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Summary

Objective: To examine the relationships between biochemical composition and mechanical properties of articular cartilage explants during in-
terleukin-1 (IL-1)-induced degradation and post-exposure recovery.

Design: Bovine articular cartilage explants were cultured for up to 32 days with or without 20 ng/mL IL-1. The dynamic shear modulus jG*dynj
and equilibrium and dynamic unconfined compression moduli (Eequil and jE*dynj) were measured at intervals throughout the culture period. In
a subsequent recovery study, explants were cultured for 4 days with or without 20 ng/mL IL-1 and for an additional 16 days in control media.
The dynamic moduli jE*dynj and jG*dynj were measured at intervals during degeneration and recovery. Conditioned media and explant digests
were assayed for sulfated glycosaminoglycans (sGAG) and collagen content.

Results: Continuous IL-1 stimulation triggered progressive decreases in Eequil, jE*dynj, and jG*dynj concomitant with the sequential release
of sGAG and collagen from the explants. Brief IL-1 exposure resulted in a short release of sGAG but not collagen, followed by a gradual
and incomplete repopulation of sGAG. The temporary sGAG depletion was associated with decreases in both jE*dynj and jG*dynj which
also recovered after removal of IL-1. During IL-1-induced degradation and post-exposure recovery, explant mechanical properties correlated
well with tissue sGAG concentration.

Conclusions: As previously shown for developing cartilages and engineered cartilage constructs, cytokine-induced changes in sGAG concen-
tration (i.e., fixed charge density) are coincident with changes in compressive and shear properties of articular cartilage. Further, recovery
of cartilage mechanical properties can be achieved by relief from proinflammatory stimuli and subsequent restoration of tissue sGAG
concentration.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Articular cartilage is comprised of chondrocytes embedded
within an extracellular matrix (ECM) consisting primarily of
the large, aggregating proteoglycan (PG) aggrecan, type II
collagen, and water. The high density of negatively charged
sulfated glycosaminoglycans (sGAG) attached to the aggre-
can core protein gives rise to an osmotic swelling pressure
that resists compression and is balanced by tensile
stresses carried by the collagen fiber network. Due to low
tissue permeability, dynamic physiologic loads are carried
primarily through pressurization of entrapped fluid1. The
resident chondrocytes synthesize and remodel the
ECM2e5 but can also contribute to tissue destruction in var-
ious degenerative conditions.

Quantitative relationships between ECM molecule con-
tent and cartilage mechanical properties have been
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explored through regression analyses in healthy, develop-
ing, and degenerating articular cartilage6e13. These studies
demonstrated statistically significant correlations between
the concentration of sGAG and the compressive stiffness,
and elevated sGAG concentrations were inversely corre-
lated with the hydraulic permeability. The collagen concen-
tration was also well-correlated with cartilage properties,
indicating that the mechanical function of cartilage hinges
on contributions from PGs and collagen. In addition, the in-
teraction of PGs and the collagen network under cyclic and
steady-state loads has been extensively characterized by
the dynamic and equilibrium moduli in compression, shear
and tension17e20. There are no reports, however, of compo-
sition-function regression analyses for cartilage undergoing
cytokine-induced degradation.

Interleukin-1 (IL-1) cytokines have demonstrated roles in
promoting cartilage matrix resorption in vitro and mediating
inflammation in vivo. Within hours of exposure to exoge-
nous IL-1, chondrocytes in monolayer and explants upregu-
late and activate aggrecanases, leading to proteolysis
and release of PGs3e25. Following PG release, the collagen
network undergoes MMP-mediated degradation14,24e26.
Furthermore, IL-1 decreases sGAG14,27e29 and protein
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synthesis14,30e32. IL-1-induced depletion of PGs and colla-
gen degradation are accompanied by increases in perme-
ability and decreases in equilibrium and dynamic
compressive moduli and compression-induced streaming
potential14,24. Autocrine IL-1 expression is believed to play
a role in cartilage matrix remodeling as part of homeosta-
sis33, and chondrocytes have been reported to restore PG
content and PG synthesis following transient IL-1 exposure
in vitro and in vivo25,34e37. However, the extent to which
this PG repopulation restores the mechanical properties of
recovering cartilage has not been examined.

