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1. lNTRoDucT10~ 

Consider the various colorings of a necklace consisting of n beads, where 
each bead can be either red or black. Informally, two colorings will be 
considered to be the same if it is possible to get from one to the other by 
moving the clasp, interchanging colors, or both. A coloring is considered 
primitive if it has no proper subpattern. Gilbert and Riordan [4] give a 
formula which counts the number of such primitive colorings. Metropolis, 
Stein, and Stein [5] noted that for all n I 15, Gilbert and Riordan’s 
formula also gives the number of MSS sequences of length n. In Section 5 
we show that these two quantities agree for all n by means of an algorithm 
which for each n produces a bijection. We also have, but will not give here, 
a number theoretic argument. 

In Section 4 we consider the periodic points of f(z) = t2 - 2. Let f ’ be 
the identity map, and for n a positive integer define f” inductively by 
f’=f and f”=f(f”-‘).Iff or some n > 0 f”(w) = w, then we call w  a 
periodic point of f and the minimum {n > 01 f”(w) = w } is the period of 
w. For any z, the orbit of t is { f “(z)ln 2 O}. Given a periodic point x of f 
with period m, we call the orbit of x negative if (f”)‘(x) -c 0. Of course if 
(f”)‘(x) is negative, then (f”>‘(y) is negative for all y in the orbit of x. 
For a given positive integer n, Myrberg [9] attempts to count the values of 
p for which zero is a periodic point of h(z) = z2 - p of period n. In his 
analysis he describes sequences which would later be called MSS sequences. 
Based on a hypothesis which he is unable to prove, he finds the number of 
such p to be the number of distinct negative orbits of order, or size, n using 
the function f(z) = z2 - 2. The number of such p for n I 16, calculated 
by Myrberg, is equal to the number of MSS sequences of length n. In 
Section 4 we give two proofs that the number of MSS sequences of length 
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n, for all n E N, is the same as the number of distinct negative orbits of 
order n using the function f(z) = z* - 2. 

For completeness, in Section 2 we briefly discuss MSS or shift maximal 
sequences. In Section 3 we follow the work of Sun Lichiang and G. 
Helmberg [lo] to give a formula which, for each positive integer n, counts 
the number of MSS sequences of length n. We use the results of Section 3 
throughout the paper. To our knowledge their work has not yet been 
published. We let N denote the positive integers. 

2. MSS SEQUENCES 

In 1973 Metropolis, Stein, and Stein [5] developed a universal theory for 
a certain class of maps of [0, l] into itself. Given such a map f and a value 
h between zero and one they formed a finite or possibly infinite sequence of 
R’s and L’s, { bi}, by considering the iterates of the map Xf at :. For 
i 2 1, set 

i 

R, if (xf)‘(t) > i, 

bi= Lp if (Xf)‘(:) < $, 

C, if (Xj)‘($) = 5. 

If bi = C for some i, then the sequence stops. Finite sequences of R’s and 
L’s obtained in this manner are called MSS sequences. In particular, for 
each n E N, they were interested in the set of h, and their associated 
sequence of R’s and L’s, for which $ was a periodic point of Xf of 
minimal period n. For example, RLLRC is an MSS sequence of length five. 
For each positive integer n we will denote the set of possible MSS 
sequences of length n by MSS,,, and the cardinality of a set A will be 
denoted by ]A]. 

Collet and Eckmann [2] define shift maximal sequences. Briefly, a se- 
quence w  of symbols L, R, C is said to be admissible if w  is an infinite 
sequence of L’s and R’s or if w  is a finite (or empty) sequence of L’s and 
R’s followed by a C. We will refer to such sequences as words. The 
parity-lexicographic order is put on the set of admissible words: Set 
L < C < R. Let w  = { wi} and u = { ui} be two distinct admissible words. 
Let k be the first index where they differ. If they differ in the first position, 
i.e., k = 1, then w  < u iff wi < ui. Assume k > 1. If wi . . . wk-i 
=u . . . uk- i has an even number of R ‘s, i.e., has even parity, then w  < u 
iff & < uk. If there are an odd number of R’s then w  < u iff uk < wk. A 
word is shift maximal if it is greater than or equal to all of its right shifts. 
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For example, RLLRC is shift maximal where as LLLC is not. Beyer, 
Mauldin, and Stein [l] show that a finite word is shift maximal iff it is a 
MSS sequence. 

