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a b s t r a c t

Let G be a finite group and p a prime number. We compute the Euler characteristic in
the sense of Leinster for some categories of nonidentity p-subgroups of G. The p-subgroup
categories considered include the Brown poset S∗

G , the transporter category T ∗

G , the linking
category L∗

G, the Frobenius, or fusion, category F ∗

G , and the orbit category O∗

G of all
nonidentity p-subgroups of G.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Tom Leinster [23] defined the Euler characteristic of a finite category C as follows:

• A weighting for C is a function k•
C : Ob(C) → Q such that


b |C(a, b)|kbC = 1 for all objects a of C.

• A coweighting for C is a function kC
•
: Ob(C) → Q such that


a k

C
a |C(a, b)| = 1 for all objects b of C.

• If C admits both a weighting and a coweighting, the rational number
b

kbC = χ(C) =


a

kC
a

is the Euler characteristic of C .

The purpose of this paper is to determine weightings, coweightings, and Euler characteristics of p-subgroup categories
associated to finite groups. For a fixed finite group G and a fixed prime number p, we consider

SG: the poset of all p-subgroups of G ordered by inclusion
TG: the transporter category of all p-subgroups of G
LG:the linking category of all p-subgroups G [6]
FG: the Frobenius category of all p-subgroups of G [28,7]
OG:the orbit category of all p-subgroups of GFG: the exterior quotient of the Frobenius category FG [28, 1.3, 4.8].

If C is any of these categories, then

• C∗ denotes the full subcategory of C generated by all nonidentity p-subgroups
• Cea denotes the full subcategory of C∗ generated by all elementary abelian p-subgroups
• Csc denotes the full subcategory of C∗ generated by all p-selfcentralizing p-subgroups (Definition 8.1).
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For instance S∗

G is the Brown poset of all nonidentity p-subgroups and F ∗

G the Frobenius category of all nonidentity p-
subgroups of G.

All of these finite categories have weightings and coweightings and therefore Euler characteristics (Corollary 2.15).
In our first theorem we determine coweightings for the six nonidentity p-subgroup categories. The coweightings are

expressed in terms Möbius functions. Recall that the Möbius function of finite groups is recursively defined by µ(1) = 1
and


1≤K≤G µ(K) = 0 when G > 1 [34]. The Möbius function vanishes on all p-groups but the elementary abelian ones

[18]. We write |C(a)| for the size of the endomorphism monoid of the object a in the finite category C.

Theorem 1.1. The six nonidentity p-subgroup categories S∗

G , T
∗

G , L∗

G, F
∗

G , F ∗

G , and O∗

G have the following coweightings and Euler
characteristics:

(1) The poset S∗

G has coweighting and Euler characteristic

kS∗

K = −µ(K), χ(S∗

G) =


K>1

−µ(K).

The sum runs over all nonidentity p-subgroups K of G.
(2) Let C be any of the categories the categories TG, LG or FG. The category C∗ has coweighting and Euler characteristic

kC∗

K =
1

|G : NG(K)|
−µ(K)
|C(K)|

, χ(C∗) =


[K ]

−µ(K)
|C(K)|

.

The sum runs over all conjugacy classes [K ] of nonidentity p-subgroups K of G.
(3) F ∗

G has the same coweighting as F ∗

G , and χ(F ∗

G ) = χ(F ∗

G ).
(4) The orbit category O∗

G has coweighting and Euler characteristic

kO∗

K =
−µ(K)

|G|
+


p−1
p

|K |

|G|
K is cyclic

0 K is noncyclic
, χ(O∗

G) = χ(T ∗

G )+
p − 1
p


[C] cyclic

1
|OG(C)|

.

The sum runs over all conjugacy classes [C] of nonidentity cyclic p-subgroups C of G.

Let C∗ be any of the five categories C∗
= S∗

G, T
∗

G ,L
∗

G,F
∗

G , or F ∗

G . Then

kC∗

K ≠ 0 ⇐⇒ K is elementary abelian

for any nonidentity p-subgroup K of G. Thus the support of the coweighting for C∗ is the set nonidentity elementary abelian
p-subgroups of G.

If C is a finite category with Euler characteristic, writeχ(C) = χ(C)− 1 (1.2)

for the reduced Euler characteristic of C.
In the next theorem we determine weightings for p-subgroup categories. This approach reveals that it is possible to

compute global Euler characteristics of p-subgroup categories from data that are p-local in the group theoretic sense
[14, Definition 5.2]. Any weighting, k•

C , for a p-subgroup category C restricts to a weighting on the full subcategory C∗

of nonidentity p-subgroups, and χ(C)− χ(C∗) = k1C (Remark 2.6).

Theorem 1.3. The five p-subgroup categories SG, TG, OG, FG, and F sc
G have the following weightings and Euler characteristics:

(1) The poset SG has weighting and Euler characteristic

kHS = −χ(S∗

OG(H)
), 1 = χ(SG) =


H

−χ(S∗

OG(H)
).

In the formula for the Euler characteristic, the sum runs over all p-subgroups H of G.
(2) The transporter category TG has weighting and Euler characteristic

kHT =

−χ(S∗

OG(H)
)

|G|
,

1
|G|

= χ(TG) =


[H]

−χ(S∗

OG(H)
)

|TG(H)|
.

In the formula for the Euler characteristic, the sum runs over all conjugacy classes [H] of p-subgroups H of G.
(3) The Frobenius category FG has weighting and Euler characteristic

kHF =


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)/H
)

|G|
, 1 = χ(FG) =


[H]


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)/H
)

|NG(H)|
.

In the formula for the Euler characteristic, the first sum runs over all conjugacy classes [H] of p-subgroups H of G.
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(4) The orbit category OG has weighting and Euler characteristic

kHO =

−χ(S∗
OG
(H))

|G : H|
,

1 + (p − 1)


C |C |

p|G|
= χ(OG) =


[H]∈[TG]

−χ(S∗
OG
(H))

|OG(H)|
.

In the formula for the Euler characteristic, the sum to the left runs over all cyclic p-subgroups C of G and the sum to the
right over all conjugacy classes [H] of p-subgroups H of G.

(5) The category F sc
G has weighting and Euler characteristic

kHF sc =
1

|G : NG(H)|

−χ(S∗F sc
G (H))

|F sc
G (H)|

, χ(F sc
G ) =


[H]

−χ(S∗F sc
G (H))

|F sc
G (H)|

.

In the formula for the Euler characteristic, the sum runs over the set of conjugacy classes [H] of p-selfcentralizing p-subgroups
H of G.

In the context Theorem 1.3 we would like to comment on the p-subgroup poset conjecture

S∗

G ≄ ∗ ⇐⇒ OpG = 1

made by Quillen in 1978 [29, Conjecture 2.9]: The nonidentity p-subgroup poset for a finite group is noncontractible if and
only if the group’s p-core is trivial. Quillen proved the implication ‘=⇒’ [29, Proposition 2.4] and also the implication ‘⇐=’
under the additional assumption that G be solvable [29, Corollary 12.2]. Aschbacher and Smith established ‘⇐=’ for a larger
class of groups including all p-solvable or simple finite groups [2, Theorems 0.5 and 0.7].

It is tempting to state a stronger form

χ(S∗

G) ≠ 1 ⇐⇒ OpG = 1 (1.4)

of the Quillen conjecture. The implication ‘=⇒’ is true by Quillen, but the validity of implication ‘⇐=’ remains open. It is
known to hold for all p-solvable groups with abelian Sylow p-subgroups [20, Theorem A].

A p-subgroup H of G is p-radical if OpOG(H) = 1 and FG-radical if Op FG(H) = 1 (Definition 3.18). If we imagine that the
strong form of the Quillen conjecture (1.4) is true, then

kHC ≠ 0 ⇐⇒


H is p-radical C = SG, TG,OG
H is FG-radical C = F sc

G

for any p-subgroup H of G. (We stress that the implication ‘=⇒’ is valid but ‘⇐=’ is only conjectural.) This would mean that
the support of the weightings for SG, TG,OG is the set of p-radical p-subgroups and that the support for the weighting onF sc

G is the set of FG-radical p-subgroups.
In any case, Theorems 1.1 and 1.3 show that the p-subgroup categories retain information, perceived by the weighting

or the coweighting, about group theoretic characteristics (elementary abelian, p-radical, FG-radical) of their objects.
In Theorem 6.1 we prove that −χ(S∗

•
) and −χ(F ∗

•
) are multiplicative functions of finite groups in the sense that

−χ(S∗n
i=1 Gi

) =

n
i=1

−χ(S∗

Gi), −χ(F ∗n
i=1 Gi

) =

n
i=1

−χ(F ∗

Gi)

when G1, . . . ,Gn are finite groups. The reduced Euler characteristic −χ(S∗
•
) of the nonidentity p-subgroup poset vanishes

on any finite group with a nontrivial normal p-subgroup [29, Proposition 2.4]. The reduced Euler characteristic −χ(F ∗
•
) of

the nonidentity p-Frobenius category vanishes on any finite group with a nontrivial central p-subgroup (Proposition 5.1).
We finish this paper with two sections on Möbius algebras. The classical Burnside algebra of a finite group is the Möbius

algebra for the (set of isomorphism classes in the) orbit category of the group. Not only the orbit category, but also the other
subgroup categories have associated Möbius algebras. We shall work out the product in these Möbius algebras and show
some integrality results.

For the sake of quick reference we list here the notation that we are using throughout this paper:

• p is a fixed prime number
• np is the p-part of the integer n, the highest power of p dividing n, and np′ = n/np is the p′-part of n
• G is a finite group
• H ≤ K means that H is a subgroup of K
• Φ(G), the Frattini subgroup of G, is the intersection of all maximal subgroups of G [14, p. 18]
• OpG, the p-core of G, is the greatest normal p-subgroup of G [14, p. 19]
• OpG is the smallest normal p-power index subgroup of G [14, p. 19]
• C is a finite category, C(a, b) is the set of morphisms from object a to object b, and C(a) = C(a, a) is the monoid of

endomorphisms of a
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• Ob(C) is the set of objects of C
• [C] is the set of isomorphism classes of objects of C, and [a] ∈ [C] the isomorphism class of a ∈ Ob(C).

Finally, we would like to thank the anonymous referees for many useful comments.

1.1. Subgroup categories

This subsection contains precise definitions of the p-subgroup categories occurring in this paper. Fix a finite group G and
a prime number p. SG is the poset of all p-subgroups of G ordered by inclusion. In other words, SG is the category whose
objects are all p-subgroups of G with one morphism H → K whenever H ≤ K and no morphisms otherwise. The objects of
the finite categories TG, LG, FG, FG, and OG are all p-subgroups of G. For any two p-subgroups, H and K , of G, the morphism
sets are

TG(H, K) = NG(H, K) LG(H, K) = OpCG(H)\NG(H, K)
FG(H, K) = CG(H)\NG(H, K) OG(H, K) = NG(H, K)/KFG(H, K) = CG(H)\NG(H, K)/K .

Here NG(H, K) = {g ∈ G | Hg
≤ K} denotes the transporter set. Composition in any of these categories is induced from

group multiplication in G. The morphisms in FG(H, K) are restrictions to H of inner automorphisms of G, morphisms in
OG(H, K) are right G-maps H\G → K\G, and morphisms in FG(H, K) are K -conjugacy classes of restrictions to H of inner
automorphisms ofG. The endomorphismgroups in these categories of the p-subgroupH ofG areS∗

G(H) = 1,TG(H) = NG(H),
LG(H) = OpCG(H)\NG(H), FG(H) = CG(H)\NG(H), OG(H) = NG(H)/H , and FG(H) = CG(H)\NG(H)/H . The five categories
TG, LG, FG, OG, and FG are related by a commutative diagram

TG //

��

LG // FG // FG

OG

22eeeeeeeeeeeeeeeeeeeeee

of functors.

2. Euler characteristics

In this section we review the relevant parts of Tom Leinster’s concept of Euler characteristic of a finite category C [23]
supplemented by a few of our own observations.

2.1. The Euler characteristic of a square matrix

Let S be a finite set and ζ : S × S → Q a rational function on S × S. Equivalently, ζ =

ζ (a, b)


a,b∈S is a square matrix

with rows and columns indexed by the finite set S and with rational entries ζ (a, b) ∈ Q, a, b ∈ S.

Definition 2.1 ([23, Definition 1.10]). A weighting for ζ is a column vector (k•) and a coweighting for ζ is a row vector (k•)
solving the linear equations


ζ (a, b)


...

kb
...

 =

 1
...
1

 , 
· · · ka · · ·

 
ζ (a, b)


=

1 · · · 1


.

If ζ admits both a weighting k• and a coweighting k•, the sum of the values of the weighting
b∈S

kb =


b∈S


a∈S

kaζ (a, b)


kb =


a∈S

ka


b∈S

ζ (a, b)kb


=


a∈S

ka (2.2)

equals the sum of the values of the coweighting.

Definition 2.3 ([23, Definition 2.2]). The square matrix ζ has Euler characteristic if it admits both a weighting and a
coweighting. Its Euler characteristic is then the sum

b∈S

kb = χ(ζ ) =


a∈S

ka

of all the values of any weighting k• or any coweighting k•.
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As usual, we let δ stand for Kronecker’s δ-function

δ(a, b) =


1 a = b
0 a ≠ b

, a, b ∈ Ob(C).

Suppose that the square matrix ζ is invertible. Let µ =

µ(a, b)


a,b∈S denote the inverse of ζ . The Möbius inversion

formula

∀a, c ∈ S :


b

ζ (a, b)µ(b, c) = δ(a, c) =


b

µ(a, b)ζ (b, c) (2.4)

simply expresses that ζ and µ are inverse matrices. In this case, the vectors


ka


=

µ(a, b)


a,b∈S

 1
...
1

 =


b∈S

µ(a, b)

 
kb


=

1 . . . 1

 
µ(a, b)


a,b∈S =


a∈S

µ(a, b)



are, respectively, the unique weighting and unique coweighting for ζ . The weighting is represented by row sums and the
coweighting by column sums. The Euler characteristic of ζ is the sum

χ(ζ ) =


a,b∈S

µ(a, b)

of all the entries in the inverse matrix.

2.2. The Euler characteristic of a finite category

Define the ζ -matrix for the finite category C to be the square matrix

ζ (C) =

|C(a, b)|


a,b∈Ob(C)

tabulating the number of morphisms between pairs of objects ofC. We say that the categoryC admits a weighting, admits a
coweighting, or has Euler characteristic if its ζ -matrix does. This means that a weighting forC is a function k•

C : Ob(C) → Q,
and a coweighting is a function kC

•
: Ob(C) → Q such that

∀a ∈ Ob(C) :


b∈Ob(C)

|C(a, b)|kbC = 1, ∀b ∈ Ob(C) :


a∈Ob(C)

kC
a |C(a, b)| = 1. (2.5)

The Euler characteristic of C is the Euler characteristic of its ζ -matrix

χ(C) =


b∈Ob(C)

kbC =


a∈Ob(C)

kC
a = χ(ζ (C))

provided thatC admits both a weighting and a coweighting. We say thatC hasMöbius inversion if its ζ -matrix is invertible.
The Möbius function for C is then defined as the inverse µ(C) = ζ (C)−1 of the ζ -matrix. In this case,

k•

C =


b∈Ob(C)

µ(C)(•, b), kC
•

=


a∈Ob(C)

µ(C)(a, •), χ(C) =


a,b∈Ob(C)

µ(C)(a, b)

are, respectively, the unique weighting, the unique coweighting, and the Euler characteristic of C.