The studies described here present detailed time courses
of the biochemical and biophysical changes associated with
IL-1-induced cartilage degradation. The loss and subse-
quent recovery of matrix constituents in response to tran-
sient IL-1 exposure are also described, along with
detailed measurements of the physical properties of these
recovering explants. Based on linear regression analysis,
the relationships between cartilage composition and me-
chanical properties in both the degrading and recovering
explants are described. The results of these experiments,
which further illuminate the roles of PGs and collagen in car-
tilage mechanics during tissue degradation and recovery,
lend insight into targets for diagnosis and treatment.
Methods
TISSUE EXPLANT PREPARATION AND CULTURE
Under aseptic conditions, 3 mm diameter full thickness cartilage explants
were harvested with a biopsy punch (Miltex, York, PA) from the femoral con-
dyles and patellar grooves of both stifles of an immature calf (Research 87,
Boylston, MA). A custom cutting block was used to remove the most super-
ficial ~300 mm and the deep zone tissue, resulting in middle zone explants
with a thickness of 1.78� 0.020 mm as measured with digital calipers. Forty
explants were randomly assigned to either control or IL-1-stimulated groups.
To allow for equilibration to culture conditions, explants were precultured for
72 h at 37�C and 5% CO2 in serum-free control medium consisting of high
glucose Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with
50 mg/mL gentamicin, 0.1 mM non-essential amino acids (Invitrogen, Carls-
bad, CA) and 50 mg/mL ascorbate (Sigma, St. Louis, MO). Explants were
placed two per well in 48 well plates (Becton Dickinson, Franklin Lakes,
NJ) in 0.5 mL of either control medium or control medium supplemented
with 20 ng/mL recombinant human IL-1a (Peprotech, Rocky Hill, NJ). This
IL-1 dosage has been shown to induce aggressive cell-mediated degrada-
tion, with complete depletion of sGAGs within 2 weeks24,38. Samples were
cultured for up to 32 additional days, with media changed and collected ev-
ery 48 h. Four explants per group were removed from culture at days 4, 8,
12, 16, 24, and 32 and stored in 0.15 M Dulbecco’ phosphate buffered saline
(DPBS) (Invitrogen) with protease inhibitors (PI Cocktail Set I, Calbiochem,
San Diego, CA) at �20�C for subsequent compression testing and biochem-
ical analysis.

A second degradation study was conducted specifically to examine
changes in shear properties due to IL-1 stimulation. Sixty-five explants
(4 mm diameter� 2 mm thick) were isolated as described above from middle
zone cartilage of a second calf. Following a 3-day preculture, explants were
cultured in individual wells for up to 24 additional days in 0.5 mL of control
medium or control medium supplemented with 20 ng/mL IL-1a. Five explants
per group were removed from culture at days 0, 4, 8, 12, 16, 20, and 24 and
stored in 0.15 M DPBS with protease inhibitors at �20�C for subsequent
dynamic shear testing and biochemical analysis.

To study recovery from transient IL-1 exposure, 36 explants (4 mm diam-
eter� 2 mm thick) were isolated as described above from middle zone car-
tilage of a third calf. Following a 3-day preculture, the explants were
cultured for 4 days in 0.5 mL of either control medium or control medium sup-
plemented with 20 ng/mL IL-1a, followed by up to 16 days of culture in con-
trol medium. Four explants per group were removed at days 0, 4, 8, 12 and
20 and stored in 0.15 M DPBS with protease inhibitors at �20�C for subse-
quent mechanical testing and biochemical analysis.