3. IMSS,I 

Sun Lichiang and G. Helmberg [lo] expand the set of admissible words 
to include all finite sequences of R’s and L’s. They also extend the 
parity-lexicographic order as follows. If w  and u are admissible words such 
that there is a k 2 1 with w  = w1 . a. wkwk+i 9 .. and u = wi . . . wk, 
then w  > u if the parity of u is odd, otherwise u > w. Given w, a finite 
sequence of R’s and L’s, we call w  shift maximal in the extended 
parity-lexicographic order if w  is greater than or equal to all of its right 
shifts. For simplicity we will simply call w  shift maximal. A word of length 
n is said to be primitive provided its smallest subperiod is also of length n. 
Notice that if w  = wi . . . w, is primitive, then for each j, 2 I j 5 n, 
w  # wj . * * w,w, *.- W/-l. 

Only those results of Sun Lichiang and G. Helmberg which are used to 
establish their formula for IMSS,] are listed. We provide our own proofs for 
all except Theorem 3.2. in order to avoid their notation. Again we note that 
these results will be used in Sections 4 and 5. 

LEMMA 3.1. If w  = wi . . . w, E {R, L}” is shift maximal, then w1 . -a 
w,-~C E MS&, and ifb, *** b,,-,Cis in MS& then both 6, --. b,-,Land 
6, ..a b,, _ 1 R are shift maximal. 

ProoJ: Lemma 3.1 follows from elementary observations. 

THEOREM 3.2. Let w = w1 . . - w,, E {R, L}“. Then the following are 
equiualen t : 

(1) w is shift maximal. 

(2) woo is shift maximal and either w is primitive or w = u2, 

where u has odd parity and u is primitiue. 

Proof: We will first show that (1) implies (2). Observe that wm is shift 
maximal iff for all i, 1 I i < n, 

wi+l *** WnWl *** w, I WI . . * wn-iwn-i+l *-* w,. 

Let i be such that 1 I i < n. First, w  shift maximal implies that wi+ r * * * 
w, I WI *-* wnPi. We need only consider, 

w,,, *-* w,= WI a*’ w,-,. (*I 
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So, assume that (*) holds. Now, since w  is shift maximal, the parity of 
w1 ** . wndi is odd and wnPi+i 0.. w” I wi a.0 wi. Thus, 

wi+l *-- WnWl *a* wi s Wl **. wn-iwn-i+l .-* W” = w, 

and therefore wm is shift maximal. 
Next, suppose w  is not primitive. Express w  as 

w=w1 *-* Wk 0.. Wl -*- Wk, 

where n/k 2 2. The parity of wi . . . wk is odd, since w  is shift maximal. 
Thus n/k = 2, since otherwise w  would be less than its right shift wi . . . 
WkWl -** wk. So, (1) implies (2). 

Assume that (2) holds and let i be such that 1 I i < n. We will show that 
wi+l *** w,, s w. We have wi+i . .a w, I wi *. . wnwi, since wm is shift 
maximal. So it suffices to only consider, 

wi+l -0. w, = Wl *** wnpi. (* *) 

Thus we assume ( * * ) holds. Again, since wm is shift maximal, we have 

First, if wnei+i . *. w,, -C wi . . . wi, then the parity of wi+i . . . w, is odd, 
since w~+~ *.. wnwl a.. wi 5 w1 ..* wn-iwn-i+l a.. wn = w. Therefore 7 
wi+l ” * W” c w. 

Next, if w~-~+~ **. w,, = w1 ... wi, then w  = wi 0.. w~-~w”-~+~ ... 
W” = wi+l * -* WnWl **- wi. Thus, w  is not primitive and therefore w  = u2 
with u odd and primitive. Hence, u = wi + 1 . . . w, and therefore wi + 1 . . . 
W” < w. 

THEOREM 3.3. Let m E N and w = w1 . - - w,,, E {R, L}” be shift maxi- 
malandprimitive. Thenforeachj,2sjsm, wj *a- w,,,wl 0.. wjV1isnot 
shift maximal. 

ProojI Suppose there exists a j, 2 I j < m, so that u = w, . + . wmwl 
*-* w. ,-i is shift maximal. It suffices to assume 2( j - 1) I m. Let k = 
[m/( j - l)]; then k 2 2. 