Remark 2.6. Let C be a (finite) category and I and J two full subcategories. If

a ∈ Ob(I), C(a, b) ≠ ∅ =⇒ b ∈ Ob(I), C(a, b) ≠ ∅, b ∈ Ob(J) =⇒ a ∈ Ob(J)

holds for all a, b ∈ Ob(C), then I is a left ideal and J a right ideal, of C . Clearly,

I is a left ideal ⇐⇒ C − I is a right ideal

where C − I is the full subcategory of C generated by all objects of C not objects of I.

• Weightings for C restrict to weightings on left ideals of C
• Coweightings for C restrict to coweightings on right ideals of C .
• Möbius functions for C restrict to Möbius functions on left or right ideals of C .

These items are easy consequences of the defining relations for weightings, coweightings and Möbius functions (2.5) (2.4).
For the third item one uses that µ(a, b) ≠ 0 =⇒ |ζ (a, b)| ≠ 0 [23, Theorem 4.1].

IfC is a p-subgroup category, thenCsc andC∗ are left ideals, andCea a right ideal, ofC . (Definitions of these subcategories
can be found in the Introduction.)
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Example 2.7 ([23, Examples 1.1.c]). Suppose thatC has Euler characteristic. IfC has a terminal element 1, then k•
C = δ(•, 1)

is a weighting with value 1 concentrated at the terminal element because
b

ζ (a, b)δ(b, 1) = ζ (a, 1) = 1

for all a ∈ Ob(C). The Euler characteristic of C is χ(C) =


a δ(a, 1) = δ(1, 1) = 1.
Dually, if C has an initial element 0, then kC

•
= δ(0, •) is a coweighting concentrated, with value 1, at the initial element.

Again, the Euler characteristic χ(C) = 1.

Lemma 2.8 ([23, Proposition 2.4]). Let C and D be finite categories.

(1) C has Euler characteristic if and only if its opposite category Cop has, and then χ(C) = χ(Cop).
(2) If both C and D have Euler characteristics and there is an adjunction C

//
Doo , then χ(C) = χ(D).

(3) If C and D are equivalent then C has Euler characteristic if and only if D has Euler characteristic, and then χ(C) = χ(D).

Lemma 2.9. Let C be a full subcategory of D and suppose that both categories have Euler characteristics.

(1) If Ob(C) contains the support of some weighting k•
D on D , then the restriction k•

D |Ob(C) is a weighting for C and χ(C) =

χ(D).
(2) If Ob(C) contains the support of some coweighting kD

• on D , then the restriction kD
• |Ob(C) is a coweighting for C and

χ(C) = χ(D).

Proof. We shall only prove item (1) as (2) can be handled similarly. The assumption is that ∀b ∈ Ob(D) : kbD ≠ 0 =⇒ b ∈

Ob(C). For any a ∈ Ob(C)

1 =


b∈Ob(D)

ζ (a, b)kbD =


b∈Ob(C)

ζ (a, b)kbD .

This shows that the restriction of k•
D to Ob(C) is indeed a weighting for C (2.5). The Euler characteristic of C is χ(C) =

b∈Ob(C) k
b
D =


b∈Ob(D) k

b
D = χ(D). �

2.3. The Euler characteristic of a finite poset

Any finite poset, S, hasMöbius inversion and Euler characteristic [34]. TheMöbius functionµ for S is themapµ : Ob(S)×
Ob(S) → Z defined by

• µ(a, b) = 0 when a ≰ b
• µ(a, a) = 1
•


b∈[a,c]

µ(b, c) = δ(a, c) =


b∈[a,c]

µ(a, b)when a ≤ c .

The equations of the third item are the Möbius inversion formulas (2.4) for posets. The value of the Möbius function
µ(a, b) = χ((a, b)), a < b, depends only on the open interval (a, b) from a to b and not on the whole poset [34, Proposition
3.8.6], [23, Corollary 1.5].

Example 2.10. Suppose that the poset S contains a least element, 0. Then the reduced Euler characteristic (1.2)χ(S) = 0
by Example 2.7. Let S∗ be the subposet of all elements ≠ 0. For any element b different from the least element,

a∈(0,b]

µ(a, b) = −µ(0, b)+


a∈[0,b]

µ(a, b) = −µ(0, b)+ δ(0, b) = −µ(0, b). (2.11)

The functions

kaS =


b

µ(a, b), kS∗

b =


a∈(0,b]

µ(a, b) = −µ(0, b)

are, respectively, a weighting for S and a coweighting for S∗. The weighting for S restricts to a weighting for the left ideal
S∗ (Remark 2.6). The Euler characteristic and the opposite of the reduced Euler characteristic of S∗ are

χ(S∗) =


b∈S∗

−µ(0, b), −χ(S∗) = 1 − χ(S∗) =


b∈S

µ(0, b). (2.12)
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2.4. The Euler characteristic of [C]

As mentioned in the Introduction, [C ] denotes the set of isomorphism classes of C -objects. Let [ζ (C)] : [C] × [C] → Q
be the function induced by the ζ -function ζ (C) : Ob(C)× Ob(C) → Q for C.

We say that [C] admits a weighting, a coweighting, or has Euler characteristic if its ζ -matrix [ζ (C)] does. This means
that a weighting for [C] is a rational function k•

[C ]
: [C] → Q and a coweighting is a rational function k[C ]

• : [C] → Q such
that

∀[a] ∈ [C] :


[b]∈[C]

[ζ (C)]([a], [b])k[b]
[C ]

= 1, ∀[b] ∈ [C] :


[a]∈[C]

k[C ]

[a] [ζ (C)]([a], [b]) = 1. (2.13)

The Euler characteristic of [C] is
[b]∈[C]

k[b]
[C ]

= χ([C]) =


[a]∈[C]

k[C ]

[a]

provided that [C] admits both a weighting and a coweighting.
We say that [C] has Möbius inversion if its ζ -matrix [ζ (C)] is invertible and then

k[a]
[C ]

=


[b]∈[C]

[µ]([a], [b]), k[C ]

[b] =


[a]∈[C]

[µ]([a], [b]), χ([C]) =


[a],[b]∈[C]

[µ]([a], [b])

is the unique weighting, the unique coweighting, and the Euler characteristic of [C], where

[µ]([a], [b])


[a],[b]∈[C]

denotes
the inverse matrix of [ζ (C)].

Clearly, if C has a weighting, k•
C , and a coweighting, kC

• , then [C] has weighting k[b]
[C ]

=


c∈[b] k
c
C , and coweighting

k[C ]

[a] =


c∈[a] k
C
c , and χ(C) = χ([C]). The next proposition is about the converse.

Proposition 2.14. Suppose that [C] has a weighting, k•

[C ]
, and a coweighting, k[C ]

• . Then the functions

kbC = |[b]|−1k[b]
[C ]
, kC

a = |[a]|−1k[C ]

[a]

are a weighting and a coweighting for C, and χ([C]) = χ(C).

Proof. We shall use Eq. (2.13). Let a be any object of C . Since the function k•
C is constant on isomorphism classes of objects

we find that
b

ζ (a, b)kbC =


b

[ζ ]([a], [b])kbC =


[b]

[ζ ]([a], [b])kbC |[b]| =


[b]

[ζ ]([a], [b])k[b]
[C ]

= 1.

A symmetric argument shows that kC
• is a coweighting for C . Thus C has Euler characteristic χ(C) =


b k

b
C =


[b] |[b]|k

b
C

=


[b] k
[b]
[C ]

= χ([C]). �

Corollary 2.15. Let C be any of the six p-subgroup categories SG, TG, LG, FG, OG, FG. Then

• [C ] has Möbius inversion
• C admits a weighting, a coweighting, and C has Euler characteristic.

The same conclusions hold for any full subcategory of C .

Proof. The corollary obviously holds for the poset SG (where [SG] = SG).
Let now C be any of the other five subgroup categories TG, LG, FG, OG, FG. The set of isomorphism classes of object of

C is the set of p-subgroups of G [21, p. 426] (Lemma 2.16). Suppose that G contains two conjugate but distinct subgroups.
Then the ζ -matrix for C has two identical rows. Thus C does not have Möbius inversion in general.

However, equip the set of p-subgroups of G with a linear order extending the partial order given [H] ≤ [K ] ⇐⇒

ζ ([H], [K ]) ≠ ∅. Then [H] > [K ] =⇒ ζ ([H], [K ]) = ∅. The ζ -matrix [ζ (C)] for [C ]with this linear order is upper triangular
with diagonal entries |C(H)| ≥ 1. Thus [ζ ] has Möbius inversion. By Proposition 2.14, the category C has a weighting and
a coweighting.

This argument applies equally well to any full subcategory of C . �

Lemma 2.16. Let H and K be two p-subgroups of G. Then H and K are isomorphic in FG if and only if they are isomorphic in FG.

Proof. Suppose that H and K are isomorphic in FG. Then there exist x ∈ NG(H, K), y ∈ NG(K ,H) so that conjugation by xy
is an inner automorphism of H and conjugation by yx is an inner automorphism of K . By replacing y by another element of
yH , if necessary, we obtain that yx ∈ CG(H). Then yx = xyx ∈ CG(H)x = CG(K). This means that xy represents the identity of
FG(H) and yx represents the identity of FG(K). �
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2.5. The Euler characteristic of a homotopy orbit category

Let S be a finite category with a G-action. (This means that there is a functor from G to the category of finite categories
taking the single object of G to S.) The homotopy orbit category, ShG, is the Grothendieck construction on the G-action on S:
The category with the same set of objects as S and with morphism sets

ShG(a, b) =


g∈G

S(ag, b), a, b ∈ Ob(S), (2.17)

of size |ShG(a, b)| =


g∈G |S(ag, b)| =


g∈G |S(a, bg−1)|. The composition in S hG is defined as (g, ϕ) ·(h, ψ) = (gh, ϕh ·ψ)

for g, h ∈ G and ϕ ∈ S(ag, b), ψ ∈ S(bh, c) for objects a, b, c of S .

Theorem 2.18. Let F be a finite category with the same objects as S . Suppose that d•, t• : Ob(S) → Z+ are positive integral
functions such that da|F (a, b)|tb = |ShG(a, b)| for all a, b ∈ Ob(S).

(1) If m•
: Ob(S) → Q is a rational function so that


b |S(a, b)|mb

= da for all a ∈ Ob(S) and d• is G-invariant, then |G|
−1t•m•

is a weighting for F .
(2) If m• : Ob(S) → Q is a rational function so that


a ma|S(a, b)| = tb for all b ∈ Ob(S) and t• is G-invariant, then |G|

−1m•d•

is a coweighting for F .
(3) Suppose that S has Möbius inversion and µ is the Möbius function. If d• is G-invariant then ka = |G|

−1
b t

aµ(a, b)db is a
weighting for F , and if t• is G-invariant then kb = |G|

−1
a t

aµ(a, b)db a coweighting for F .

Proof. (1) The proofs of (1) and (2) are dual to each other.
(2) For every b ∈ Ob(S),

a

mada|F (a, b)| =


a

ma|ShG(a, b)|(tb)−1
=


g∈G


a

ma|S(a, bg−1)|(tb)−1
=


g∈G

tbg
−1
(tb)−1

= |G|

as t• is G-invariant so that tbg
−1

= tb for all g ∈ G.
(3) If ma

=


b µ(a, b)db then


b |S(a, b)|mb
= da by the Möbius inversion formula (2.4). By (1), ka is a weighting for F if

d• is G-invariant. Dually, Ifmb =


a t
aµ(a, b) then


a ma|S(a, b)| = tb by the Möbius inversion formula (2.4). By (2), kb is

a coweighting for F if t• is G-invariant. �

3. The Möbius function of a finite group

In this section we introduce the Möbius function of a finite group and show how it can be used to express weightings
and coweightings of p-subgroup categories.

Definition 3.1. Let G be any finite group.

• SG is the poset of all subgroups of G.
• µ : Ob(SG)× Ob(SG) → Q is the Möbius function for SG.

We noted in Section 2.3 that the value of µ on a pair (H, K) of subgroups of G, only depends on H and K and not on G.
This is the reason for writing just µ, rather than µG, for the Möbius function of SG. In particular, for any subgroup K ≤ G,
µ(1, K) only depends on K , not on the whole group G, and it is customary to write µ(K) for µ(1, K) [19].

The Möbius functionµ for the full subgroup poset SG restricts to Möbius functions for the right ideal SG of SG and for the
left ideal S∗

G of SG (Remark 2.6). The next lemma gives µ on pairs of p-subgroups.

Lemma 3.2 ([18], [19, Corollary 3.5]). Let H and K be p-subgroups of G. Then

µ(H, K) =


(−1)np(

n
2) Φ(K) ≤ H ≤ K , pn = |K : H|

0 otherwise.

In particular, µ(K) = µ(1, K) = 0 unless K is elementary abelian where

µ(K) = (−1)np(
n
2), pn = |K |.

Proof. If µ(H, K) ≠ 0 then H ▹ K with H\K elementary abelian and µ(H, K) = µ(H\K) [21, Proposition 2.4], [22, Lemme
4.1]. Burnside’s basis theorem [30, 5.3.2], [15, Lemma 3.15], Φ(K) = [K , K ]K p, shows that H ▹ K with H\K elementary
abelian if and only ifΦ(K) ≤ H . �

Theorem 3.3. Let C be one of the five categories SG, TG, LG, FG, or OG. Weightings k•
C for C , coweightings kC∗

• for C∗, and Euler
characteristics for C∗ are as in Table 1.
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Table 1
Weightings, coweightings, and Euler characteristics for categories of nonidentity p-subgroups.

C kHC kC∗

K χ(C∗)

SG


K µ(H, K) −µ(K)


K	1 −µ(K)
TG |G|

−1
K µ(H, K) −|G|

−1µ(K)


[K ]≠[1]
−µ(K)
|T ∗

G (K)|

LG |G|
−1

K µ(H, K)|O
pCG(K)| −|G|

−1µ(K)|OpCG(K)|


[K ]≠[1]
−µ(K)
|L∗

G(K)|

FG |G|
−1

K µ(H, K)|CG(K)| −|G|
−1µ(K)|CG(K)|


[K ]≠[1]

−µ(K)
|F ∗

G (K)|

OG |G|
−1

|H|


K µ(H, K) |G|
−1

H |H|µ(H, K) |G|
−1

H,K	1 |H|µ(H, K)

Proof. SG is a poset with Möbius function µ as in Definition 3.1. By Example 2.10,

kHS =


1≤H≤K

µ(H, K), kS∗

K =


1�H≤K

µ(H, K) = −µ(K)

are, respectively, a weighting for SG and a coweighting for S∗

G .
Next note that the homotopy orbit category for the conjugation action of G on the poset SG is the transporter category

TG = (SG)hG. Since also

|TG(H, K)| = |OpCG(H)||LG(H, K)| = |CG(H)||FG(H, K)| = |OG(H, K)||K | (3.4)

we are in a position to apply Theorem 2.18. For example, in case of F ∗

G , Theorem 2.18.(3) shows that

kHF = |G|
−1

H≤K

µ(H, K)|CG(K)|, kF ∗

K = |G|
−1


1�H≤K

µ(H, K)|CG(K)| = −|G|
−1µ(K)|CG(K)|

are, respectively, a weighting for FG and a coweighting for F ∗

G . Note that the coweighting is constant over the conjugacy
class [K ] of K of size |[K ]| = |G : NG(K)|. The function

k[F ∗
]

[K ]
= |G : NG(H)|k

F ∗

K =
−µ(K)
|F ∗

G (K)|
(3.5)

is thus a coweighting for the set [F ∗

G ] of isomorphism classes of objects (Section 2.4). The Euler characteristic of F ∗

G ,

χ(F ∗

G ) =


[K ]

−µ(K)
|F ∗

G (K)|

is the sum of the values for the coweighting for [F ∗

G ]. �

The quotient category F ∗

G is missing from Table 1 because Theorem 2.18 does not directly apply. We shall later see thatF ∗

G and F ∗

G have identical coweightings and Euler characteristics (Theorem 7.7).
Lemma 2.9 implies that χ(C∗) = χ(Cea) for C = S, T ,L,F because the coweightings for these categories are

concentrated on the elementary abelian p-subgroups of G (Lemma 3.2). Quillen shows in [29, Proposition 2.1] the much
stronger result that the posets S∗

G and Sea
G (the ‘Quillen poset’) are homotopy equivalent.