To examine whether IL-1 exposure decreased cell viability, explants
(4 mm diameter� 2 mm thick) were isolated as described above from a fourth
calf, precultured for 3 days and then cultured for up to 14 days in 0.5 mL of
either control medium or control medium supplemented with 20 ng/mL IL-1a.
Analysis of mitochondrial activity as an indirect, quantitative measure of via-
bility was performed using the WST-1 assay kit (Biovision, Mountain View,
CA) according to the manufacturer’s instructions. Briefly, at day 2, 8 or 14,
explants (n¼ 3/condition) were incubated with the WST-1 reagent in
DMEM for 2 h at 37�C. The conditioned media were then transferred to
a 96-well plate and the abundance of formazan product was measured as
the absorbance at 450 nm. Viability of one additional explant per group
was examined qualitatively by fluorescent staining (Live/Dead�; Invitrogen).
Explants were rinsed briefly with DPBS, stained according to the manufactur-
er’s instructions, and bisected along the axial plane. Images of calcein AM
(live cells) and ethidium homodimer-1 (dead cells) staining were captured us-
ing the appropriate filters on a Zeiss LSM510 confocal microscope with
a 20� objective.
MECHANICAL TESTING
Prior to mechanical testing, explants were thawed at room temperature.
Thicknesses were measured with digital calipers (Mitutoyo USA, Aurora, IL)
and wet masses were determined. Compression testing was performed using
a SMT-S 5.6lbf load cell (Interface, Scottsdale, Arizona) and an ELF 3230 test-
ing frame (Enduratec; Minnetonka, MN) at room temperature in 0.15 M DPBS
with protease inhibitors, with displacements corrected for load cell compli-
ance. Torsional shear testing was performed using a CVO 120HR stress-con-
trolled rheometer with strain feedback (Bohlin; East Brunswick, NJ).

Samples from the first degradation study were tested in unconfined com-
pression by applying a 0.1 N tare load followed by four steps (5% each,
1 mm/s ramp rate) of stress relaxation with a 10 min relaxation after each
strain step. As 10 min may not reflect complete relaxation, the force vs
time data F(t) for each step were fit to an analytical solution for the uncon-
fined compression stress relaxation of a linear biphasic material described
by Armstrong et al.17:

F ðtÞ ¼ FN

"
1þ

XN
n¼1

An exp

�
� a2

nHAkt

a2

�#
;

where FN is the equilibrium (relaxed) force, An ¼ 1=½ð1� yÞ2a2
n � ð1� 2yÞ�,

an are the roots to the characteristic Bessel function equation
J1ðxÞ � ð1� nÞx Jo ðxÞ=ð1� 2nÞ ¼ 0; a is the sample radius, HA is the aggre-
gate modulus and k is the permeability. For each relaxation step, a two pa-
rameter least squares fit was performed using Matlab 7.1 (Mathworks,
Natick, MA) to determine the value of FN and the product HAk, assuming
a Poisson’s ratio of 0.1 and using the first five terms of the analytical solution.
A linear regression of the equilibrium stresses (FN=pa2) against the applied
strain over the range of 10e20% was used to determine Eequil, the uncon-
fined compression equilibrium modulus of each sample.

After relaxation at the second (10%) step, sinusoidal compression (�1.5%
strain) was applied at 0.005, 0.05, 0.5, and 5 Hz. For each frequency, the mag-
nitude of the dynamic compressive modulus, jE*dynj, was calculated by WinT-
est dynamic mechanical analysis (DMA) software (Enduratec) as the ratio of
the fundamental stress and strain magnitudes determined using a Fast Fourier
Transform. Samples from the recovery study were similarly tested after a single
10% stress relaxation step to determine the dynamic compressive moduli at
0.01, 0.1, 1.0 and 10 Hz.

Samples from the second degradation study and the recovery study were
tested in torsional shear by applying a 10% compressive offset and, after re-
laxation, applying a nominal 0.5% sinusoidal shear strain at 0.01, 0.1, 1, and
10 Hz. The magnitude of the complex shear modulus jG*dynj was determined
by the rheometer software from the ratio of the measured stress to the ap-
plied strain.
BIOCHEMICAL ANALYSIS
Following mechanical testing, explants were lyophilized overnight and dry
masses were determined. Explants were then solubilized with 4 mg/mL pro-
teinase K (Calbiochem) in 100 mM ammonium acetate (pH 6.5) (Sigma). The
digested explants and conditioned media were assayed for sGAGs via the
dimethylmethylene blue (DMMB) assay39, using shark chondroitin sulfate
(Calbiochem) as a standard. Collagen was assayed via the pDAB/chlora-
mine-T assay for hydroxyproline, using trans-4-hydroxy-L-proline (Sigma)
as a standard and assuming a 1:8 mass ratio of hydroxyproline:collagen40.
As the compressive properties were expected to be related to the matrix
fixed charge density (FCD), the sGAG and (for consistency) collagen con-
tents were normalized by water volume in the composition-function analyses.
STATISTICAL ANALYSES
All statistical analyses were performed using Minitab Release 12 (Minitab,
Inc., State College, PA) with significance at p< 0.05. Collinearity among ma-
trix components or among mechanical properties was determined via linear
correlation analyses. Differences among time points in a treatment group or
between treatments at a time point were examined via one-way analysis of
variance (ANOVA) with Tukey’s test for post hoc pairwise comparisons. The
equilibrium modulus and dynamic shear modulus data were log transformed