First, w  and u both shift maximal imply the following: 

(1) Wl = wj,  w2 = wj+19. * * 3 wj-l = w2(j-l)a 

(2) The parity of w1 . . . wj-l is odd. 

c3) wl=wt(j-l)+19**e,w’- 
J 1 

=W 
(f+l)(j--l), 

for t  = 1 2 7 ,**., k-l, if 
k 2 3. 

(4) wk(j-l)+l = WI, * * * 3 Wm = wm-k(j-1). 

The parity Of wk(j-l)+l . . . wm is odd, since w  is shift maximal. Note that 
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k(j - 1) < m, since w  is primitive. However, now 

w<wl...w. w  “‘W 
J-1 1 m-k(j-l), 

with wi ..a wj-rwi a.9 wm-k(j-lj a right shift of w. Hence v can not be 
shift maximal. 

THEOREM 3.4. Let m E N, and w  E {R, L}” be primitive. Let C be the 
set of all cyclic permutations of w. Then there exists exactly one word in C 
which is shift maximal. 

ProofI Theorem 3.3 implies that there is at most one shift maximal word 
in C. We will assume m > 1. Now, m > 1 and w  being primitive imply that 
both R and L appear in w. Let 

q = max{ n E Nl!l v E C so that v begins with RL” } . 

Note that q 2 1. Let C, be the set of v in C which begin with RLq. If 
lC,l = 1, then that one element is shift maximal. 

Assume that lC,l > 1, and that each v in C, is not shift maximal. Let 
v = “1 -. - v, E Cl. Then Theorem 3.2 implies that urn is not shift maxi- 
mal and so there is somej, 2 <j < m, with yj -.- v,,,vl 0.. vjel > v. Let 
“1C” . . . . “” . . . vj-i. Then v1 > v imphes that v1 E C,. Similarly, 
there &ists U’ k C, so that v* > vl. However, C, is a finite set. Hence there 
is exactly one word in C which is shift maximal. 

Now, for each n E N let 

p(n) = l{wlwisshiftmaximal,w E {R, L}“,andwisprimitive}I. 

Then for n E N, 

p(n) = $(d)2”“, 
n 

(*) 

where p(m) is the Mobius function: ~(1) = 1, p(m) = (-1)’ if m is a 
product of r distinct primes, and p(m) = 0 otherwise. To see this, for each 
s E N let P(s) be the number of words of length s which are primitive. 
Then 2” = &P(d), and by miibius inversion, 

P(n) = &(d)2@. 
din 

Theorem 3.4 now gives us (* ). 

THEOREM 3.5. For n E N we have that, 

p(n) = 
W4S%I - IM%,,L if n is even, 

WW,l, ifnisodd. 
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Proof. First, Lemma 3.1 implies that p(n) I 2(MSS,,I for all n E N. For 
n odd, Theorem 3.2 immediately gives equality. So assume n is even. 

The case n = 2 can be simply checked, so assume n is even and greater 
than two. We now let, 

B = {B = b, .-. b,_,CIB E MS&, 

and either b, . . . b,-,L orb, . . . b,-,R is not primitive}. 

It suffices to show that 1B1 = (MSS,,,I. 
Let b, . . . b,-& E B. Then b, . . . b,,2b1 .. . b,,,2 is shift maximal 

and therefore b, . . . b,,,2 is shift maximal. Thus, b, . . . b,,,z-lC E MSS,,, 
and so IBJ I IMSS,,,). 

Let D = d, . . . d,,,-,C E MS&,,. Choose d,,, from {R, L} so that 
4 - * ‘ 4,* is primitive. Since D E MSS,,,, d, * . . d,,, is shift maximal. 
We claim that d, . . ’ d,,,d, . . . d,,, is also shift maximal. For if not, 
there is some j, 2 <j I n/2, so that 

d, . . . d,,,d, a.. d,,, > d, ... d,,,d, ..a d,,,. 

However, d, . a. d,,, 
maximal and therefore 

shift maximal implies that (d, . . . dn,2)m is shift 

d, ..a d,,,d, ..’ d,,, = d, a.. d,,,d, ... dn,2-,+1. 