Example 3.6. Let D2pn be the dihedral group of order 2pn, n ≥ 1, Ap the alternating group of index p > 2, and SLn(Fq) the
special linear group where q is a power of p and n ≥ 2. Then

χ(S∗

D2pn
) = 1, χ(S∗

Ap) = (p − 2)!, χ(S∗

SLn(Fq)
) = (−1)nq(

n
2).

See [29, Example 2.7] for the Euler characteristic of S∗

Ap . Let Vn(q) be an n-dimensional vector space over Fq and Ln(q) the
poset of Fq-subspaces of Vn(q). The poset Sea

SLn(Fq)
of nonidentity elementary abelian p-subgroups is homotopy equivalent to

the open interval (0, Vn(q)) [29, Theorem 3.1], the building for SLn(Fq) [1, Example 6.5]. Therefore

χ(Sea
SLn(Fq)

) = χ((0, Vn(q))) = µLn(q)(0, Vn(q)) = (−1)nq(
n
2)

by the computation of the Möbius function µLn(q) in Ln(q) [34, Example 3.10.2] [22, Proposition 3.6]. In this example we
may replace SLn(Fq) by any of the groups GLn(Fq), PSLn(Fq), or PGLn(Fq) since they all have identical p-subgroup posets. The
computer-generated Table 3 displays Euler characteristics of poset categories at p = 2 of small alternating groups.

Example 3.7. If P is a nonidentity p-group we immediately have that

χ(S∗

P ) = 1, χ(T ∗

P ) = |P|
−1, χ(L∗

P) = |P|
−1, χ(F ∗

P ) = 1, χ(O∗

P ) = 1, χ(F ∗

P ) = 1 (3.8)
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because P is terminal in S∗

P andO∗

P , T
∗

P = L∗

P , and χ(T
∗

P ) = |P|
−1χ(S∗

G) = |P|
−1 by Theorem 2.18, Proposition 5.1 applies to

F ∗

P , and Theorem 7.7 to F ∗

P . More generally, if G has a normal p-complement, then χ(F ∗

G ) = 1 because F ∗

G = F ∗

P according
to the Frobenius normal p-complement theorem [16, Proposition 16.10][30, 10.3.2].

Example 3.9. The Euler characteristics for the subgroup categories generated by all p-subgroups of G (including the identity
subgroup) are

χ(SG) = 1, χ(TG) = |G|
−1, χ(LG) = |G : OpG|

−1, χ(FG) = 1,

χ(OG) =
1

p|G|
+

p − 1
p


[C]

1
|OG(C)|

, χ(FG) = 1.

Observe that SG, FG, and FG have initial objects and that TG deformation retracts onto TG(1) = G and LG deformation
retracts onto LG(1) = OpG\G. (See the proof of Proposition 5.1 for the definition of deformation retracts.) In the formula for
χ(OG), [C] runs through the set of conjugacy classes of cyclic p-subgroups C of G, see Corollary 4.2.(3).

3.1. Alternative weightings and coweightings

In this subsection we shall determine the Möbius functions for [TG], [LG], [FG], and [OG] (Corollary 2.15).
Let H, K ≤ G. The rational number

[µ](H, K) =
1

|NG(H)|


B∈[K ]

µ(H, B) (3.10)

only depends on the conjugacy classes of H and K 1, and

[µ](H, K) =
1

|NG(H)|


B∈[K ]

µ(H, B) =
1

|NG(H)||NG(K)|


g∈G

µ(H, K g)

=
1

|NG(H)||NG(K)|


g∈G

µ(Hg , K) =
1

|NG(K)|


A∈[H]

µ(A, K).

In particular, [µ](K) = |NG(K)|−1µ(K), where [µ](K) is short for [µ](1, K). As in Equation (2.11),
[1]≠[H]

[µ]([H], [K ]) =
1

|NG(K)|


1≠H

µ(H, K) =
−µ(K)
|NG(K)|

= −[µ]([K ])

for any subgroup K of G.

Proposition 3.11. The above function [µ]([H], [K ]), derived from Equation (3.10), is the Möbius function for [TG].

Proof. We claim that ([µ]([H], [K ]))[H],[K ]∈[TG] is the inverse of the matrix (|NG(H, K)|)[H],[K ]∈[TG]. If H and L are (p-
)subgroups of G then

|NG(H)|

[K ]

[µ]([H], [K ])|NG(K , L)| =


K

µ(H, K)|NG(K , L)| =


K

µ(H, K)

g∈G

SG(K
g , L)

=


g∈G


K

µ(H, K)SG(K , L
g−1
) =


g∈G

δ(H, Lg
−1
) =


g∈G

δ(Hg , L).

This last sum is 0 if H and L are not conjugate, and it is |NG(H)| if they are conjugate. �

Theorem 3.12. Möbius functions and weightings for [C ], and coweightings and Euler characteristics for [C∗
] are as in Table 2

when C is one of the p-subgroup categories SG, TG,LG,FG,OG.

Proof. The relations (3.4) between sizes of homomorphism sets allow us to determine the Möbius functions for C =

LG,FG,OG. The row sums for these [µ]-matrices are the weightings shown in the third column of Table 2. The [µ]-matrices
restrict to Möbius functions on the left ideal [C∗

] (Remark 2.6). The column sums of these restricted matrices are the
coweightings in the fourth column. This explains all entries of Table 2 but the ones of the first row.

1 The Möbius function [µ] for the homotopy quotient [TG] = [(SG)hG] is not the same as the Möbius function λG [19, Section 7] [27] for the quotient
SG/G, the poset of p-subgroup classes ordered by subconjugation.
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Table 2
Möbius functions, weightings, coweightings, and Euler characteristics for categories of p-subgroups.

C [µ(C )]([H], [K ]) k[H]

[C]
k[C∗

]

[K ]
χ(C∗)

SG µ(H, K) |NG(H)|k
[H]

[TG]
k
[T ∗

G ]

[K ]
|NG(K)| |G|χ(T ∗

G )

TG [µ]([H], [K ])


[K ]
[µ]([H], [K ]) −[µ]([K ])


[K ]

−[µ]([K ])

LG [µ]([H], [K ])|OpCG(K)|


[K ]
[µ]([H], [K ])|OpCG(K)| k

[T ∗
G ]

[K ]
|OpCG(K)|


[K ]

−[µ]([K ])|OpCG(K)|

FG [µ]([H], [K ])|CG(K)|


[K ]
[µ]([H], [K ])|CG(K)| k

[T ∗
G ]

[K ]
|CG(K)|


[K ]

−[µ]([K ])|CG(K)|
OG |H|[µ]([H], [K ]) |H|


[K ]

[µ]([H], [K ])


[H]
|H|[µ]([H], [K ])


[H],[K ]

|H|[µ]([H], [K ])

We now focus on the first row. Note that [SG] = SG as there are no nonidentity isomorphisms in SG. The weighting for
SG and the coweighting for S∗

G are

kHS =


1≤K

µ(H, K) =


[K ]


B∈[K ]

µ(H, B) = |NG(H)|

[K ]

[µ]([H], [K ]) = |NG(H)|k
[H]

[T ]

kS∗

K =


1<H

µ(H, K) =


[1]≠[H]


A∈[H]

µ(A, K) = |NG(K)|


[1]≠[H]

µ([H], [K ]) = −|NG(K)|[µ]([K ]) = k[T ∗
]

[K ]
|NG(K)|.

The Euler characteristic of S∗

G is

χ(S∗

G) =


1≠K

kS∗

K =


[1]≠[K ]

|G : NG(K)|k
S∗

K = |G|


[1]≠[K ]

k[T ∗
]

[K ]
= |G|χ(T ∗

G ).

This explains the first row of Table 2. �

The Möbius functions of the second column of Table 2 restrict to Möbius functions on the (left or right) ideals C∗, Cea,
and Csc of C . The weightings of the third column of Table 2 restrict to weightings on the left ideals C∗ and Csc (Remark 2.6).

Remark 3.13. Let H, K ≤ G. Define the µ-transporter from H to K to be the set

NµG (H, K) = {g ∈ G | Φ(K) ≤ Hg
≤ K}, H, K ∈ Ob(S∗

G)

of group elements g that conjugate H into K such that µ(Hg , K) ≠ 0.
The map g → K g−1

is a bijection between NµG (H, K)/NG(K) and the set {L ∈ [K ] | H ≤ L, µ(H, L) ≠ 0} of subgroups L of
G conjugate to K and containing H with µ(H, L) ≠ 0. Therefore

[µ]([H], [K ]) = (−1)np(
n
2)

|NµG (H, K)|
|NG(H)||NG(K)|

, H, K ∈ Ob(S∗

G), |K | = pn|H|

can be computed from these transporter sets.

Next we note that the values of the weightings for the p-subgroup categories SG, TG, OG, and FG can be computed locally.

Proposition 3.14. The functions

kHS = −χ(S∗

OG(H)
), kHT =

−χ(S∗

OG(H)
)

|G|
, kHO =

−χ(S∗

OG(H)
)

|G : H|

are weightings for SG, TG, and OG, respectively. The function

kHF =


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)/H
)

|G|

is a weighting for FG.

Proof. Let H be a p-subgroup of G. Consider the projection NG(H) → NG(H)/H = OG(H) of the p-local subgroup NG(H)
onto its quotient NG(H)/H . Following the bar convention [14, pp. 18, 139], we write NG(H) for NG(H)/H and K for the image
in NG(H) of any subgroup K of NG(H).

We see from Table 1 that the weighting for the poset SG is

kHS =


K

µ(H, K) =


K∈[H,NG(H)]

µ(H, K) =


K≤OG(H)

µ(K)
(2.12)
= −χ(S∗

OG(H)
)
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asµ(H, K) = 0 unless H is normalized by K (Lemma 3.2). (Indeed, the subposets (H,G] and (H,NG(H)] of SG are homotopy
equivalent [29, Proposition 6.1].) The formulas for the weightings for TG and OG now follow from Table 1.

In the formula from Table 1 for the weighting kHF for FG wemay replace CG(K) by CNG(H)(K) becauseµ(H, K) = 0 unless
H ≤ K ≤ NG(H) (Lemma 3.2) and then CG(K) ≤ CG(H) ≤ NG(H). Thus we see from Table 1 that

|G|kHF =


H≤K≤NG(H)

µ(H, K)|CG(K)| =


K≤NG(H)

µ(K)|CNG(H)(K)|.

The order of the group CNG(H)(K) is

|CNG(H)(K)| = |{x ∈ NG(H) | x ∈ CG(K)}| = |{x ∈ CNG(H)(H) | x ∈ CG(K)}|

= |{x ∈ CNG(H)(H) | K ≤ CNG(H)(x)}| =


x∈CNG(H)(H)

|SNG(H)


K , CNG(H)(x)


|

where we use the poset SNG(H) of all subgroups of NG(H) (Definition 3.1). We conclude that

|G|kHF =


x∈CNG(H)(H)


K≤NG(H)

µ(K)|SNG(H)


K , CNG(H)(x)


| =


x∈CNG(H)(H)


K≤CNG(H)(x)

µ(K)

=


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)
)

using Eq. (2.12) to get the last identity. �

Using the expressions from Proposition 3.14, we find the following weightings k[H]

[C ]
= |G : NG(H)|kHC for [C ] any of [TG],

[OG], and [FG]:

k[H]

[T ]
=

−χ(S∗

OG(H)
)

|TG(H)|
, k[H]

[O ]
=

−χ(S∗

OG(H)
)

|OG(H)|
, k[H]

[F ]
=


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)/H
)

|NG(H)|
. (3.15)

Thus the Euler characteristics of S∗

G , T
∗

G , and O∗

G are

χ(S∗

G) =


H

−χ(S∗

OG(H)
), χ(T ∗

G ) =


[H]

−χ(S∗

OG(H)
)

|TG(H)|
, χ(O∗

G) =


[H]

−χ(S∗

OG(H)
)

|OG(H)|
. (3.16)

The Euler characteristic of F ∗

G

χ(F ∗

G ) =


[H]


x∈CNG(H)(H)

−χ(S∗

CNG(H)(x)/H
)

|NG(H)|
= χ(FG)− k1F = 1 +

1
|G|


x∈G

χ(S∗

CG(x)) =
1
|G|


x∈G

χ(S∗

CG(x)) (3.17)

is the average of the Euler characteristics for nonidentity p-subgroup posets of the element-centralizers in G.

Definition 3.18. The p-subgroup H of G is

• p-radical if OpOG(H) = 1 [4, Proposition 4]

• FG-radical if Op FG(H) = 1 [7, Definition A.9]

Corollary 3.19. The weightings for SG, TG, and OG are supported on the p-radical subgroups of G.

Proof. If H is not p-radical then the weightings for SG, TG, and OG from Proposition 3.14 vanish on H becauseχ(S∗

OG(H)
) = 0

by Quillen [29, Proposition 2.4]. �
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For C = SG, TG,OG, let Cra denote the full subcategory of C∗ generated by all nonidentity p-radical p-subgroups. The
category Cra has Euler characteristic (Corollary 2.15), and

χ(Cra) = χ(C∗)

by Corollary 3.19 and Lemma 2.9.(1). Bouc [5, Corollaire] shows the stronger result that Sra
G (the ‘Bouc poset’) and S∗

G are
homotopy equivalent posets. Thévenaz and Webb [35, Theorem 2.3] describe Sra

G when G is simple group of Lie type in
defining characteristic p.

Remark 3.20. We suspect that the support for the weightings for SG, TG, andOG is the set of p-radical p-subgroups of G. This
would be the case if the strong Quillen conjecture (1.4) turned out to be true.

The weighting for FG is supported on the set of p-subgroups H ≤ G for which H = OpCNG(H)(x) for some x in CG(H).
There are examples (the symmetric groupΣ8 at p = 2) where the support of the weighting k•

F ∗
G
is strictly contained in this

set of p-subgroups. The Frobenius category F ∗

G is not able to detect p-radical p-subgroups of G: the dihedral groups D8 and
D24 = C3 o D8 of order 8 and 24 have equivalent Frobenius categories at p = 2 but distinct sets of 2-radical subgroups.