Fig. 1. sGAG (A) and collagen (B) release to the media over 48 h period for control (C) and IL-1-stimulated (B) explants. Data are
mean�SEM. * denotes difference (p< 0.05) between control and IL-1-stimulated explants.
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prior to ANOVA. Due to loss of sample integrity for IL-1-stimulated explants,
sample sizes were insufficient to perform some comparisons at later time
points. Regressions of mechanical parameters against matrix constituents
were compared between treatment groups as described by Zar41 using cus-
tom Minitab macros. Briefly, the groups were first compared to test the null hy-
pothesis of equal regression slopes. In the case of a common slope, the
groups were then compared to test the null hypothesis of equal intercepts. A
common regression was used if neither null hypothesis was rejected.

Results
EXPLANT AND MEDIA BIOCHEMISTRY: IL-1 DEGRADATION

EXPERIMENTS
As previously demonstrated14,23,24,26,42,43, treatment with
20 ng/mL IL-1a resulted in substantial matrix depletion over
Fig. 2. Residual sGAG content (A), residual collagen content (B), water c
(C) and IL-1-stimulated (B) explants. Data are mean�SEM. * denotes
the 32 day culture period. sGAG release for IL-1-stimulated
samples peaked at day 8 with 59% of total sGAG released
[Fig. 1(A)] and was essentially complete by day 14. Colla-
gen released from IL-1-stimulated explants was significantly
elevated over controls at day 6 (p< 0.05), peaked near day
14, and persisted through day 24, at which point 74% of to-
tal collagen release had occurred [Fig. 1(B)]. Control ex-
plants displayed a steady increase in sGAG content,
indicating a basal level of PG synthesis [Fig. 2(A)]. The
sGAG content of IL-1-stimulated explants decreased during
the first 16 days in culture and reached the detection limit of
the DMMB assay by day 24. The collagen content of control
explants did not vary significantly during the culture period,
ontent (C) and thickness (D) as a function of culture time for control
difference (p< 0.05) between control and IL-1-stimulated explants.



Fig. 3. Mitochondrial activity as measured by conversion of WST-1 (A) and cell viability as indicated by calcein AM (green; live) and ethidium
homodimer-1 (red; dead) fluorescence (B) for control (C) and IL-1-stimulated (B) explants.
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while the collagen content of the IL-1-stimulated explants
gradually decreased following day 8 [Fig. 2(B)]. No differ-
ences in cell viability or mitochondrial activity were noted
between control and IL-1-stimulated explants [Fig. 3], indi-
cating that cell death did not contribute substantially to the
decreases in matrix content with IL-1 exposure. Explant wa-
ter content showed little variation with culture in either con-
trol or IL-1 groups [Fig. 2(C)]. Increases in the thickness
of control explants accompanied increases in sGAG
Fig. 4. Compressive and shear properties as a function of culture time
unconfined compression modulus; (B) Dynamic unconfined compressio
are mean�SEM. * denotes difference (p< 0.05) between control and

IL-1-stimulated explants. : denotes an insufficient number of I
[Fig. 2(D)]. In contrast, the thickness of IL-1-stimulated
explants did not change significantly during culture.
EXPLANT MECHANICAL PROPERTIES: IL-1 DEGRADATION

EXPERIMENTS
The ANOVA indicated a significant effect of time on Eequil

for controls although no pairwise comparisons were signifi-
cant [Fig. 4(A)]. jE*dynj did not vary significantly during
for control (C) and IL-1-stimulated (B) explants: (A) Equilibrium
n modulus at 0.5 Hz; (C) Dynamic shear modulus at 1 Hz. Data

IL-1-stimulated explants. y denotes p¼ 0.06 between control and
L-1-stimulated explants to perform the statistical analysis.



Fig. 5. Dynamic unconfined compression modulus as a function of frequency and culture time for control (A) and IL-1-stimulated (B) explants.
Data are mean�SEM.

