

a few picoliters of sample are sorted with each cell,

minimizing the risk of contamination from extracellular

DNA [63]. An alternative, micromanipulation technique

has been employed in SCG as well [29,30�,55,64]. In

difference to FACS, micromanipulation enables visual

inspection of the analyzed cells, but it is tedious and more

susceptible to contamination. Diverse microfluidic

devices have also been successfully employed in SCG

[18,31,32�,35,65–67,68�]. Although still lagging behind

FACS in terms of cell separation versatility and through-

put, further improvements and commercialization of

microfluidics may reduce SCG costs and provide novel

research opportunities, for example individual cell exper-

imentation and genomics on a single lab-on-a-chip.

An ideal cell lysis protocol would be effective on diverse

types of cells without damaging their DNA, leaving no

DNA contamination and no chemicals that may inhibit

downstream analyses. Most SCG work today relies on cell

lysis by an alkaline solution, first described by Raghu-

nathan et al. [61]. Alternative or supplementary treat-

ments have included heat, freeze–thaw, detergents

(unpublished data) and treatment with hydrolytic

enzymes [15��,17,35]. Single cell lysis success rates vary

widely and typically are below 40% [15��,35], so further

method improvements are needed.

Whole genome amplification (WGA) is required before single

cell DNA sequencing, except when direct, multiplex

PCR [32�,67] is employed. Multiple displacement ampli-

fication (MDA) [69] is the most widely used technique,

which produces long (average >10 kbp), overlapping
ism’s biology:
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amplicons that are suitable for whole genome sequencing

and de novo assembly. Drawbacks of MDA include highly

uneven genome coverage and chimera formation

[21,61,66,70,71]. The former has been counteracted by

laboratory and in silico DNA normalization [15��,60] and

specialized de novo assembly software [37,72,73], while

the latter is largely resolved by sufficient sequence cover-

age and avoidance of long mate-pair libraries [58��,60].

Polymerase chain reaction (PCR)-based techniques have

also been used in single cell WGA [68�,74], producing

short amplicons for genome re-sequencing. Single cell

WGA products are called single amplified genomes

(SAGs) [20] or plones [71] and can be further analyzed

in ways that are similar to DNA extracts from pure

cultures.

PCR is often used as a cost-effective option to screen large

numbers of SAGs [15��,19�,20,27,28,33] or unamplified

single cell DNA [32�,67] for specific loci. However, the

immense and poorly understood genetic diversity of most

microbial communities makes it difficult to design primers

and probes that match all and only the target genes.

Multiple technologies are currently available for genomic
sequencing, differing by read length, paired-end options,
Figure 4

Bigelow Laboratory Single Cell Genomics Center, the first user facility provi

scgc). Photo by Christopher Barnes.

www.sciencedirect.com 
error types and rates, and the cost, as summarized by

Loman et al. [75]. The choice should be guided by the

intended use of the data. For example, most of the recent

software development for single cell whole genome de
novo assembly has been focused on the utilization of

paired-end Illumina reads [15��,37,72,73], while Pacific

Biosciences technology is increasingly used in assembly

gap closure [76]. Key components of quality assessment
include characterization of assembly fragmentation,

identification of misassemblies and contaminating

DNA, and estimates of the fraction of the genome that

has been recovered [15��,18,21,22,30�,35,37,60]. Standard

annotation pipelines can be employed, such as the Inte-

grated Microbial Genomes System [77] and the Rapid

Annotations using Subsystems Technology [78].

The success of genome recovery from single cells varies

widely, from 0% to a finished genome, and depends on

cell’s intrinsic properties (cell wall structure, DNA packa-

ging) and on all the components of the SCG pipeline

(Figure 3). For example, environmental sample preser-

vation has a significant impact on cell lysis efficiency,

which may impact WGA evenness and genome assembly

quality (unpublished data). Natural [30�] and artificially

induced [57] polyploidy can improve single cell genome
Current Opinion in Microbiology
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recovery. Early SCG attempts on environmental micro-

organisms were hampered by significant DNA contami-

nation [35,64,79], which may come from the sample itself,

reagents, consumables and handling. More recently,

contamination issue has been virtually resolved by the

introduction of clean techniques in flow cytometry

[15��,20,21,56��,60], the use of laser tweezers in micro-

fluidics [18], and decontamination of MDA reagents

before use [15��,56��,58��,65].

User facilities for SCG
High-quality SCG results currently require expensive

instrumentation (e.g. cell sorters, robotic liquid handlers,

DNA sequencers), specialized infrastructure (clean

rooms, high-performance IT) and a concerted effort of

scientific personnel with skills spanning microbiology,

flow cytometry, microfluidics, robotic liquid handling,

DNA sequencing and bioinformatics. This is not attain-

able by most individual research groups, nor would it be

cost-effective. To address this challenge and to make

SCG more accessible to the broad scientific community,

my colleagues and I established the first core facility

specializing in this field, the Bigelow Laboratory’s Single

Cell Genomics Center (SCGC; Figure 4; bigelow.org/

scgc). Since its launch in 2009, the SCGC has already

processed over 400 000 individual microbial cells from the

ocean, soils, deep subsurface, organismal microbiomes

and other types of environments for users at over 50

universities, research institutes and companies. The

U.S. Department of Energy Joint Genome Institute

(JGI; www.jgi.doe.gov) operates another major facility

for SCG, with services provided to external users. Look-

ing into the future, miniaturization and integration of the

various SCG components will facilitate SCG implementa-

tion in individual research laboratories and in the field.

Conclusions and future prospects
The power of SCG stems from its ability to read genetic

information at the most basic level of biological organiz-

ation. This produces direct rather than inferred infor-

mation about the content and organization of microbial

genomes in the environment. SCG has already demon-

strated its value by revealing metabolic features and in situ
interactions among uncultured microorganisms, which

was intractable before. In addition, SCG has great poten-

tial to bring more clarity to the contested discussion about

the nature of prokaryote species and the process of

diversification, by providing rich information on the

structure and dynamics of natural microbial populations.

SCG technology will probably continue undergoing rapid

improvements. More reliable cell lysis techniques and

better protocols for whole genome assembly are among

the most vital. Examples of promising new directions

include targeted SCG using single cell physiology probes

[56��], the emerging ability to sequence individual

viral particles [59�], the potential to integrate SCG with

single cell transcriptomics [80] and metabolomics [81],
Current Opinion in Microbiology 2012, 15:613–620 
and improved computational tools for data analysis and

visualization.
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