There is no simple general relation between the two concepts of radical subgroups from Definition 3.18 [7, Appendix A].
If P is an abelian nonidentity p-group, then all subgroups of P are FP -radical but only P itself is p-radical. However, if H is a
p-selfcentralizing p-subgroup of G (Definition 8.1) then OpCG(H) is a p′-group (Lemma 8.2.(1)) and the short exact sequence

1 → OpCG(H) → Osc
G (H) → F c

G (H) → 1

can be used to verify the implication

H is p-selfcentralizing and FG-radical =⇒ H is p-selfcentralizing and p-radical.

The converse implication does not hold in general: let p = 2. The normal cyclic subgroup H = OpG of order 4 in the dihedral
group G = D24 of order 24 is a p-selfcentralizing subgroup that is p-radical (Osc

G (H) = Σ3) but not FG-radical (F c
G (H) = C2).

4. Orbit categories

We shall now derive a more concise expression than the ones given in Table 1 or Table 2 for the Euler characteristic of
OG and O∗

G .

Theorem 4.1. The Euler characteristics of the orbit categories OG and O∗

G are

χ(OG) =
p + (p − 1)


C>1 |C |

p|G|
, χ(O∗

G) =
pχ(S∗

G)+ (p − 1)


C>1 |C |

p|G|

where C runs through the set of nonidentity cyclic p-subgroups of G.

Proof. Observe that |OG(H, K)||K | = |TG(H, K)| for all p-subgroups H, K ≤ G. Therefore

kO

K =
1
|G|


H≥1

|H|µ(H, K), K ∈ Ob(OG),

is a coweighting for OG according to Theorem 2.18.(3). The value of this coweighting is

kO

K =


1
|G|

K = 1
p−1
p

|K |

|G|
K > 1, K cyclic

0 K > 1, K noncyclic

by Corollary 4.5 below. The sum of these values is the Euler characteristic of OG.
The coweighting for O∗

G is

kO∗

K =
1
|G|


H>1

|H|µ(H, K) =
−µ(K)

|G|
+ kO

K , K ∈ Ob(O∗

G)

according to Table 1. The formula

χ(OG)− χ(O∗

G) =


K>1

µ(K)
|G|

+ kO

1 =
−χ(S∗

G)

|G|
+

1
|G|

=
−χ(S∗

G)

|G|

relates the Euler characteristics of O∗

G and OG. �

Corollary 4.2. Let G be any finite group and p any prime number.

(1) |G|p′k[H]

[O ]
is an integer for every p-subgroup H ≤ G



2678 M.W. Jacobsen, J.M. Møller / Journal of Pure and Applied Algebra 216 (2012) 2665–2696

(2) |G|p′χ(OG) and |G|p′χ(O∗

G) are integers
(3) The Euler characteristic of OG is

1 + (p − 1)


C |C |

p|G|
= χ(OG) =


[H]

−χ(S∗
OG
(H))

|OG(H)|

where C runs through the set of cyclic p-subgroups of G and [H] through the set of conjugacy classes of p-radical p-subgroups
of G.

Proof. (1) The weighting for [OG] is given in Equation (3.15). We see that

|G|p′k[H]

[O ]
=

|G|p′

|OG(H)|p′

−χ(S∗

OG(H)
)

|OG(H)|p

is an integer by Brown’s theorem [8, Corollary 2] [29, Corollary 4.2] [36, Corollary 3.3] [19, Corollary 3.9].
(2) The rational number |G|p′χ(OG) is an integer because it is the sum of the integers |G|p′k[H]

O where [H] runs through the
set of conjugacy classes of p-subgroups of G. The difference

|G|p′(χ(OG)− χ(O∗

G)) = |G|p′

−χ(S∗

G)

|G|
=

−χ(S∗

G)

|G|p

is also an integer by Brown’s theorem again.
(3) The expression to the left is the Euler characteristic of OG computed from a coweighting for OG and the expression to the
right is the Euler characteristic of OG computed from a coweighting of [OG]. �

Corollary 4.3. Let G be any finite group and p any prime number. Then

(1 − p)


1≤C≤G

|C | ≡ 1 mod p|G|p

where the sum ranges over the set of all cyclic p-subgroups C of G.

Proof. From Corollary 4.2.(3) we have that

1 + (p − 1)


1≤C≤G

|C | = p|G|χ(OG) = p|G|p|G|p′χ(OG)

and |G|p′χ(OG) is an integer by Corollary 4.2.(2). �

The congruence relation of Corollary 4.3 reduces to the familiar relation

(1 − p)(1 + p + · · · + pn) ≡ 1 mod pn+1

when G is cyclic of order pn.
We shall now prove the combinatorial identities used in Theorem 4.1. The Gaussian p-binomial coefficient


[n]
[d]


=

d
j=1


pn − pj−1

d
j=1


pd − pj−1 =

d
j=1


pn+1−j

− 1


d
j=1


pj − 1


counts the number of d-dimensional subspaces of the n-dimensional Fp-vector space Fnp [34, 1.3.18].

Lemma 4.4. For any n ≥ 1,
n

d=0

(−1)d


[n]
[d]


p(

d
2)pn−d

=


p − 1 n = 1
0 n > 1.

Proof. Note first the formulas [34, p. 26]
[n]
[d]


=


[n − 1]

[d]


+ pn−d


[n − 1]
[d − 1]


,


[n]
[0]


= 1 =


[n]
[n]


,


[2]
[1]


= 1 + p,

for the Gaussian p-binomial coefficients.
For n = 1 and n = 2, the sums we are evaluating are the polynomials

[1]
[0]


p −


[1]
[1]


= p − 1,


[2]
[0]


p2 −


[2]
[1]


p +


[2]
[2]


p = p2 − (1 + p)p + p = 0.
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For n > 2 the sum has the value
n

d=0

(−1)d


[n]
[d]


p(

d
2)pn−d

= pn +

n−1
d=1

(−1)d


[n]
[d]


p(

d
2)pn−d

+ (−1)np(
n
2)

= pn +

n−1
d=1

(−1)d


[n − 1]
[d]


+ pn−d


[n − 1]
[d − 1]


p(

d
2)pn−d

+ (−1)np(
n
2)

=


pn +

n−1
d=1

(−1)d


[n − 1]
[d]


p(

d
2)pn−d


+


n−1
d=1

(−1)d


[n − 1]
[d − 1]


p(

d
2)p2(n−d)

+ (−1)np(
n
2)



=

n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pn−d

+

n
d=1

(−1)d


[n − 1]
[d − 1]


p(

d
2)p2(n−d).

The first term is
n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pn−d

= p
n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pn−1−d

and the second term is
n

d=1

(−1)d


[n − 1]
[d − 1]


p(

d
2)p2(n−d)

= −

n−1
d=0

(−1)d


[n − 1]
[d]


p(

d+1
2 )p2(n−d−1)

= −

n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pdp2(n−d−1)

= −

n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)p2n−d−2

= −pn−1
n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pn−1−d.

We have now proved the recursive relation

n
d=0

(−1)d


[n]
[d]


p(

d
2)pn−d

= p(1 − pn−2)

n−1
d=0

(−1)d


[n − 1]
[d]


p(

d
2)pn−1−d

for n > 2. Since the sum equals 0 for n = 2, it equals 0 for all n ≥ 2. �

Corollary 4.5. For any K ∈ Ob(S∗

G)

1
|Φ(K)|


1≤H≤K

|H|µ(H, K) =


p − 1 K is cyclic
0 K is not cyclic.

Proof. Suppose that the Frattini quotient K/Φ(K) is elementary abelian of order pn for some n > 0. Recall that n = 1, ie
K/Φ(K) is cyclic, if and only if K is cyclic [13, Chp 5, Corollary 1.2]. The sum of this corollary,

H
Φ(K)≤H≤K

|H/Φ(K)|µ(K/H) =

n
d=0

(−1)n−d


[n]
[d]


p(

n−d
2 )pd =

n
d=0

(−1)d


[n]
[d]


p(

d
2)pn−d,

is evaluated in Lemma 4.4. It is nontrivial only if n = 1 where it has value p − 1. �

It is also possible to derive Corollary 4.5 from relations in the Burnside ring of K [21, Proposition 2.8].

5. The range of χ(F ∗
G )

We shall first identify a class of finite groups Gwith χ(F ∗

G ) = 1 and χ(L∗

G) = |G : OpG|
−1.

Proposition 5.1. If G contains a nontrivial central p-subgroup, then χ(C∗) = χ(C) for C = FG,LG.

Proof. Let Z be a nonidentity central p-subgroupofG and Z+ the full subcategory ofF ∗

G generated by p-subgroups containing
Z . The category Z+ has Euler characteristic by Corollary 2.15. Z+ is a deformation retract of F ∗

G in the sense that there are
functors and natural transformations

Z+
R //F ∗

G
L

oo , 1Z+ = LR, 1F ∗
G

=⇒ RL,



2680 M.W. Jacobsen, J.M. Møller / Journal of Pure and Applied Algebra 216 (2012) 2665–2696

where R is the inclusion functor. Its left adjoint is the functor L that takes Q ≤ G to LQ = QZ and the F ∗

G -morphism
cg : P → Q to cg : LP → LQ (where cg : x → xg = g−1xg is conjugation by g ∈ G). If P and Q are nonidentity p-subgroups
of Gwith Q ≥ Z then

Z+(LP,Q ) = F ∗

G (PZ,Q ) = CG(PZ)\NG(PZ,Q ) = CG(P)\NG(P,Q ) = F ∗

G (P,Q ) = F ∗

G (P, RQ )

showing that L and R are adjoint functors with L ⊣ R. By Lemma 2.8, the two categories Z+ and F ∗

G have the same Euler

characteristics. But χ(Z+) = 1 as Z+ has initial object Z (Example 2.7). Thus χ(F ∗

G ) = χ(Z+) = 1
Example 3.9

= χ(FG).
Similarly, let now Z+ be the full subcategory of L∗

G generated by p-subgroups containing Z . Again, Z+ has Euler
characteristic. The two categories Z+ and L∗

G have identical Euler characteristics because there is an adjunction between
them. By definition of L∗

G(Z,G) we have that |Z+(Z,Q )| = |G : OpG| for any object Q of Z+. Thus Z+ has a coweighting

kZ
+

•
= |G : OpG|

−1δ(Z, •) concentrated at the object Z (as in Example 2.7). Thus χ(L∗

G) = χ(Z+) = |G : OpG|
−1 Example 3.9

=

χ(LG). �

The converse of Proposition 5.1 is not true as χ(F ∗

G ) = 1 and Z(G) = 1 for G = Σ3 and p = 2. We do not know how to
characterize the finite groups Gwith χ(F ∗

G ) = 1.
Note also that O2(Σ4) > 1, so that S∗

Σ4
is contractible and χ(S∗

Σ4
) = 1, but χ(F ∗

Σ4
) ≠ 1 at p = 2.

It is immediate that the Euler characteristic χ(F ∗

G ) = |G|
−1 kF ∗

K = −|G|
−1

K µ(K)|CG(K)| is a rational number
and that |G|χ(F ∗

G ) is an integer. We now improve this observation using the coweighting k[F ∗
]

• (3.5) for the set [F ∗

G ] of
isomorphism classes of objects of F ∗

G .

Corollary 5.2. |G|p′χ(F ∗

G ) is an integer; in fact, |G|p′k[F ∗
]

[K ]
is an integer for any nonidentity p-subgroup conjugacy class [K ],

K ≤ G.

Proof. Recall from Lemma 3.2 thatµ(K) = 0 unless the nonidentity p-subgroup K ≤ G is elementary abelian. Suppose that
K ≤ G is elementary abelian of order |K | = pn. Then

|G|p′k[F ∗
]

[K ]
= |G|p′

µ(K)
|F ∗

G (K)|
=

µ(K)
|F ∗

G (K)|p
·

|G|p′

|F ∗

G (K)|p′

is an integer because |F ∗

G (K)|p divides |Aut(K)|p = p(
n
2) = µ(K) as |F ∗

G (K)| divides |Aut(K)|, and |F ∗

G (K)|p′ divides |G|p′

as |F ∗

G (K)| = |NG(K) : CG(K)| divides |G|. �

Corollary 5.3. Suppose that G has a normal Sylow p-subgroup, P, (so that G = P o G/P) and let kHF ∗ , H ∈ Ob(S∗

G), be the
weighting for F ∗

G from Table 1.

(1) |G|kHF ∗ = |{x ∈ G | CP(x) = H}|

(2) kHF ∗ ≥ 0 with kHF > 0 if and only if H = CP(x) for some x ∈ G
(3) |G|χ(F ∗

G ) = |{x ∈ G | CP(x) > 1}|.

Proof. For any nonidentity p-subgroup K and any element x ∈ G, since K ≤ P ,

x ∈ CG(K) ⇐⇒ K ≤ CG(x) ⇐⇒ K ≤ P ∩ CG(x) = CP(x)

so that

|G|kHF ∗ =


K

µ(H, K)|CG(K)| =


x∈G


K

µ(H, K)|S∗

G(K , CP(x))| =


x∈G

δ(H, CP(x))

by the Möbius inversion formula (2.4). This proves (1) which immediately implies (2) and (3). �

Corollary 5.4. Suppose that G has an abelian Sylow p-subgroup, P. Then

χ(F ∗

G ) =
|{ϕ ∈ FG(P) | CP(ϕ) > 1}|

|FG(P)|
.

Proof. When P is abelian, F ∗

G (P) has order prime to p and

FG = FNG(P) = FPoFG(P)

where the first identity is Burnside’s Fusion Theorem [15, Lemma 16.9] which says that NG(P) controls p-fusion in G. For the
second equality, observe that all morphisms in the Frobenius category of NG(P) extend to automorphisms of P . Now apply
Corollary 5.3.(3) to P o FG(P). �

Example 5.5. Let p = 2 and G = P o C3 where the cyclic group C3 cyclically permutes the three factors of P = C3
2 . Then

χ(F ∗

G ) = 1 by Proposition 5.1; indeed, kZ(G)F = 2/3, kPF = 1/3, and kHF = 0 for all other nonidentity 2-subgroups H ≤ G by
Corollary 5.3.
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Table 3
Euler characteristics of nonidentity 2-subgroup posets and categories of alternating groups computed by Magma [3].

n 4 5 6 7 8 9 10 11 12 13 14

χ(S∗

An ) 1 5 −15 −175 65 5121 15105 55935 −288255 1626625 23664641

χ(L∗

An ) 1/12 −1/24 1081/2016 971/6720 90035/145152 406699/1451520

χ(F ∗

An ) 1/3 1/3 41/63 18/35 389/567 233/405

χ(O∗

An ) 1/3 1/3 1/3 2/9 13/63 44/315 178/945 46/315 397/2835 160/1701 2101/42525

Example 5.6. Let D2pn be the dihedral group of order 2pn, n ≥ 1, Ap the alternating group of index p > 2, and SL2(Fq) the
special linear group where q is a power of p. Then

χ(F ∗

D2pn
) =

1
(2, p − 1)

, χ(F ∗

Ap) =
2

p − 1
, χ(F ∗

SL2(Fq)
) =

(2, q − 1)
q − 1

where (m, n) stands for the greatest common divisor of the natural numbersm and n.

Example 5.7. The computer-generated Table 3 displays Euler characteristics of Frobenius categories at p = 2 of small
alternating groups. (The Frobenius categories for A2n and A2n+1 at p = 2 are equivalent.) We do not know if the sequence
χ(F ∗

An) converges. See [31] for information about the Euler characteristic χ(1,Σn) of the intervals (1,Σn) in SΣn .