1033Osteoarthritis and Cartilage Vol. 17, No. 8
culture for control explants [Fig. 4(B)]. In contrast, IL-1-
stimulated explants exhibited substantial changes in
mechanical properties reflecting the ECM degradation.
Both Eequil and jE*dynj decreased as sGAG was released
[Figs. 4(A-B)]. Eequil reached detection limits by day 16,
whereas jE*dynj remained measurable through day 24. IL-
1 stimulation for 32 days resulted in sufficient matrix loss
that explants could not sustain handling for mechanical test-
ing. jE*dynj exhibited similar frequency dependence across
time points and treatment groups (Fig. 5).

For control explants, jG*dynj remained fairly steady
throughout the culture period, as indicated by the non-sig-
nificant effect of time in the ANOVA (Fig. 4C). In contrast,
jG*dynj for IL-1-stimulated explants exhibited an initial rapid
decrease through day 8 and continued to decrease until it
reached detection limits at day 20. As with jE*dynj, jG*dynj
exhibited similar frequency dependence across time points
and treatment groups (Fig. 6).
EXPLANT AND MEDIA BIOCHEMISTRY: IL-1 RECOVERY

EXPERIMENTS
Consistent with the degradation studies, transient IL-1
exposure led to significant early loss of sGAG. Control ex-
plants released low levels of sGAG throughout the 20 day
culture, whereas substantial amounts of sGAG were re-
leased to the culture medium during and immediately fol-
lowing IL-1 stimulation [Fig. 7(A)]. The peak in sGAG
release at day 4 coincided with the end of IL-1 exposure.
Withdrawal of IL-1 from the culture media was followed by
Fig. 6. Dynamic shear modulus as a function of frequency and cultur
mean�S
a gradual decrease in sGAG release that reached control
levels by day 8. When normalized to account for differ-
ences in explant size, the levels of sGAG released are
consistent between the degradation and recovery experi-
ments, although a slightly accelerated response to IL-1
occurred in the recovery study. Collagen release was
low and comparable in control and IL-1-stimulated ex-
plants [Fig. 7(B)], indicating that transient IL-1 exposure
did not initiate substantial damage to the collagen net-
work. As in the degradation studies, the sGAG content
of control explants gradually increased [Fig. 8(A)]. The
IL-1-stimulated explants lost sGAG content over the first
8 days of culture, indicating that the effects of IL-1 expo-
sure persisted beyond the 4 days of stimulation. Between
days 8 and 12, explants in the IL-1 group recovered
sGAG to the level of the day 4 group, but through day
20 the sGAG content remained significantly below the
baseline level of the day 0 group. The collagen content
did not vary during culture [Fig. 8(B)]. The water content
of control explants did not vary between groups over
the first 12 days of culture, but the control group was sig-
nificantly higher than the IL-1 group at day 20 [Fig. 8(C)].
The difference in water content at day 20 is particularly
significant because when the residual sGAG content is
normalized by the water content (mL H2O), there is no dif-
ference in sGAG/H2O at day 20 between control and IL-1
groups (data not shown). The thickness of control ex-
plants increased with time, consistent with the accumula-
tion of sGAG, while the thickness of IL-1-stimulated
explants did not vary significantly.
e time for control (A) and IL-1-stimulated (B) explants. Data are
EM.



Fig. 7. sGAG (A) and collagen (B) release to the media over 48 h period for control (C) and IL-1-stimulated (B) explants. Data are mean�SEM.
* denotes difference (p< 0.05) between control and IL-1-stimulated explants.
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EXPLANT MECHANICAL PROPERTIES: IL-1 RECOVERY

EXPERIMENTS
Changes in the mechanical properties of explants reflect
the observed differences in explant composition. Control
explants showed no significant differences in jE*dynj or
jG*dynj with culture [Figs. 9(A-B)]. jE*dynj and jG*dynj for
IL-1-stimulated explants decreased to a minimum at day 8
before recovering to control levels by day 20, despite signif-
icantly lower levels of sGAG content. jE*dynj and jG*dynj ex-
hibited similar frequency dependence across time points
and treatment groups (data not shown).
Fig. 8. Residual sGAG content (A), residual collagen content (B), water c
(C) and explants recovering from a 4-day exposure to IL-1 (B). Data are