In particular, dj .. . d,,,d, . . . djpl = d, . . . d,,, which contradicts 

4 * * * 4,2 being primitive. So our claim holds. Thus, d, * . . d,,,d, . . . 
d,,,,-,C E B and IBI = IMSS,,,(. 

Theorem 3.5 makes the proof of Theorem 3.6 a simple induction argu- 
ment. 

THEOREM 3.6. If n = 2k(2m - l), then 

k+l 

IMSS,I = c 2-@(n/2’-‘). 
i=l 

4. PERIODIC POINTS OF f(z) = z2 - 2 

We want to consider the periodic points of f(z) = z* - 2 and relate 
these to MSS sequences. 

THEOREM 4.1. f n has exactly 2” distinct real jixed points each of which is 
between -2 and 2. 

ProoJ: Fix n and let z be a real valued fixed point of f ‘. Then, IzI I 2 
implies that there is a u E [0, ~1 so that z = 2 cos U. Hence, f k(z) = 
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2 cos 2k~, k 2 1, and therefore we need only solve cos2”t = cos t for 
t E [0, T]. We find, 

t = 2am/(2” - l), 
i 

m =0,1,2 ,..., 2”-‘- 1, 

27rm’/(2” + l), m’= 1,2 ,..., 2”-‘. 

We now classify the periodic points of f(z) = z* - 2. First notice that 
for any real valued z and positive integer n we have that 

n-1 

m’(z) = 2” ,pw. 

So, for w  a periodic point of f(z) = z2 - 2 of period m, we call the orbit 
of w  positive if (fm)‘(w) > 0 and negative if (f”)‘(w) < 0. 

Now, to each periodic point of f(z) = z2 - 2 associate its period. Then 
for each n E N, partition periodic points of period n into orbits and orbits 
according to sign of derivative. So, for each n E N, we have positive and 
negative orbits of order n. Let q(n) be the number of such negative orbits 
of order n, n E N. 

Fix n E N and let z be a fixed point of f”. One can shows that 
(f”)‘(z) < 0 iff z = 2cost for t of the form 2nm’/(2” + 1). So, q(n) I 
2”- l/n. More accurately, 

q(n) = (2n-1 - c,)/n, 

where 

E, = 

I 
1, n an odd prime, 

0, n = 2”, m = O,l, 2,. . . 

n c qw4/~~ otherwise. 
0 

dcdd 
d>l 

We remark that we have derived q(n) in much the same way as Myrberg 
[9], and include the derivation to more clearly present our own work which 
follows. 

We will first show that q(n) = IMSS,] for all n, using a number theoretic 
argument. For n an odd prime, Theorem 3.5 gives that IMSS,] = ipip( 
Thus, 

IMSS,,] = z ;(2 - 2) = ;[2’-r - l] = q(n). 
Y I 

Similarly for n a power of 2, the argument requires no induction. We now 
consider the “otherwise” case. 
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THEOREM 4.2. For every s E N the following holds. If k 2 0 and n = 

2kP, *** p,, where the pi are odd primes not necessarily distinct, then 

IM%I = 4(n). 

Proof. We will induct on s. First assume n is of the form n = 2kp,, 
k 2 0. We only need consider k 2 1. Now, 

k+l k+l 

JMSS,( = c 2-1p(2k-‘+1pl) = (1/2n) c P(2k-i+1pl). 
i-l i=l 

So, we need 

k+l 

c P(2k-‘+‘pJ = 
i=l [ 1 CP(s) - 26”. 

+J 
(*) 

However, 

E 
” = n dFn q(n/d)/d = (n/p,)lMSS,kl = f r$1P(2k-i+1). 

I-1 

“d?f 

It now follows that ( * ) holds. 
The induction step is straightforward and patterned after the case s = 1. 

Hence we delete it. 

Next we give a bijection from MSS, onto the negative orbits of order n. 
We first state the following theorem in order to help clarify how we are 
going to represent the negative orbits. 

THEOREM 4.3. For each n E N, dejne ‘p, from thejixedpoints of fn into 
(1, -l}” as follows: 

cp,(z) = (eo,el,...,e,-l), 

where 

i 

1, 
ei = 

iffi(z) > 0 

-1, iffi(z) < 0. 

Then ‘p, is a bijection. 