Example 5.8. The group H = (C3 × C3) o C2, where C2 swaps the two copies of C3, has an irreducible 4-dimensional
representation over F2. Let G = C4

2 o H be the associated semi-direct product. Then |G| = 288 and χ(F ∗

G ) = 10/9 at p = 2.

We have not been able to settle these two questions:

• Is χ(F ∗

G ) always positive when p divides the order of G?
• Can χ(F ∗

G ) get arbitrarily large?

In Corollaries 5.3 and 5.4, and in all the concrete examples that we have checked, χ(F ∗

G ) is positive when p divides the order
of G. For some time we suspected that also χ(F ∗

G ) ≤ 1 for all G but Example 5.8 shows that χ(F ∗

G ) can be greater than 1.

6. Product formulas

Wepresent product formulas for the Euler characteristics of the subgroupposetS∗

G1×G2
and the Frobenius categoryF ∗

G1×G2
for the product of two finite groups G1 and G2. According to Table 1,

−χ(S∗

G) =


K∈Ob(SG)

µ(K), −χ(F ∗

G ) =
1
|G|


K∈Ob(SG)

µ(K)|CG(K)|

with summation over all p-subgroups K of G. We shall use these expressions to derive formulas for the Euler characteristic
of the subgroup poset and Frobenius category of a direct product of groups.

Theorem 6.1. Let G1, . . . ,Gn be finite groups. Then

−χ(S∗n
i=1 Gi

) =

n
i=1

−χ(S∗

Gi), −χ(F ∗n
i=1 Gi

) =

n
i=1

−χ(F ∗

Gi).

Proof. By induction over n it is enough to prove the two formulas for a product of two groups, G1 and G2. The first formula
then asserts that

H∈Ob(SG1×G2 )

µ(H) =


H1∈Ob(SG1 )

µ(H1) ·


H2∈Ob(SG2 )

µ(H2). (6.2)

Let π1 : G1 ×G2 → G1 and π2 : G1 ×G2 → G2 be the projections. The product poset SG1 ×SG2 [34, Chp 3.2] is a deformation
retract of SG1×G2 in the sense that there are poset morphisms and natural transformations

SG1×G2
L //SG1 × SG2
R

oo , 1SG1×SG2
= LR, 1SG1×G2

=⇒ RL,

where LH = (π1(H), π2(H)), H ≤ G1 × G2, R(H1,H2) = H1 × H2, H1 ≤ G1, H2 ≤ G2. We have

H ≤ R(H1,H2) ⇐⇒ LH ≤ (H1,H2)
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so that L and R are adjoint functors. For any two p-subgroups, H1 ≤ G1 and H2 ≤ G2,
H≤G1×G2
LH=(H1,H2)

µ(H) = µSG1×SG2
((1, 1), (H1,H2)) = µ(H1)µ(H2)

where the sum is taken over all p-subgroups H ≤ G1 × G2 with π1(H) = H1 and π2(H) = H2. The first equality is a special
case of [23, Proposition 4.4] and the second equality is a special case of the formula for the Möbius function µSG1×SG2

of the
product poset SG1 × SG2 [34, Proposition 3.8.2]. Eq. (6.2) now easily follows.

For a product, G1 × G2, of two groups, the second formula asserts that
H∈Ob(SG1×G2 )

µ(H)|CG1×G2(H)| =


H1∈Ob(SG1 )

µ(H1)|CG1(H1)| ·


H2∈Ob(SG2 )

µ(H2)|CG2(H2)|.

But again this follows fromEq. (6.2) because CG1×G2(H) = CG1(H1)×CG2(H2)whenH ≤ G1×G2 andH1 = π1(H),H2 = π2(H)
are the projections of H . �

The first part of Theorem6.1 also followsQuillen’swork. According to [29, Proposition 2.6],Sea
G1×G2

is homotopy equivalent
to the join Sea

G1
∗ Sea

G2
and therefore

1 − χ(Sea
G1×G2) = 1 − χ(Sea

G1 ∗ Sea
G2) =


1 − χ(Sea

G1)

1 − χ(Sea

G2)


as 1 − χ(X ∗ Y ) =

1 − χ(X)


1 − χ(Y )


for any two finite abstract simplicial complexes, X and Y .

Example 6.3. The permutation group Σn = An o C2 is the semi-direct product of the alternating group An with a group
of order two. Assume that p = 2. When n = 6, −χ(S∗

Σ6
) = 16 and −χ(S∗

C2
) = 0. When n = 4, −χ(F ∗

Σ4
) = 1/3 and

−χ(F ∗

C2
) = 0.

These two examples show that neither the first nor the second part of Theorem 6.1 generalize to semi-direct products.

7. Abstract Frobenius categories

We shall first formulate an alternative expression for the coweighting of a Frobenius category for a finite group G. We
shall next see that this new expression easily extends to all abstract Frobenius categories.

For any two p-subgroups, H and K , of G, let

SG([H], K) =


A∈[H]

|SG(A, K)| = |{A ∈ [H] | A ≤ K}| (7.1)

denote the number of subgroups of K that are G-conjugate to H . Quite similarly, for arbitrary subgroups, H and K , of G, let

SG([H], K) =


A∈[H]

|SG(A, K)| = |{A ∈ [H] | A ≤ K}| (7.2)

denote the number of subgroups of K that are G-conjugate to H . (Recall from Definition 3.1 that SG is the poset of all
subgroups of G.) In particular, SG([H],G) = |[H]| = |G : NG(H)| is the number of conjugates of H in G.

Let P be a subgroup of G of index prime to p, for instance, a Sylow p-subgroup of G. Write P ∩ F ∗

G for the full subcategory
of F ∗

G generated by all nonidentity p-subgroups of P . Then P ∩ F ∗

G and F ∗

G are equivalent so they have identical Euler
characteristics (Lemma 2.8).
Corollary 7.3. The function

k
P∩F ∗

G
K = −

µ(K)
|F ∗

G (K , P)|
, K ∈ Ob(P ∩ F ∗

G ),

is a coweighting for P ∩ F ∗

G and the Euler characteristic of P ∩ F ∗

G is

χ(P ∩ F ∗

G ) =


K

−
µ(K)

|F ∗

G (K , P)|
= χ(F ∗

G )

with summation over the nonidentity elementary abelian p-subgroups K of P.

Proof. The set of isomorphism classes of objects [P ∩ F ∗

G ] = [F ∗

G ] has Möbius inversion and unique coweighting k
[F ∗

G ]

[K ]
=

−µ(K)/|F ∗

G (K)| (3.5). The isomorphism class of any p-subgroup K ≤ P contains SG([K ], P) objects in P ∩ F ∗

G . According to
Proposition 2.14

k
P∩F ∗

G
K =

1

SG([K ], P)
k
[F ∗

G ]

[K ]
=

−µ(K)

SG([K ], P)|F ∗

G (K)|
=

−µ(K)
|F ∗

G (K , P)|

is a coweighting for the category P ∩ F ∗

G . Here, we used that SG([K ], P)|F ∗

G (K)| = |F ∗

G (K , P)|. �



M.W. Jacobsen, J.M. Møller / Journal of Pure and Applied Algebra 216 (2012) 2665–2696 2683

Let P be a finite p-group and F an abstract Frobenius category over P [28, Chp 2] [7]. The objects of F are all subgroups
H , K of P . Write [H] for the isomorphism class in F of the object H , and

SP([H], K) =


A∈[H]

|SP(A, K)|

for the number of objects of [H] contained in K . Thus |[H]| = SP([H], P). The Divisibility Axiom [28, 2.3.1] for the Frobenius
category F implies that

|F (H, K)| = |F (H)|SP([H], K). (7.4)

Define F ∗ to be the full subcategory of F generated by all nonidentity subgroups of P . It is clear that [F ∗
] has Möbius

inversion and that [F ∗
] and F ∗ have Euler characteristics (Proposition 2.14).

Theorem 7.5. The functions

kF ∗

K =
−µ(K)

|F ∗(K , P)|
, k[F ∗

]

[K ]
=

−µ(K)
|F ∗(K)|

, 1 � K ≤ P,

are coweightings for F ∗ and [F ∗
], respectively. The Euler characteristic of F ∗ is

χ(F ∗) =


[K ]∈[F ∗]

−µ(K)
|F ∗(K)|

.

All values of the coweighting for [F ∗
] and the Euler characteristic of F ∗ are p-local integers.

Proof. We verify that kF ∗

• is a coweighting for F ∗ (2.5). For any nonidentity subgroup K ≤ P ,
1�H≤P

−µ(H)
|F ∗(H, P)|

|F ∗(H, K)| =


1�H≤P

−µ(H)
SP([H], K)
SP([H], P)

=


[H]∈[F ∗]

−µ(H)SP([H], K) =


1�H≤P

−µ(H)SP(H, K) =


1�H≤K

−µ(H) Table 1
= χ(S∗

K )
(3.8)
= 1.

Because the coweighting kF ∗

K is constant over the isomorphism class of K ,

k[F ∗
]

[K ]
=


B∈[K ]

kF ∗

K = SP([K ], P)kF ∗

K = SP([K ], P)
−µ(K)

|F ∗(K)|SP([K ], P)
=

−µ(K)
|F ∗(K)|

is a coweighting for [F ∗
]. The formula for the Euler characteristic of F ∗ or [F ∗

] follows (Proposition 2.14).
Recall from Lemma3.2 that theMöbius function vanishes on all p-groups but the elementary abelian ones. Since |F ∗(K)|p

divides |Aut(K)|p = µ(K) when K is elementary abelian (see proof of Corollary 5.2), all values of the coweighting k[F ∗
]

[K ]
lie

in the ring Z(p) of p-local integers. (Following standard notation we write Z(p) for the localization of the integer ring Z at the
prime ideal (p) generated by p.) �

The exterior quotient F of the Frobenius category F has the same objects as FG, all subgroups H , K of P . The morphism
set F (H, K) = F (H, K)/K is the set of K -conjugacy classes of F -morphisms. Composition of morphisms in F induces
morphism composition in F .

Define SP to be the category with the same objects as F , all subgroups H , K of P . The morphism sets are

SP(H, K) =


CK (H) H ≤ K
∅ H ≰ K .

Group multiplication in P induces composition of morphisms in SP . For any objects H and K in F , letSP([H], K) =


A∈[H]

|SP(A, K)|

be the sum of the orders of the centralizers CK (A) over all subgroups A of P that are isomorphic to H and contained in K .
Then we have

|F (H, K)||K | = |F (H)|SP([H], K) (7.6)

from the The Divisibility Axiom [28, 2.3.1] for F combined with Burnside’s counting lemma (Lemma 7.9).
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Recall that F ∗ denotes the full subcategory of F generated by all nonidentity subgroups of P; [F ∗
] has Möbius inversion

and [F ∗
] and F ∗ have Euler characteristics (Corollary 2.15).

Theorem 7.7. The coweighting kF ∗

• for F ∗ from Theorem 7.5 is also a coweighting for F ∗. The category F ∗ has the same Euler
characteristic as its exterior quotient F ∗.

Proof. We verify that kF ∗

• from Theorem 7.5 is a coweighting for F ∗ (2.5). For any nonidentity subgroup K ≤ P ,
1�H≤P

−µ(H)
|F ∗(H, P)|

|F ∗(H, K)| =
1

|K |


1�H≤P

−µ(H)
SP([H], K)
SP([H], P)

=
1

|K |


[H]∈[F ∗]

−µ(H)SP([H], K) =

1
|K |


1�H≤P

−µ(H)SP(H, K) =
1

|K |


1�H≤K

−µ(H)|CK (H)|
Table 1

= χ(F ∗

K )
(3.8)
= 1.

Since F ∗ and F ∗ have identical coweightings, they also have identical Euler characteristics. �

Remark 7.8. Our original proof of Theorem 7.7, only valid for Frobenius categories of finite groups, was extended to abstract
Frobenius categories in Eske Sparsø’s Master’s thesis [33, Theorem 21]. The thesis also contains the computation

χ(F ∗

Sol(q)) =
209
315

of the Euler characteristic of the Frobenius category for the Solomon 2-local finite group Sol(q) [24,25] defined for any odd
prime power q.

The two categories F ∗

G and F ∗

G , even their left ideals F sc
G and F sc

G , do not in general have identical weightings.

Lemma 7.9 (Burnside’s Counting Lemma [26]). If X is a finite right G-set then
g∈G

|Xg
| = |X/G||G| =


x∈X

|
xG|

where Xg
= {x ∈ X | xg = x} is the fixed set for g ∈ G and xG = {g ∈ G | xg = x} is the isotropy subgroup for x ∈ X.

8. Self-centralizing subgroups

This section deals with the subcategories Csc of the p-subgroup categories generated C by the p-selfcentralizing
subgroups. We mention here some facts to justify our interest in these subcategories of p-selfcentralizing subgroups:

• The category Lsc
G is a complete algebraic invariant of the p-completed classifying space of G [6, Theorem A]

• The Frobenius category F ∗

G is completely determined by F sc
G [28, Chp 4–5]

• All morphisms in the category F sc
G are epimorphisms [28, Corollary 4.9]

• All morphisms in the category F sc
G have unique maximal extensions [28].

Now follow the definition and a few standard properties of p-selfcentralizing p-subgroups.

Definition 8.1 ([28, 4.8.1], [7, Definition A.3]). The p-subgroup H of G is p-selfcentralizing if the center of H is a Sylow p-
subgroup of CG(H).

Lemma 8.2 ([28, Chp 4], [7, Appendix A]). Let H be a p-subgroup of G and let P be a Sylow p-subgroup of G.
(1) H is p-selfcentralizing if and only if CG(H) ∼= Z(H)× OpCG(H) and OpCG(H) is a p′-group.
(2) H is p-selfcentralizing if and only if CP(Hg) ≤ Hg for every g ∈ NG(H, P).
(3) If H is p-selfcentralizing and Hg

≤ K for some g ∈ G and some p-subgroup K of G, then K is p-selfcentralizing, Z(Hg) =

CK (Hg), and Z(Hg) ≥ Z(K).
(4) If Q ≤ P and CP(Q ) is a Sylow p-subgroup of CG(Q ), then QCP(Q ) is p-selfcentralizing.

We shall determine weightings for the left ideals Csc of C = TG,LG,FG,OG,
FG generated by the p-self-centralizing

p-subgroups of G. The first four cases are very easy. The weightings for [T sc
G ], [Lsc

G ], [F sc
G ], [Osc

G ] are simply the restrictions
of the weightings from Table 1 for [TG], [LG], [FG], [OG] (Remark 2.6).

We now determine the weighting for [F sc
G ]. If H is p-selfcentralizing and H ≤ K , then CK (H) = Z(H) (Lemma 8.2.(3)).

Identity (7.6) for sizes of morphism sets in exterior quotients simplifies to

|CG(H)|p′ |F sc
G (H, K)||K | = |T sc

G (H, K)|

which immediately gives us the Möbius function

[µ(F sc
G )]([H], [K ]) = |H|[µ]([H], [K ])|CG(K)|p′ (8.3)

for [F sc
G ] expressed by means of the Möbius function [µ] for [TG] (Proposition 3.11).
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Table 4
Weightings, coweightings and Euler characteristics for categories of p-selfcentralizing p-subgroups.