IL-1-stimulated
COMPOSITION-FUNCTION RELATIONSHIPS: IL-1

DEGRADATION EXPERIMENTS
Regression analyses indicated substantial differences
between control and IL-1-stimulated explants in the depen-
dence of mechanical properties on tissue composition
(Table I). The dependence of Eequil on sGAG concentration
was not significantly different for control and IL-1-stimulated
explants, but the regressions were significantly different be-
tween treatment groups for all other mechanical properties.
The compressive properties of control explants were signif-
icantly dependent on sGAG/H2O [Figs. 10(A-B)] and
ontent (C) and thickness (D) as a function of culture time for control
mean�SEM. * denotes difference (p< 0.05) between control and

explants.



Fig. 9. Dynamic unconfined compression modulus at 1.0 Hz (A) and dynamic shear modulus at 1.0 Hz (B) as functions of culture time for
control (C) explants and explants following a 4-day transient exposure to IL-1 (B). Data are mean�SEM. * denotes difference (p< 0.05)

between control and IL-1-stimulated explants.
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collagen/H2O [Figs. 10(D-E)]. In contrast, for IL-1-stimulated
explants, all compressive properties were strongly depen-
dent on sGAG/H2O [Figs. 10(A-B)] but exhibited no depen-
dence on collagen/H2O [Figs. 10(D-E)]. Both for control and
IL-1-stimulated explants, jG*dynj was strongly dependent on
sGAG/H2O [Fig. 10(C)] and weakly dependent on collagen/
H2O [Fig. 10(F)]. Regression results of jE*dynj and jG*dynj at
0.5 Hz and 1.0 Hz, respectively, were consistent with anal-
ysis at all frequencies tested.

Collinearities among ECM components and among the
measured mechanical properties were examined to aid in
interpreting the composition-function regression analyses.
Data from all time points were pooled for control and IL-1-
stimulated explants. Significant, negative correlations
were found between percent water and both collagen and
sGAG concentrations for control and IL-1 groups (Table
II). A significant, positive correlation was found between col-
lagen and sGAG concentrations for control explants but not
for IL-1-stimulated explants, reflecting the decoupled sGAG
and collagen release profiles. Significant, positive correla-
tion coefficients were found among all compressive me-
chanical properties for both the control and IL-1 groups
(Table III). In control and IL-1-stimulated explants, high cor-
relations (0.877<R< 0.929) were found between jEequilj
and jE*dynj, suggesting that the measurements offer similar
predictions of the mechanical integrity of the ECM. Regres-
sions of jE*dynj at 0.5 Hz and jG*dynj at 1.0 Hz were consis-
tent at the other tested frequencies.
Table
Linear regressions of physical properties against bioc

y

x¼ sGAG/H2O (mg/m

r2 a

Eequil Control 0.66 9.03E-03
IL-1-stimulated

jE*dynj Control 0.27 6.88E-02
IL-1-stimulated 0.96 1.53E-01

jG*dynj Control 0.53 1.874Eþ04
IL-1-stimulated

Linear regression coefficients are significant at p< 0.05 (NS¼ non-signifi

value that spans the two groups. (Eequil¼ Equilibrium Unconfined Com

Modulus at 0.5 Hz; jG*dynj ¼Magnitude of Dynamic Shear Modulus at 1
COMPOSITION-FUNCTION RELATIONSHIPS: IL-1 RECOVERY

EXPERIMENTS
Consistent with the IL-1 degradation studies, regression
analysis of the IL-1 recovery data indicated the differential
dependence of mechanical properties on matrix composi-
tion (Fig. 11, Table IV). No dependence on collagen content
was found for IL-1-stimulated explants for either jE*dynj or
jG*dynj, reflecting the stable collagen contents. The deple-
tion and subsequent recovery of sGAG in the IL-1 group
was reflected in a strong dependence of jE*dynj and jG*dynj
on sGAG/H2O. For control explants, sGAG/H2O and colla-
gen//H2O were significant predictors of jG*dynj but not of
jE*dynj.
Discussion