The following two facts follow from Theorem 4.3: 

(1) If w  is a periodic point of f of period m, then cp,(w) is primitive. 

(2) If CX, /? E (1, -l}” are primitive and fl is a cyclic permutation of 
CY, then cp,-‘( p) is in the orbit of cP,‘(ru). 
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Thus if e = (eo,. . . , e,,-,) E (1, -l}” is primitive and IIzi’ e, < 0, then 
e or any cyclic permutation of e can be used to represent the negative orbit 
of q;‘(e). For example, if m = 3, we can use (1, - 1, l), ( - 1, 1, l), or 
(1, 1, - 1) to represent the negative orbit of qp;r((l, 1, - 1)). 

THEOREM 4.4. Let n E N, n > 1. Define g from MSS,, into the negative 
orbits of order n as follows. 

I 

n-l 
(e l,...,e,-l,- I>, if n e, > 0, 

db, ... b,-,C) = 
i-l 
n-l 

(e l,..., enFl,l), if n ej < 0, 
i=l 

where 

1, bi = L 
ei = 

-1, bi = R. 

Then g is a bijection. 

Proof: Let B = b, . - - b,-J E MSS,,. Then both b, -es b,-,L and 
b, ... b,-,R are shift maximal. Thus, using Theorem 3.2. and the fact that 
l-Iin_Jg(bl . . . b,- &)I, < 0, it follows that g(b, * * . b,- rc) is primitive. 
Hence, the range of g is as claimed. 

Suppose D E MSS,, with D # B. Then Lemma 3.1 and Theorem 3.3 
imply that g(D) is not a cyclic permutation of g(B) and therefore that g is 
l-l. That g is onto follows from Theorem 3.4 and Lemma 3.1. For n = 1 
one simply sends C to ( - 1). 

5. COLORINGS OF NECKLACES 

For each n E N we partition the elements of { 1, - l}” into equivalence 
classes, where equivalence is determined by C, x S,. Here C,, is a cyclic 
group of n elements, namely cyclic permutations, and S, is the permutation 
group on two elements. So, if w  and v are two elements of { 1, - l}“, we say 
w  and v are the same 8 there exists some y E C,, x S, so that y(w) = v. 
Each equivalence class containing primitive elements gives a distinct color- 
ing for a necklace consisting of n beads, where there are two possible colors 
for each bead. We let CL, denote the collection of such equivalence classes 
and we will use arbitrary members of a class to represent it. For example, 
we can express CL, as, CL, = { ( - 1, 1, 1, l), ( - 1, 1, 1, - l)}. Of course, 
among others, (1, l,l, -1) and ( - 1, - 1, - 1,l) are equivalent to 
( - l,l, l,l). The coloring (1, - 1,1, - 1) is not primitive. Gilbert and 
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Riordan [4] give a formula which yields )CL,) for each n E N, and they 
computed ]CL,] for 1 s n I 20. Their values match those in Metropolis, 
Stein, and Steins’ Table 2 [5] and the table given by Myrberg [9]. We 
proceed with our algorithm. 

DEFINITION 5.1. Let n 2 2 and B = b, . . . b,-,C E MSS,,. Then define 
h(B) as 

h(B) = (el,e2,...,e,), 

wheree,= -1,e,=l,andfor3<i<n 

e, = 
i 

ei-17 if bipl = L, 

-ei-l, if bipl = R. 

Thus h: Unr2MSSn + lJ”>*{ -1,l)“. 

THEOREM 5.2. For every n 2 2, hj,s,” is a bijection onto CL,. 

COROLLARY 5.3. IMSS,( = JCL,& for each n E N. 

Corollary 5.3 follows immediately from Theorem 5.2. We prove Theorem 
5.2 with the next four lemmas. 

LEMMA 5.4. Let n 2 2 and B = b, . +a b,-,C E MS&. Then h(B) is 
primitive. 

Proof Suppose h(B) is not primitive. Then we can express h(B) as 

h(B) = (aI ,..., or ,..., a1 ,..., ar), 

where n/p 2 2. Thus B = b, . . . b,, . . . b, . . * br-& and therefore, using 
Theorem 3.2, n/p is either one or two. Assume n/p = 2. We have two 
cases. 