C k[H]

[C ]
k[C ]

[K ]
χ(C)

T sc
G


[K ]

[µ]([H], [K ])


[H]
[µ]([H], [K ])


[H],[K ]

[µ]([H], [K ])

Lsc
G


[K ]

[µ]([H], [K ])|CG(K)|p′ k
[T sc

G ]

[K ]
|CG(K)|p′


[H],[K ]

[µ]([H], [K ])|CG(K)|p′

F sc
G


[K ]

[µ]([H], [K ])|CG(K)| k
[T sc

G ]

[K ]
|CG(K)|


[H],[K ]

[µ]([H], [K ])|CG(K)|

Osc
G |H|k[H]

[T sc
G ]


[H]

|H|[µ]([H], [K ])


[H],[K ]
|H|[µ]([H], [K ])F sc

G |H|k[H]

[Lsc
G ]

k
[Osc

G ]

[K ]
|CG(K)|p′


[H],[K ]

|H|[µ]([H], [K ])|CG(K)|p′

Theorem 8.4. Weightings k•, coweightings k•, and Euler characteristics for the finite categories T sc
G , Lsc

G , F
sc
G , Osc

G , and F sc
G of

p-selfcentralizing p-subgroups of G are as in Table 4.

The sums that express the weightings of Table 4 run over all [K ] ≥G [H] for a fixed p-selfcentralizing p-subgroup H . The
sums that express the coweighting run over all p-selfcentralizing [H] ≤G [K ] for a fixed p-selfcentralizing p-subgroup K .

We next note that the weightings for Lsc
G and F sc

G can be computed p-locally in analogy with the situation of
Proposition 3.14.

Proposition 8.5. The values of the weightings for [Lsc
G ] and [F sc

G ] at the conjugacy class of the p-selfcentralizing p-subgroup
H ≤ G are

k[H]

[Lsc
G ]

=

−χ(S∗F sc
G (H))

|Lsc
G (H)|

, k[H]

[F sc
G ]

=

−χ(S∗F sc
G (H))

|F sc
G (H)|

.

All values of the weighting for [F sc
G ] and the Euler characteristic χ(F sc

G ) are p-local integers.

Proof. We only need to prove the second of the above two formulas because |Lsc
G (H)| = |H||F sc

G (H)| and k[H]

[F sc
G ]

= |H|k[H]

[Lsc
G ]

(Table 4). For any nonidentity p-subgroup H ≤ G, there is a commutative diagram

Z(H) //

��

H //

��

H/Z(H)

��
CG(H) //

��

T sc
G (H) //

��

F sc
G (H)

��
CG(H)/Z(H) // Osc

G (H) // F sc
G (H)

with exact rows and columns. Let K be a p-subgroup such that H ≤ K ≤ NG(H). Then CG(K) ≤ CG(H) ≤ NG(H) so that
CG(K) = CNG(H)(K). In case H is a p-selfcentralizing subgroup of G, the chain of inclusions, obtained using Lemma 8.2.(3),

Z(K) ≤ Z(H) ∩ CG(K) ≤ H ∩ CG(K) ≤ K ∩ CG(K) = Z(K)

is, in fact, a chain of identities so that Z(K) = Z(H) ∩ CG(K) = H ∩ CG(K) = CH(K). The projection T sc
G (H) = NG(H) →

Osc
G (H) = NG(H)/H takes CG(K) to CG(K) with kernel CH(K), the Sylow p-subgroup of CG(K). Thus CG(K) = CG(K)/CH(K)

and |CG(K)| = |CG(K)|p′ .
According to Tables 1, 4, and Eq. (3.10)

|F sc
G (H)|k

[H]F sc
G

=


[K ]

µ(K)|Osc
G (H) : NOsc

G (H)
(K)|

|CG(K)|p′

|CG(H)|p′

, −χ(S∗F sc
G (H)) =


[K ]

µ(K)|F sc
G (H) : NF sc

G (H)(K)|

where the first sum runs over the set of conjugacy classes of (elementary abelian) p-subgroups K of Osc
G (H) and the second

sum over the set of conjugacy classes of (elementary abelian) p-subgroups K of F sc
G (H). By Lemma 8.9 the projection

Osc
G (H) → F sc

G (H) has kernel of order prime to p, and therefore induces a bijection between these two sets. It suffices
to prove that

|Osc
G (H)|

|NOsc
G (H)

(K)|

|CG(K)|p′

|CG(H)|p′

=
|F sc

G (H)|

|NF sc
G (H)(K)|
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Table 5
Euler characteristics at p = 2 of p-selfcentralizing p-subgroup posets and categories of alternating groups
computed by Magma [3].

n 4–5 6 7 8–9 10 11 12–13

χ(Osc
An ) 1/3 1/3 2/9 13/63 19/105 106/945 388/2835

χ(T sc
An ) 1/12 −1/24 −5/72 13/4032 29/4480 653/120960 1133/1451520

χ(Lsc
An ) 1/12 −1/24 13/4032 29/4480 1133/1451520

χ(F sc
An ) 1/3 1/3 13/63 19/105 388/2835

χ(F sc
An ) 1/3 1/3 13/63 19/105 388/2835

or, equivalently, that |NOsc
G (H)

(K)| = |NF sc
G (H)(K)||CG(K)| for all p-subgroups K of Osc

G (H). The surjection Osc
G (H) → F sc

G (H)

restricts to a surjection [15, Lemma 4.2.(ii)]NOsc
G (H)

(K) → NF sc
G (H)(K) andwe claim that the kernel is CG(K). Using Lemma 8.8

below we see that the kernel is

CG(H) ∩ NNG(H)/H(K) = CG(H) ∩ NNG(H)(K) = CG(H)H ∩ NNG(H)(K)

so we need to prove that CG(H)H ∩ NNG(H)(K) = CG(K)H where the group on the left hand side is NCG(H)(K)H (Dedekind’s
modular law). Thus the claim follows from the basic identityNCG(H)(K) = CG(K)Z(H) [7, Proposition A.8], [28, Corollary 4.7].

As the numbers |F sc
G (H)|p′k[H]

[F sc
G ]

are integers by Brown’s theorem [8, Corollary 2], all values of the weighting for [F sc
G ] are

p-local integers. �

Parallel to the situation of Corollary 3.19 we can now narrow down the support for the weightings for Lsc
G and F sc

G .

Corollary 8.6. The weightings for Lsc
G and F sc

G are supported on the p-selfcentralizing FG-radical p-subgroups of G.

According to Proposition 8.5 and Corollary 8.6 the Euler characteristics of Lsc
G and F sc

G are

χ(Lsc
G ) =


[H]

−χ(S∗F sc
G (H))

|Lsc
G (H)|

, χ(F sc
G ) =


[H]

−χ(S∗F sc
G (H))

|F sc
G (H)|

(8.7)

with summations running over the set of conjugacy classes of p-selfcentralizing FG-radical p-subgroups of G.
The following elementary two lemmas were used in the proof of Proposition 8.5.

Lemma 8.8. Let N ▹G and consider the projection G → G/N of G onto its factor group by N. Write X for the image of a subgroup
X ≤ G in the factor group G/N. Then K1 ∩ K2 = K1 ∩ K2 if at least one of K1, K2 ≤ G contains N.

Lemma 8.9. If the normal subgroup N ▹G has order prime to p, then the projection G → G/N induces a bijection [TG] → [TG/N ]

between the sets of conjugacy classes of p-subgroups of G and G/N.

Proof. Let π : G → G/N be the projection. If K ≤ G is a p-group, also π(K) is a p-group and K ∼= π(K). Thus K → π(K)
induces a map [TG] → [TG/N ] from the set of conjugacy classes of p-subgroups of G to the set of conjugacy classes of p-
subgroups of G/N . We first show that this map is injective: Suppose that K1 ≤ G, K2 ≤ G and that π(K1) and π(K2) are
conjugate in G/N . Then K1N and K2N are conjugate in G. Thus K1N = (K2N)g = K g

2N
g for some g ∈ G. Then the Sylow p-

subgroups K1 and K g
2 of K1N are conjugate in K1N . Thus K1 and K2 are conjugate subgroups of G. Next, we show surjectivity:

IfH is a p-subgroup in G/N , let K be a Sylow p-subgroup of π−1H , its preimage in G. Then π(K) = H by order considerations
for |H| = |π−1H|p = |K | = |π(K)|. This shows that the induced map [TG] → [TG/N ] is bijective. �

Remark 8.10. We suspect that the support for the weightings for [C ] = [Lsc
G ], [F sc

G ] is the set of p-selfcentralizing FG-
radical p-subgroups of G. This would be the case if the strong Quillen conjecture (1.4) turned out to be true.

Remark 8.11. Based on explicit computations we suspect that χ(F sc
G ) = χ(F sc

G ). We saw in Theorem 7.7 that F ∗

G andF ∗

G have identical coweightings and Euler characteristics. However, it is not generally true that F sc
G and F sc

G have identical
coweightings or weightings. Nevertheless, it happens that χ(F sc

G ) = χ(F sc
G ) at p = 2 if |G| ≤ 500 or if G is one of the

alternating groups An, 4 ≤ n ≤ 13 of Table 5.

Example 8.12. If P is a nonidentity p-group then

χ(Ssc
P ) = 1, χ(T sc

P ) = |P|
−1, χ(Lsc

P ) = |P|
−1, χ(F sc

P ) = 1, χ(Osc
P ) = 1, χ(F sc

P ) = 1

because Ssc
P , Osc

P , and F sc
P have P as terminal object and Lsc

P = T sc
P is the Grothendieck construction for the P-action on

Ssc
P . Corollary 5.3.(2) shows that the weighting for F ∗

P is supported on the subgroups of the form CP(x), x ∈ P , so that
χ(F sc

P ) = χ(F ∗

P ) = 1 as these subgroups are p-selfcentralizing by Lemma 8.2.(4).
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By Example 5.5 it is not true for general groups G that the weighting for F ∗

G is supported on the p-selfcentralizing
subgroups. Also, Tables 3 and 5 contain several examples of alternating groups where the nonidentity and the centric
Frobenius categories have different Euler characteristics.

9. Möbius algebras of finite categories

In this section we introduce Möbius algebras of square matrices and finite categories.

9.1. The Möbius algebra of a square matrix

Let S be a finite set, R an integral domain with field of fractions k, and ζ =

ζ (a, b)


a,b∈S a square matrix indexed by S

with entries in R. Assume that the determinant of ζ is nonzero. Thematrix ζ can also be perceived as a function ζ : S×S → R
with values in R. For instance, if δ : S × S → R is Kronecker’s δ-function, then δ =


δ(a, b)


a,b∈S is the identity matrix.

Let RS denote the free right R-module with basis S. The map ζ : S × S → R extends to a R-bilinear form ζ : RS
× RS

→ R
and to a R-linear homomorphismM(ζ ) : RS

→ RS , the table of marks for ζ , given by

ζ


a

ara,

b

bsb


=


a,b

ζ (a, b)rasb, M(ζ )(b) =


a∈S

aζ (a, b), a, b ∈ S (9.1)

M(ζ ) is an injective homomorphism between free R-modules as ζ has nonzero determinant.
Similarly, let kS denote the right k-vector space with basis S. Viewing ζ as a square matrix with entries in k, the map

ζ : S × S → k extends to a k-bilinear form kS × kS → k and to a k-linear homomorphismM(ζ ) : kS → kS given by the same
expressions as in (9.1). ThisM(ζ ) over k is an isomorphism of k-vector spaces.

Equip RS
=


a∈S R and kS =


a∈S kwith the product algebra structures. The product in RS and kS is given by

a • b =


a a = b
0 a ≠ b

for all a, b ∈ S. The unit element in RS and kS is the sum 1 =


a∈S a of the basis elements.

Definition 9.2. The Möbius k-algebra of ζ , M(ζ ; k), is the k-algebra with underlying k-vectorspace kS and with the
commutative product · defined by

∀x, y ∈ kS : M(ζ )(x · y) = M(ζ )(x) • M(ζ )(y).

The algebra (kS, •) is the Möbius algebra M(δ; k) of the δ-function. The product in the Möbius k-algebra M(ζ ; k)makes
the table of marks k-vector space isomorphism M(ζ ) : M(ζ ; k) → M(δ; k) an isomorphism of k-algebras. Equivalently, the
product inM(ζ ; k) satisfies ζ (a, x · y) = ζ (a, x)ζ (a, y) for all x, y ∈ M(ζ ; k) and all a ∈ S.

Let µ =

µ(a, b)


a,b∈S be the inverse (over k) of ζ . Then k•

ζ =


b∈S µ(•, b) : S → k is the weighting, kζ
•

=
a∈S µ(a, •) : S → k the coweighting for ζ (Section 2.1), and M(µ) : M(δ; k) → M(ζ ; k) is an isomorphism of Möbius

algebras.
The sum

1 =


b∈S

b

is a decomposition of the unit of the Möbius k-algebra M(δ; k) into a sum of orthogonal idempotents, and

1 = M(µ)(1) =


b∈S

M(µ)b =


b∈S

eb

is a decomposition of the unit of the Möbius k-algebra M(ζ ; k) into a sum of the orthogonal idempotents

eb = M(µ)b =


a∈S

aµ(a, b), b ∈ S (9.3)

ofM(ζ ; k). Thus the unit ofM(ζ ; k),

1 =


b∈S

eb =


b∈S


a∈S

aµ(a, b) =


a∈S

a

b∈S

µ(a, b) =


a∈S

akaζ (9.4)

is the weighted sum of basis elements. We collect these observations in the following proposition. (Remember that
δ : kS × kS → k (also) is the bilinear form δ(


a∈S ara,


b∈S bsb) =


a∈S rasa.)
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Proposition 9.5. The Möbius function, weighting, coweighting, and Euler characteristic of ζ are

µ(a, b) = δ(a, eb), k•

ζ = δ(•, 1), kζ
•

=


a∈S

δ(a, e•), χ(ζ ) =


a,b∈S

δ(a, eb) =


a∈S

δ(a, 1).

The Möbius inversion formula

x = M(µ)M(ζ )x = M(µ)


b∈S

bζ (b, x)


=


b∈S

ebζ (b, x) =


a∈S

a

b∈S

µ(a, b)ζ (b, x) (9.6)

holds for any x ∈ M(ζ ; k).
Let x and y be elements of the Möbius k-algebraM(ζ ; k). The product of x and y in M(ζ ; k) is

x · y =


b∈S

ebζ (b, x)


·


b∈S

ebζ (b, y)


=


b∈S

ebζ (b, x)ζ (b, y) =


a∈S

a

b∈S

µ(a, b)ζ (b, x)ζ (b, y) (9.7)

as the elements eb, b ∈ S, are orthogonal idempotents inM(ζ , k).

Definition 9.8. Suppose that the sub-R-module RS of the Möbius k-algebra M(ζ ; k) is stable under multiplication and
contains the unit element. The Möbius R-algebra of ζ , M(ζ ; R), is the R-algebra RS with product and unit inherited from
M(ζ ; k).

The Möbius R-algebra of ζ is defined if and only if the conditions of Definition 9.8 are satisfied.

Corollary 9.9. The Möbius R-algebra for ζ is defined if and only if

(1)


b∈S µ(a, b)ζ (b, c)ζ (b, d) ∈ R for all a, c, d ∈ S, and
(2) kaζ ∈ R for all a ∈ S.