The relationships between articular cartilage matrix com-
position and tissue mechanical properties were investigated
in immature bovine explants during exhaustive IL-1-induced
degradation and during transient IL-1 exposure and recov-
ery. Detailed time courses of the biochemical and biophys-
ical changes associated with persistent and transient
proinflammatory stimulation were generated in a common
model for studying cartilage matrix catabolism, and regres-
sion analyses revealed similar composition-function rela-
tionships in degrading and recovering cartilage.
Significantly, jE*dynj and jG*dynj for the transiently
I
hemical composition for IL-1 degradation study

y¼ a� xþ b

L) x¼ collagen/H2O (mg/mL)

b r2 a b

�5.76E-02 0.48 6.19E-03 5.54E-03
NS e e

6.47Eþ00 0.51 5.77E-02 6.03Eþ00
�3.12E-01 NS e e
�2.77Eþ05 0.26 4.15Eþ03 3.76Eþ05

1.28Eþ05 �2.49Eþ

cant). Common regression coefficients are indicated by a numerical

pression Modulus; jE*dynj ¼Magnitude of Dynamic Compression

Hz; Units of all mechanical properties are in MPa).



Fig. 10. Physical properties plotted against sGAG concentration (AeC) and collagen concentration (DeF) for control (C) and IL-1-stimulated
(B) explants. Note that data are presented on logarithmic scales.
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stimulated IL-1 explants recovered to levels similar to con-
trol explants despite incomplete repopulation of the matrix
with sGAG. The mechanical properties of untreated ex-
plants were generally dependent on both sGAG and colla-
gen concentration, which is consistent with previous
reports2,4,6,20,45,46. The physical properties of cartilage con-
tinuously and transiently stimulated with IL-1 were strongly
dependent on sGAG content, with only the shear modulus
of continuously stimulated cartilage significantly related to
collagen content. These results underscore the importance
of sGAG concentration in the maintenance of tissue me-
chanical function and lend support to therapeutic strategies
aimed at promoting sGAG synthesis and diagnostic
Table II
Correlations between biochemical constituents for control and

IL-1-stimulated cartilage explants

Control IL-1-stimulated

Collagen/H2O sGAG/H2O Collagen/H2O sGAG/H2O

sGAG/H2O þ0.780 NS
% H2O �0.915 �0.687 �0.775 �0.630

Correlation coefficients are significant at p< 0.05 (NS¼ non-

significant).
approaches to monitor degradation and recovery by track-
ing changes in sGAG/H2O.

The concurrent loss of sGAG and mechanical properties
following IL-1 stimulation likely accounts for the strong cor-
relation between cartilage sGAG concentration and me-
chanical properties. Further, it is not surprising that the
mechanical properties exhibited minimal dependence on
collagen content, since the loss of biomechanical function
preceded significant collagen depletion in these experi-
ments. Likewise, the recovery of explant mechanical prop-
erties following transient IL-1 exposure correlated well
with increases in sGAG and water content while there
was no change in collagen content. Direct enzymatic
Table III
Correlations between compressive properties of control and IL-1-

stimulated explants

p< 0.05 Control IL-1-stimulated

Eequil Eequil

jE*dynj þ0.929 þ0.877

Correlation coefficients are significant at p< 0.05. (Eequil¼ Equi-

librium Unconfined Compression Modulus; jE*dynj ¼Magnitude of

Dynamic Compression Modulus at 0.5 Hz).



Fig. 11. Physical properties plotted against sGAG concentration (A-B) and collagen concentration (C-D) for control (C) and IL-1-stimulated
(B) explants. Note that data are presented on logarithmic scales.
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digestion of collagen with collagenases has been used to
investigate the specific dependence of mechanical proper-
ties on collagen46, but the results of this model are difficult
to interpret given the nonspecific activity of collagenases on
aggrecan47e49 and any role of the collagen network in re-
taining PG aggregates. The results presented here highlight
the functional implications of sGAG depletion in the early
stages of cytokine-induced cartilage degradation, but due
to the experimental model yield little direct insight into the
dependence on collagen content in normal or degraded
cartilage.