Case 1. Assume the parity of b, . . . bp-l is odd, i.e., there are an odd 
number of R’s appearing in b, . . . bppl. Then B = b, *. . b,,bl . . * bpelC 
E MSS, implies that br = L, for otherwise b, * * . bpbl + . . br is less than 
its right shift b, . . . br: Thus at, = - 1. This implies that 0~~ = 1, since the 
parity of b, ‘a. br- I IS odd. However, cq = - 1 by the definition of h. 
Thus n/p = 1 and h(B) is primitive. 

Case 2. Assume the parity of b, * . . br- 1 is even. The argument is 
similar to Case 1. 

LEMMA 5.5. Let n 2 2, and B # D in MS&. Then h(B) and h(D) are 
inequivalent colorings. 

Proof Let B = b, . . . b,,-J and D = d, *. . d,-,C. Suppose that 
h(B) and h(D) are equivalent colorings. Express h(B) as h(B) = 
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(e,, . * *, e,). Then 3 j, 2 I j 5 n, so that, 

h(D) = (e, ,..., e,,e, ,..., ej-,) or h(D) = -(ej ,..., e,,e, ,..., e,-,) 

In either case, 

D = bj a-0 b,-,bb, ..a b,&, 

where b is L if e, = e, and R if e, Z e,. Observe that both w  = b, . . . 
b,-,b and v = b, .-a b,,-,bb, . a- b,-,b,-, are shift maximal. Now, w  is 
primitive or has minimal subperiod n/2. If w  is primitive we contradict 
Theorem 3.3. If w  is not primitive, then j must be (n/2) + 1 and therefore 
B = D. Hence the result holds. 

DEFINITION 5.6. Let n 2 2, and (e,, . . . , e,) E { 1, - l}“. Then we de- 
fine J/((el,. . . , e,)) as follows. 

#((e 1 ,..., e,)) = b, e-s bnml, 

whereforl s i I n - 1 

if e, # e,+l, 
if ei = ei+l. 

LEMMA 5.7. Let n 2 2, and e = (e,, . . . , e,) E { - 1, 1)” be primitive. 
Then, 

(0 $<(q,. . . , e,,e,)) is either primitive or has minimal subperiod n/2. 

(ii) If #((e,, . . . , e,,e,)) = 6, . . . b,,,*bl .- * b,,,2, then the parity of 
b, ... b,,,2 is odd. 

Proof: Let w  = b, . .a b, = +((e,,..., e,,e,)). Suppose (i) does not 
hold. Express w  as, 

w  = b, . . . b b . . . 
P 1 

b 
P 

. . . b, . . . b 
P’ 

Then ep+i = -e,, since otherwise e would not be primitive. So, e now 
looks like 

e = (el ,..., ep,- e, ,..., -ep,el ,..., ep ,... ), 

depending on the size of n/p, and therefore e, is either ep or -ep. Recall 
that b, = b, is obtained by comparing e, to ei, or eP to ep+i. Thus, 
ep+l = -e, implies that e, = -ep. However, this implies that e is not 
primitive. Thus (i) holds. 

We will now show (ii). Assume the parity of b, . . . bn,* is even. Then e 
primitive implies that 

e = (e,,.. ., f+,- e,,. .., -en,,). 

However, the parity of 6, . * . b,,,2 being even implies that there must be an 
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even number of “sign changes” in 
e,,...,e n/2yen/2+1. 

Thus, e, = en,2+l. Now we have e, = en,2+1 = -e,. So, (ii) holds. 

LEMMA 5.8. Let n 2 2. Then hl,,” is onto CL,,. 

Proof. Let e = (e,,..., e,) E { -1, l}” be primitive. We have two 
cases. 

Case 1. Assume that $((e,, . . . , e,,e,)) = w  = b, * * * b,, is primitive. If 
w  is shift maximal, then B = b, *. . b,,...,C E MSS, and h(B) = e or 
h(B) = -e. If w  is not shift maximal, then, by Theorem 3.4, there exists 
some j, 2 I j I n, such that bj . . . b,b, . . . bj- i is shift maximal. Then 
D = b, -9. b,,b, . . . bje2C is in MSS, and h(D) is equivalent to e. 

Case 2. Assume that #((e,,..., e,,e,)) has minimal period n/2. The 
argument is similar using Lemma 5.7 (ii) and Theorem 3.4 applied to 
b, - -. b,,/2. 
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