Proof. Let c and d be elements of the basis S. According to the product formula (9.7)

c · d ∈ M(ζ ; R) ⇐⇒ ∀a ∈ S :


b∈S

µ(a, b)ζ (b, c)ζ (b, d) ∈ R.

Thus the first condition is equivalent to the condition that c · d lies in M(ζ ; R) for any two c, d ∈ S. The second condition is
equivalent to the condition that the unit element ofM(ζ ; k) (9.4) lies inM(ζ ; R). �

Remark 9.10. The sum of the coefficients in the product x · y (9.7) is
a∈S

δ(a, x · y) =


a∈S


b∈S

µ(a, b)ζ (b, x)ζ (b, y) =


b∈S


a∈S

µ(a, b)ζ (b, x)ζ (b, y) =


b∈S

kζbζ (b, x)ζ (b, y).

In particular, if ζ has a constant row, ie if there are a ∈ S and r ∈ R so that ζ (a, b) = r for all b ∈ S, then the kζb = r−1δ(a, b)
(Example 2.7), and the sum of coefficients equals r for all x, y ∈ S.

Suppose that ζ1 =

ζ1(a, b)


a,b∈S and ζ2 =


ζ2(a, b)


a,b∈S are two square matrices indexed by S with entries in R and

with nonzero determinants. The k-algebras M(ζ1; k) and M(ζ2; k) are of course isomorphic as abstract k-algebras. By the
very construction, there is a commutative diagram

M(ζ1; k)
ϕ(ζ1,ζ2)=M(µ2)M(ζ1)

∼=

//

∼=

M(ζ1) %%KKKKKKKKK M(ζ2; k)
∼=

M(ζ2)yysssssssss

M(δ; k)

(9.11)

of k-algebra isomorphisms. However, if M(ζ1; R) and M(ζ2; R) are defined, it is not always the case that the k-algebra
isomorphism ϕ(ζ1, ζ2) = M(µ2)M(ζ1) restricts to an R-algebra isomorphism betweenM(ζ1; R) and M(ζ2; R).

Corollary 9.12. Suppose that M(ζ1; R) and M(ζ2; R) are defined. If all entries of the matrix M(µ2)M(ζ1) lie in R and the
determinant in R×, then M(ζ1; R) and M(ζ2; R) are isomorphic R-algebras.

As a special, and obvious case, we note that if ζ is invertible over R then theMöbius R-algebra for ζ is defined, andM(ζ ; R)
andM(δ; R) are isomorphic R-algebras.
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9.2. The Möbius algebra of a finite category C and of [C]

Let C be a finite category and [C] its finite set of isomorphism classes of objects as in Section 2.4.

Definition 9.13 ([17, Definition 4.1, Theorem 4.5], [32, Theorem 1]).

• If C has Möbius inversion then its rational Möbius algebraM(C;Q) is the rational Möbius algebra of ζ (C).
• If [C] has Möbius inversion then its rational Möbius algebraM([C];Q) is the rational Möbius algebra of [ζ (C)].

Assume that [C] has Möbius inversion. The product inM([C ];Q) is Q-bilinear. The product of two basis elements

∀K1, K2 ∈ [C ] : K1 · K2 =


H∈[C ]

H

K∈[C ]

µ(H, K)ζ (K , K1)ζ (K , K2) (9.14)

is given by Eq. (9.7). Since [µ](H, K) ≠ 0 =⇒ [ζ ](H, K) ≠ 0 [23, Theorem 4.1], the inner sum runs over all K ∈ [C] that
admit morphisms

K1

H // K

77nnnnnn

''PPPPPP

K2

in C .

Proposition 9.15. Let I be a left ideal and J a right ideal in C (Remark 2.6).

(1) The projection map M([C ];Q) → M([I];Q) is a homomorphism of Q-algebras.
(2) M([J];Q) is an ideal in the Möbius algebra M([C];Q).
(3) M([I];Q) ∼= M([C ];Q)/M([C ] − [I];Q).

Proof. Since [C] has Möbius inversion, also [I] and [J] have Möbius inversion and their Möbius functions are restrictions
of the Möbius function for [C] (Remark 2.6).
(1) It follows from (9.14) that the projection map preserves products. Since the weighting for [C] restricts to a weighting for
[I], the projection also preserves units (9.4).
(2) Suppose that K1 ∈ [C ] and K2 ∈ [J]. If H ∈ [C ] occurs in the product K1 · K2 (9.14) with a nonzero rational coefficient,
then [ζ ](H, K2) ≠ 0. As J is a right ideal in C, H is in [J]. This means that K1 · K2 lies in the vector spaceM([J];Q) spanned
by [J].
(3) The kernel of the projection of algebrasM([C ];Q) → M([I];Q) is the idealM([C ] − [I];Q). �

10. Möbius algebras of p-subgroup categories

In this section we discuss Möbius algebras of the p-subgroup categories C = SG, TG,LG,FG,OG,
FG. We also consider

sub- and supercategories of C .

Definition 10.1. Let C be one of the four p-subgroup categories SG, TG, FG or OG. Then C denotes the corresponding
category whose objects are all subgroups of G and whose morphism sets are defined by the same coset formulas as in C
(see Section 1.1).

In all cases [C] has Möbius inversion (Corollary 2.15). Thus we may consider the Möbius algebras M([C];Q). From
Proposition 9.15 we have that

• M([C ];Q) is an ideal inM([C ];Q) for C = SG, TG,FG,OG.
• M([C∗

];Q) ∼= M([C ];Q)/M([1];Q)
• M([Csc

];Q) ∼= M([C∗
];Q)/M([C∗

] − [Csc
]);Q) .

Example 10.2. Möbius algebras of finite categories include as a special case the classical Burnside algebra of G. If X is
a left G-set and H a subgroup of G, the mark of [H] in X is the number

HX of H-fixed points in X . Left G-sets are
determined up to isomorphism by themarks they put on the conjugacy classes of subgroups ofG [9, Chapter XII, Section 180]
[11, Lemma 1]. If also K is a subgroup of G then the mark of H in the transitive left G-set G/K is

m(K ,H) =
H(G/K) = |{gK ∈ G/K | Hg

≤ K}| = |NG(H, K)/K | = |OG(H, K)|.

Thus Burnside’s table of marks matrix for G, (m(K ,H))H,K , is the transpose of the ζ -matrix for [OG]. Obviously the mark of
H in the product G-set G/K1 × G/K2 is the product |OG(H, K1)||OG(H, K2)| of the marks of H in G/K1 and G/K2. This shows
that the rational Burnside algebra of G is the rational Möbius algebraM([OG];Q) of the orbit category of G.
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Table 6
Möbius functions and idempotents in rational Möbius algebrasM([C];Q).

C [µ(C)]([H], [K ]) [µ(C)]([H], [K ]) e[C ]

[K ]

SG µ(H, K) µ(H, K)


1≤H≤K Hµ(H, K)

TG [µ]([H], [K ]) 1
|NG(H)|


B∈[K ]

µ(H, B) 1
|TG(K)|


1≤H≤K [H]µ(H, K)

LG [µ]([H], [K ])|OpCG(K)|
|OpCG(K)|
|NG(H)|


B∈[K ]

µ(H, B) 1
|LG(K)|


1≤H≤K [H]µ(H, K)

FG [µ]([H], [K ])|CG(K)|
|CG(K)|
|NG(H)|


B∈[K ]

µ(H, B) 1
|FG(K)|


1≤H≤K [H]µ(H, K)

OG |H|[µ]([H], [K ]) 1
|OG(H)|


B∈[K ]

µ(H, B) 1
|NG(K)|


1≤H≤K [H]|H|µ(H, K)F sc

G |H|[µ]([H], [K ])|CG(K)|p′

|CG(K)|p′
|Osc

G (H)|


B∈[K ]

µ(H, B)
|CG(K)|p′
|NG(K)|


H≤K [H]|H|µ(H, K)

Example 10.3 (Burnside’s Example). Let G = A4 be the alternating group on four elements. We shall consider the orbit
categories [OG], [OG], [O

∗

G], [O
sc
G ] of all subgroups, all 2-subgroup, all nonidentity 2-subgroups, and all 2-selfcentralizing

2-subgroups of G.
The subgroup conjugacy classes of G are H1,H2,H3,H4,H5 of orders 1, 2, 3, 4, 12 where H1 = 1 and H5 = G. Of the

2-subgroups, H1, H2, H4, only H4 is 2-self-centralizing. The table of marks [ζ (OG)], that can be found in [9, Section 185],
produces the multiplication table for the Möbius algebra M([OG];Q) of all subgroups of G and its ideal M([OG];Q) =

(H1,H2,H4).

M([OG];Q) H1 H2 H3 H4 H5
H1 12H1 6H1 4H1 3H1 H1
H2 · 2H1 + 2H2 2H1 3H2 H2
H3 · · H1 + H3 H1 H3
H4 · · · 3H4 H4
H5 · · · · H5

M([OG];Q) H1 H2 H4
H1 12H1 6H1 3H1
H2 · 2H1 + 2H2 3H2
H4 · · 3H4

The Möbius algebras M([O∗

G];Q) = (H1,H2,H4)/(H1) and M([Osc
G ];Q) = (H1,H2,H4)/(H1,H2) are quotients of the ideal

(H1,H2,H4). Their multiplication tables are

M([O∗

G];Q) H2 H4
H2 2H2 3H2
H4 · 3H4

M([Osc
G ];Q ) H4
H4 3H4

The unit of M([OG];Q) is H5 = G while 1
3H4 is the unit of M([OG];Q), M([O

∗

G];Q), and M([Osc
G ];Q ). We read off that

χ(OG) = 1, χ(OG) = χ(O∗

G) = χ(Osc
G ) =

1
3 from the expressions for the units (9.4).

We first calculate theMöbius function for [C] and the idempotents e[K ] ∈ M([C];Q), [K ] ∈ [C], in caseC is a p-subgroup
category.

Proposition 10.4. The Möbius function [µ] for [C] and the idempotents e[K ] (9.3) of the Möbius algebra M([C];Q) are as in
Table 6 for the categories C = SG,LG,FG,OG,

F sc
G .

Proof. The second column of Table 6 displays the Möbius functions already determined in Table 2 and Eq. (8.3). The third
column displays rewritings, more suitable for our purpose here, using Eq. (3.10). The fourth column shows the idempotents
(9.3) inM([C ];Q). The idempotents are calculated in a similar fashion, for example, for [TG] we find that

e
[TG]

[K ]
=


[H]

[H][µ]([H], [K ]) =
1

|NG(K)|


[H]

[H]


A∈[H]

µ(A, K) =
1

|NG(K)|


H

[H]µ(H, K)

=
1

|TG(K)|


H

[H]µ(H, K)

using (the equation just below) Eq. (3.10). �

Note that we have recovered, in a uniform way, the formulas [12, Proposition] [36] for the idempotents in M([OG];Q)
and (the nonexotic version of) the formula [10, Theorem 3.3] for the idempotents inM([F sc

G ];Q).
We shall now determine the products in the six Möbius algebras of Table 6 using the product formula of Eq. (9.7).
The product in the Möbius algebraM(SG;Q) of p-subgroups K1 and K2 of G is

K1 · K2 =


H

H

K

µ(H, K)SG(K , K1)SG(K , K2) =


H

H

K

µ(H, K)SG(K , K1 ∩ K2)

=


H

Hδ(H, K1 ∩ K2) = K1 ∩ K2.
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The product of K1 and K2 in the Möbius algebraM([TG];Q) is

K1 · K2 =


H∈[TG]

H


K∈[TG]

[µ](H, K)[ζ (TG)](K , K1)[ζ (TG)](K , K2)

Table 6
=


H∈[TG]

H
|NG(H)|


K∈Ob(TG)

µ(H, K)TG(K , K1)TG(K , K2)

=
1
|G|


H∈[TG]

|G : NG(H)|H


K∈Ob(TG)

µ(H, K)TG(K , K1)TG(K , K2)

=
1
|G|


H∈Ob(TG)

[H]


K∈Ob(TG)


(g1,g2)∈G×G

µ(H, K)SG(K , K
g1
1 )SG(K , K

g2
2 )

=
1
|G|


H∈Ob(TG)

[H]


(g1,g2)∈G×G


K∈Ob(TG)

µ(H, K)SG(K , K
g1
1 ∩ K g2

2 )

=
1
|G|


H∈Ob(TG)

[H]


(g1,g2)∈G×G

δ(H, K g1
1 ∩ K g2

2 )

=
1
|G|


(g1,g2)∈G×G

[K g1
1 ∩ K g2

2 ] =
1
|G|


(g1,g2)∈G×G

[K1 ∩ K
g2g

−1
1

2 ] =


g∈G

[K g
1 ∩ K2].

The product of K1 and K2 in the Möbius algebraM([FG];Q) is

K1 · K2 =


H∈[FG]

H


K∈[FG]

[µ(FG)](H, K)[ζ (FG)](K , K1)[ζ (FG)](K , K2)

Table 6
=


H∈[FG]

H


K∈[FG]

|CG(K)|[µ](H, K)|FG(K , K1)||FG(K , K2)|

(7.1)
=


H∈[FG]

H


K∈[FG]

|CG(K)|[µ](H, K)|FG(K)|SG([K ], K1)|FG(K)|SG([K ], K2)

=


H∈[FG]

H


K∈[FG]

|FG(K)|SG([K ], K1)SG([K ], K2)|NG(K)|[µ](H, K)

where all terms in the inner sum are integers. Alternatively,

K1 · K2 =


H∈[FG]

H


K∈[FG]

[µ(FG)](H, K)[ζ (FG)](K , K1)[ζ (FG)](K , K2)

Table 6
=


H∈[FG]

H
|NG(H)|


K∈Ob(FG)

|CG(K)|µ(H, K)|FG(K , K1)||FG(K , K2)|

=
1
|G|


H∈Ob(FG)

[H]


K∈Ob(FG)

|CG(K)|µ(H, K)|FG(K , K1)||FG(K , K2)|

=
1
|G|


H∈Ob(FG)

[H]


(g1,g2)∈G×G


K∈Ob(FG)

µ(H, K)
|CG(K)|

SG(K , K
g1
1 )SG(K , K

g2
2 )

=
1
|G|


H∈Ob(FG)

[H]


(g1,g2)∈G×G


K∈[H,K

g1
1 ∩K

g2
2 ]

µ(H, K)
|CG(K)|

.

Similarly, the product inM([LG];Q) is

K1 · K2 =


H∈[LG]

H


K∈[LG]

|LG(K)|SG([K ], K1)SG([K ], K2)|NG(K)|[µ](H, K)

=
1
|G|


H∈Ob(LG)

[H]


(g1,g2)∈G×G


K∈[H,K

g1
1 ∩K

g2
2 ]

µ(H, K)
|OpCG(K)|

.
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Table 7
Coefficient rings in Möbius algebras.