Previous studies have described the loss of ECM and
mechanical properties during persistent IL-1 stimulation of
cartilage explants14,23,24,26,42e44, and PG content has been
restored in cartilage explants following IL-1 insult in vitro
and in vivo34e37,50. The results of this study demonstrate
the chondrocyte’s potential (albeit under in vitro culture
conditions) to reestablish the tissue’s mechanical function
following partial matrix degradation and indicate that
functional recovery of jE*dynj and jG*dynj can be achieved
with incomplete repopulation of sGAG content. Recovered
explants contained 40% of the sGAG of the control explants
Table I
Linear regressions of physical properties against bio

y

x¼ sGAG/H2O (mg/m

r2 a

jE*dynj Control NS e
IL-1-stimulated 0.61 9.88E-02

jG*dynj Control 0.43 3.36E-02
IL-1-stimulated 0.83 2.91E-02

Linear regression coefficients are significant at p< 0.05 (NS¼ non-sign

ical value that spans the two groups. (jE*dynj ¼Magnitude of Dynamic Co

Modulus at 1 Hz; Units of all mechanical properties are in MPa).
after 16 days of recovery (day 20) and equal levels of colla-
gen content, yet jE*dynj and jG*dynj were not statistically dif-
ferent from those of the control explants. However, when
sGAG concentration was calculated from the explant water
content (to approximate FCD), no difference was noted be-
tween control and IL-1-stimulated explants at day 20. This
finding demonstrates the utility of FCD (approximated by
sGAG concentration) as an indicator of cartilage health
and function.

Given the complex ECM organization and nonlinear me-
chanical behavior of articular cartilage, the linear regres-
sion analyses used here may not capture the true
composition-function relationships. Indeed, Donnan and
PoissoneBoltzmann models51,52 predict that osmotic swell-
ing is a nonlinear function of PG concentration. The corre-
lations described here may also be biased by the range of
PGs and collagen content examined, particularly given the
heteroscedasticity over a wide range of matrix density. The
composition-function relationships may be further influ-
enced by the choice of biochemical parameters (i.e.,
collagen, sGAG, water). Other studies describing composi-
tion-function relationships have included collagen cleavage
V
chemical composition for IL-1 recovery study

y¼ a� xþ b

L) x¼ collagen/H2O (mg/mL)

b r2 a b

e NS e e
�1.07E-01 NS e e
�8.29E-01 0.42 1.48E-02 2.55E-01
�2.10E-01 NS e e

ificant). Common regression coefficients are indicated by a numer-

mpression Modulus at 1 Hz; jG*dynj ¼Magnitude of Dynamic Shear
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products15 and collagen crosslinks as ECM compo-
nents6,7,15,53. Collagen crosslinks and cleavage products
may be critical parameters to examine since the integrity
of the collagen network cannot be evaluated by the hydrox-
yproline assay used in the present study. Despite the addi-
tional parameters and models that could be used to
analyze the data, the significance and strength of the cor-
relations reported here demonstrate the fundamental im-
portance of sGAG to the compressive and shear
properties of articular cartilage.

The composition-function relationships observed in un-
treated and IL-1-stimulated immature bovine cartilage may
be specific to this tissue’s age, species, and anatomic ori-
gin. Mature articular cartilage contains a significantly higher
collagen fiber and collagen crosslink density6,54, lower PG
content54, shorter sGAG chain length55e58, and fewer
cells59 than immature cartilage. IL-1-induced matrix degra-
dation may be more aggressive in immature than mature
cartilage due to the higher cell density, although the sensi-
tivity of human articular cartilage to IL-1 stimulation appears
to be independent of age60. Variations in articular cartilage
ECM composition and mechanical properties have also
been reported with tissue depth61,62 and topographical loca-
tion7,45. While the present study did not examine variations
in composition-function relationships with topographical lo-
cation, the use of immature middle zone cartilage minimizes
variations due to tissue inhomogeneity through the tissue
depth.

The strong dependence of all measured physical proper-
ties on sGAG concentration during IL-1-induced degenera-
tion but prior to the onset of major collagen depletion
suggests that measurements of sGAG concentration may
be a useful surrogate for direct mechanical measurements
in early stage degeneration. For example, imaging tech-
niques such as delayed gadolinium-enhanced MRI of carti-
lage (dGEMRIC)63 and EPIC-mCT (Equilibrium Partitioning
of an Ionic Contrast agent via microcomputed tomogra-
phy)64 produce maps of tissue FCD that may provide suffi-
cient information to noninvasively estimate the mechanical
properties of injured or diseased cartilage in vivo. The appli-
cation of composition-function relationships with these
quantitative imaging techniques may also have utility in
evaluating the competency of engineered cartilage grafts
and resurfaced joints.
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