C SG TG LG FG OG Osc
G

F sc
G

R Z Z[1/|G|] Z[1/|G|] Z[1/|G|] Z(p) Z(p) Z(p)

The product of K1 and K2 in the classical Burnside algebraM([OG];Q) is

K1 · K2 =


H∈[OG]

H


K∈[OG]

[µ(OG)](H, K)[ζ (OG)](K , K1)[ζ (OG)](K , K2)

Table 6
=


H∈[OG]

H
|OG(H)|


K∈Ob(OG)

µ(H, K)|OG(K , K1)||OG(K , K2)|

=
1
|G|


H∈[OG]

H|G : NG(H)||H|


K∈Ob(OG)

µ(H, K)|OG(K , K1)||OG(K , K2)|

=
1
|G|


H∈Ob(OG)

[H]
|H|

|K1||K2|


K∈Ob(OG)


(g1,g2)∈G×G

µ(H, K)SG(K , K
g1
1 )SG(K , K

g2
2 )

=
1
|G|


H∈Ob(OG)

[H]
|H|

|K1||K2|


(g1,g2)∈G×G


K∈Ob(OG)

µ(H, K)SG(K , K
g1
1 )SG(K , K

g2
2 )

=
1
|G|


H∈Ob(OG)

[H]
|H|

|K1||K2|


(g1,g2)∈G×G

δ(H, K g1
1 ∩ K g2

2 ) =
1
|G|


(g1,g2)∈G×G

[K g1
1 ∩ K g2

2 ]
|K g1

1 ∩ K g2
2 |

|K1||K2|

=


g∈G

[K g
1 ∩ K2]

|K g
1 ∩ K2|

|K1||K2|
=


g∈K1\G/K2

[K g
1 ∩ K2].

The final equality uses the identity |K1gK2||K
g
1 ∩ K2| = |K1||K2| for g ∈ G. Similarly, the product in M([F sc

G ];Q) of p-
selfcentralizing p-subgroups K1 and K2 is

K1 · K2 =


g∈K1OpCG(K1)\G/K2OpCG(K2)

[K g
1 ∩ K2]

where the conjugacy class [K g
1 ∩ K2] = 0 in case K g

1 ∩ K2 is not p-selfcentralizing.

Proposition 10.5. Multiplication in the rational Möbius algebra M([C];Q) restricts to a bilinear map

M([C]; Z)× M([C]; Z) → M([C]; Z), C = SG,LG,FG,OG,O
sc
G ,
F sc
G .

Proof. This follows from the explicit expressions for the product that we just worked out. �

We already know that

• The weighting for SG is a Z-valued function.
• The weightings for [TG], [LG], and [FG] are Z[1/|G|]-valued functions.
• The weightings for [OG], [O

sc
G ] and [F sc

G ] are Z(p)-valued functions.

Theweighting for [SG] = SG is aZ-valued function (Proposition 3.14). Theweightings for [TG], [LG], and [FG] areZ[1/|G|]-
valued as their upper triangular ζ -matrices are invertible over this ring; see the proof of Corollary 2.15. The weightings for
[OG] (Corollary 4.2.(1)), its left ideal [Osc

G ] (Remark 2.6), and [F sc
G ] (Proposition 8.5) are Z(p)-valued.

Corollary 10.6 (Möbius R-Algebras of p-Subgroups). If (C, R) is as in Table 7 then the Möbius R-algebra for [C] is defined.
M([C]; R) is a commutative R-algebra with unit.

Proof. This follows directly from Proposition 9.9 using Proposition 10.5 and the above information about values of
weightings. �

In case [C] has a final element, i.e. an element b such that [ζ ](a, b) = 1 for all a ∈ [C], then the unit actually lies in the
lattice M([C]; Z). For example, the classical Möbius ring for the orbit category of all subgroups of G, M([OG]; Z), is a ring
with unit 1 = [G] given by (the conjugacy class of) G.
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Let C be any of the four p-subgroup categories TG,LG,FG,OG. There are isomorphisms of Z[1/|G|]-algebras

[ζ (C)] : M([C]; Z[1/|G|])
∼=
−→ M(δ; Z[1/|G|])

represented by upper triangular matrices with entries in N. The ζ -matrix for C is invertible over Z[1/|G|]. Therefore the
Möbius algebra for [C] is defined over Z[1/|G|] and it is isomorphic to M(δ; Z[1/|G|]). (The same argument immediately
shows that the Möbius algebra over R for the poset of conjugacy classes of subgroups of G is isomorphic to the Burnside ring
M([OG]; R) over R when the order of G is invertible in R [32, Theorem 2].)

By a nonnegative integral matrix we understand a matrix with entries in the semiring N = {0, 1, 2, . . .} of natural
numbers.

Proposition 10.7. There are isomorphisms of Z[1/|G|]-algebras

ϕ([TG], [LG]) : M([TG]; Z[1/|G|])
∼=
−→ M([LG]; Z[1/|G|])

ϕ([TG], [FG]) : M([TG]; Z[1/|G|])
∼=
−→ M([FG]; Z[1/|G|])

ϕ([TG], [OG]) : M([TG]; Z[1/|G|])
∼=
−→ M([OG]; Z[1/|G|])

represented by upper triangular nonnegative integral matrices.

Proof. Let ζ = (ζij) be an invertible upper triangular rational matrix with inverse µ. Write ζi = ζii for the diagonal entries
of ζ . Also, let∆ = ∆(ci) be a diagonal matrix with the rational numbers ci in the diagonal. Thenµ∆ζ is an upper triangular
matrix with diagonal entries ci and off-diagonal entries

(µ∆ζ )ij =

j−i
k=1

(−1)k+1 ζi0i1ζi1i2 · · · ζik−1 ik

ζi0ζi1 · · · ζik−1

(cik−1 − cik), i < j,

with summation over all k-simplices i = i0 < i1 < · · · < ik = j from i to j. In particular we see that µ∆ζ has nonnegative
integer entries when ζi is a factor in ζij for all j ≥ i and∆ is any diagonal matrix with decreasing entries in N. This applies to
ζ = [ζ (TG)].

• Because∆(|OpCG(H)|)[ζ (LG)] = [ζ (TG)], whereH runs through the p-subgroups of G, theQ-algebra isomorphism (9.11)

M([TG];Q)
∼=
−→ M([LG];Q) is given by the integral matrix

ϕ([TG], [LG]) = [µ(LG)][ζ (TG)] = [µ(TG)]∆(|O
pCG(H)|)[ζ (TG)]

with entries in N.
• Because ∆(|CG(H)|)[ζ (FG)] = [ζ (TG)], where H runs through the p-subgroups of G, the Q-algebra isomorphism (9.11)

M([TG];Q)
∼=
−→ M([FG];Q) is given by the integral matrix

ϕ([TG], [FG]) = [µ(FG)][ζ (TG)] = [µ(TG)]∆(|CG(H)|)[ζ (TG)]

with entries in N.
• Because [ζ (OG)]∆(|K |) = [ζ (TG)], where K runs through the p-subgroups of G, the Q-algebra isomorphism (9.11)

M([TG];Q)
∼=
−→ M([OG];Q) is given by the diagonal matrix

ϕ([TG], [OG]) = [µ(OG)][ζ (TG)] = ∆(|H|)

with entries in N.

This finishes the proof. �

Because [ζ (F sc
G )]∆(|K |) = [ζ (Lsc

G )], the Q-algebra isomorphism (9.11) M([T sc
G ];Q)

∼=
−→ M([F sc

G ];Q) is given by the
upper triangular integral matrix

ϕ([F sc
G )][T

sc
G ]) = [µ(F sc

G )][ζ (T
sc
G )] = ∆(|H|)[µ(Lsc

G )][ζ (T
sc
G )] = ∆(|H|)ϕ(T sc

G ,L
sc
G ) ≥ 0

where ϕ([T sc
G ], [Lsc

G ]) is the submatrix of ϕ([TG], [LG]) of Proposition 10.7 determined by the p-selfcentralizing p-
subgroups.

Lemma 10.8. Let H and M be p-selfcentralizing p-subgroups of G with H ≤ M. Then
K∈[H,M]

µ(H, K)|CG(K)|p′ = |{x ∈ G{p′
} | H = CM(x)}|

where G{p′
} denotes the set of elements of G of order prime to p.
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Proof. We have
K∈[H,M]

µ(H, K)|OpCG(K)| =


(K ,x)

µ(H, K) =


x∈G{p′}


K∈[H,CM (x)]

µ(H, K) =


x∈G{p′}

δ(H, CM(x))

where (K , x) runs through the set

{(K , x) | K ∈ [H,M], x ∈ OpCG(K)} = {(K , x) | x ∈ OpCG(H), K ∈ [H, CM(x)]}
= {(K , x) | x ∈ G{p′

}, K ∈ [H, CM(x)]}

We use properties of p-selfcentralizing p-subgroups from Lemma 8.2 for these rewritings. �

The next result is a reformulation of [10, Theorem 3.11].
Theorem 10.9. There is an isomorphism of algebras

ϕ([Osc
G ], [F sc

G ]) : M([Osc
G ]; Z(p))

∼=
−→ M([F sc

G ]; Z(p))

given by an upper triangular nonnegative integral matrix.
Proof. The Möbius Z(p)-algebras are defined for [Osc

G ] and [F sc
G ] according to Corollary 10.6. Because |Osc

G (H, K)| =

|CG(H)|p′ |F sc
G (H, K)| for all p-selfcentralizing p-subgroups H , K , of G we get

ϕ([Osc
G ], [F sc

G ]) = [µ(F sc
G )][ζ (O

sc
G )] = [µ(Osc

G )]∆(|CG(K)|p′)[ζ (Osc
G )].

Wemust show that the ([H], [L])-entry, for all [H], [L] ∈ [Osc
G ], of this matrix,

[K ]∈[Osc
G ]

[µ(Osc
G )](H, K)|CG(K)|p′ [ζ (Osc

G )](K , L), (10.10)

is a nonnegative integer and that the determinant is a unit in Z(p) (Corollary 9.12). The determinant is


|CG(K)|p′ which
certainly is a unit in Z(p). Using the expression for [µ(Osc

G )] from Table 6, the sum (10.10) becomes
[K ]

[µ(Osc
G )](H, K)|CG(K)|p′ [ζ (Osc

G )](K , L) =
1

|Osc
G (H)|


[K ]


M∈[K ]

µ(H,M)|CG(K)|p′ |Osc
G (M, L)|

=
1

|Osc
G (H)|


K

µ(H, K)|CG(K)|p′ |Osc
G (K , L)|

=
1

|Osc
G (H)||L|


K

µ(H, K)|CG(K)|p′ |NG(K , L)|

=
1

|Osc
G (H)||L|


x∈G


K

µ(H, K)|CG(K)|p′Ssc
G (K , L

x)

=
|Osc

G (L)|
|Osc

G (H)|


M∈[L]


K

µ(H, K)|CG(K)|p′Ssc
G (K ,M)

=
|Osc

G (L)|
|Osc

G (H)|


M∈[L]


K∈[H,M]

µ(H, K)|CG(K)|p′ .

According to Lemma 10.8, this last expression equals

|Osc
G (L)|

|Osc
G (H)|

|{(M, x) ∈ [L] × G{p′
} | H = CM(x)}| =

1
|L|

1
|Osc

G (H)|
|{(g, x) ∈ G × G{p′

} | H = CLg (x)}|

=
1
|L|

1
|Osc

G (H)|
|{(g, x) ∈ G × G{p′

} | H = CLg (xg)}|

=
1
|L|

1
|Osc

G (H)|
|{(g, x) ∈ G × G{p′

} | Hg
= CL(x)}|

= |L : H|
−1

|{(K , x) ∈ [H] × G{p′
} | K = CL(x)}|.

The group L acts by conjugation on the set {(K , x) ∈ [H] × G{p′
} | K = CL(x)}. Observe that the stabilizer L(K ,x) of (K , x) is a

subgroup of K : if the element y of L satisfies K y
= K and xy = x then y ∈ CL(x) = K . The cardinality of the L-orbit containing

(K , x),
|L|

|L(K ,x)|
= |L : K |

|K |

|L(K ,x)|
= |L : H|

|K |

|L(K ,x)|

is a nonnegative integral multiple of |L : H| and we can now conclude that (10.10) is a nonnegative integer. �
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It is now natural to define the rational (centric) Burnside ring of an abstract Frobenius category F to be the Möbius
algebraM([F sc

];Q) [10, Definition 2.11].

Example 10.11 (G = A7, p = 2). The alternating group G = A7 of order 2520 = 23335171 contains five nonidentity 2-
subgroup conjugacy classes H1–H5 of orders 2, 4, 4, 4, 8 and lengths (normalizer indices) 105, 35, 105, 315, 315. The four
classesH2,H3,H4,H5 are p-selfcentralizing and∆(|CG(H)|2′) = (3, 1, 1, 1). Here are themultiplication tables for the rational
Möbius algebras

• M([Osc
G ];Q)with unit 1 = −

4
9H2 −

1
3H3 + H5 and Euler characteristic χ =

2
9

• M([F sc
G ];Q)with unit 1 = −

1
12H2 −

1
12H3 +

1
4H4 +

1
4H5 and Euler characteristic χ =

1
3

• M([F sc
G ];Q)with unit 1 = −

1
3H2 −

1
3H3 + H5 and Euler characteristic χ =

1
3

M([Osc
G ];Q) H2 H3 H4 H5
H2 18H2 0 0 9H2
H3 · 6H3 0 3H3
H4 · · 2H4 H4
H5 · · · 4H2 + H3 + H5

M([F sc
G ];Q) H2 H3 H4 H5

H2 6H2 0 0 6H2
H3 · 6H3 0 6H3
H4 · · 2H4 2H4
H5 · · · 2H2 + 2H3 − 2H4 + 4H5

M([F sc
G ];Q) H2 H3 H4 H5

H2 6H2 0 0 3H2
H3 · 6H3 0 3H3
H4 · · 2H4 H4
H5 · · · H2 + H3 + H5

The upper triangular nonnegative integral matrix

ϕ([Osc
G ], [F sc

G ]) =

 3 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


is the Z(2)-algebra isomorphismM([Osc

G ]; Z(2)) ∼= M([F sc
G ]; Z(2)) given in Theorem 10.

Let Ssc
G /G denote the poset of conjugacy classes of p-selfcentralizing p-subgroups of G ordered by subconjugation.

Corollary 10.12. Let H and K be objects of Ssc
G /G with H < K. Then

|H|

|K |


k≥1

(−1)k+1 |NG(Hi0 ,Hi1)| · · · |NG(Hik−1 ,Hik)|

|NG(Hi0)| · · · |NG(Hik−1)|
(|CG(Hik−1)|p′ − |CG(Hik)|p′)

is a nonnegative integer. The summation runs over all k ≥ 1 and all k-simplices in Ssc
G /G

H = Hi0 < · · · < Hik−1 < Hik = K

from H to K .

Proof. The upper triangular matrix ϕ([Osc
G ], [F sc

G ]) = µ([Osc
G ])∆(|CG(H)|p′)ζ ([Osc

G ]) has nonnegative integral entries by
Theorem 10. According to the proof of Proposition 10.7, the off-diagonal entries are

j−i
k=1

|Osc
G (Hi0 ,Hi1)| · · · |O

sc
G (Hik−1 ,Hik)|

|Osc
G (Hi0)| · · · |O

sc
G (Hik−1)|

(|CG(Hik−1)|p′ − |CG(Hik)|p′)

=
|Hi0 |

|Hik |

j−i
k=1

|NG(Hi0 ,Hi1)| · · · |NG(Hik−1 ,Hik)|

|NG(Hi0)| · · · |NG(Hik−1)|
(|CG(Hik−1)|p′ − |CG(Hik)|p′), i < j,

where the summation runs over all k-simplices in Ssc
G /G, Hi = Hi0 < · · · < Hik = Hj, from Hi to Hj. �
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